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1. Introduction. Let Bt be a Brownian motion starting at 0 , defined on

a complete filtered probability space (Q, F, F , P) which satisfies the

usual conditions. For each x , let AX(B) be the set of starting

times of excursions of B above the level x, , and let A(B) be the set

of starting times of excursions of B above some level: that is
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= AX(B) = {t : : Bt = x, Bs > x for t  s  t + e for some e > 0}, ’

A = A(B) = u AX(B) . .
x

Let t E , and f : : -~tR+ be a continuous strictly increasing

function with f(0) - 0 . We will say that f is a lower function

(respectively, upper function) for B at t if there is a 6(w) > 0 such

that

f(u) for all u e [0,6]

(respectively,

~t~~ ~ for [O~D . °

If A c A , , and f is a lower (upper) function for B at t for all

tEA, , we will say that f is a uniform lower (upper) function for B on A . .

For fixed x, , it is well known which functions f are upper or

lower functions on . Let X be a 3-dimensional Bessel process (we

will say a Bes (3) process). It follows from the decomposition of

Brownian excursions given in [9, p. 74] that, with probability 1, each

excursion of B from x begins in the same way that X leaves 0 . .

As there are only countably many excursions of B from x, , a function

f is, ’ a.s., ’ a uniform lower, or upper, function for B on A if and

only if f is a lower, or upper, function for X at 0 . An integral

test for this last property is known (see [11, p. 144, 147]). Let

f(t) - t1~2~(t) . ~ Then f is an upper function for X at 0 if

as t J~ 0 , , and Jo+  ~, , and f is a

0+

lower f unction f or X at 0 if ~ (t) ~ 0 as t ~ 0 , , and .
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0+03C6(t)t-1 dt  ~ . In particular, for each e > 0 , , log 

is an upper function, and 1/t) -(1+~) 
is a lower function.

By Fubini’s theorem, if f is a lower function for X at 0 , , then

{x : : f is a uniform lower function on Ax} is of full measure. However,

there may be times t E A(w) for which f fails to be a lower function,

and therefore levels x such that f fails to be a lower function for one

or more excursions above x. .

We may consider 4 types of ’bad behaviour’:

(i) times at which functions f which are lower functions for X at 0

fail to be lower functions,

(ii) times at which functions f which are upper functions for X at 0

fail to be upper functions,

(iii) times at which functions f which are not lower functions for X

at 0 are lower functions,

(iv) times at which functions f which are not upper functions for X at

0 are upper functions.

(i) In Section 2 we show that, given any continuous strictly increasing

function f there are, a. s . , times t E A(w) such that f f ails to be a

lower function at t. . Remarkably, even more is true: there are levels

x at which f fails to be a lower function for every excursion above that

level x. ° In fact, this is a real-variable result, which is a consequence

of Baire’s category theorem: the only properties of Brownian motion that are

used are that it is continuous and nowhere monotonic.

It is also of interest to consider the size of the sets on which

some function fails to be a lower function. For 1/2  p let
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A = {t ~ A : : there exists 03B4n ~ 0 with B t  03B4pn for all n} . °

In Section 3 we show that dim llp = 1/(4 p) . (Here dim denotes the .

Hausdorff dimension).

(ii) The Levy modulus of continuity for Brownian motion provides a uniform

upper function for B on A, , but this is not quite the best possible.

Let ~(t) = 1/t)1/2 (the Levy modulus is ~ ~) . . Then (Theorem

4.3), (l+e)t) is a uniform upper function on A , and (1-E)~ fails to be

a uniform upper function. We also find the dimension of the set on which

a~ , , for 0  a  1 , fails to be an upper function: we only state the

result here (Theorem 4.4), as the proof is very similar to the proofs in

Section 3.

(iii) and (iv). We shall not consider these here, as fairly precise

results about this type of behaviour have recently been obtained elsewhere

(see [2], [3], [15], [17]). The situation concerning (iii) is as follows:

w.p. 1 there exist a dense set of times t such that

lim (B(t+h) - B(t))h 1/2 - 1 (see [3]) but there is no t for

which the above lim inf is greater than one ([2]); in fact there is no

t for which B(t+h) - B(t) > ~ for all h E [0,A] for some A > 0

([3]) . Regarding (iv), it is shown in [17] that

inf , lim sup 
(B t +h - 

= c

teA h -~ 0+ ~h

where c(> 1) is the smallest positive zero of the unique (up to a

multiplicative constant) solution of

1 2(d2 dx2 - x d dx) 03C8(x) = L2([0,~), e-x2/2 dx)

03C8(0) = 0 .
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2. Lower Functions

The key to the results of this section is a real variable theorem,

(Proposition 2.1) which is an easy consequence of Baire’s category theorem

and may well be known.

If g : Qt+ -)- ~t is a cadlag function, set A get) = g(t) - g(t-) .

Proposition 2.1. Let gl, g2,... be a 
. 

sequence of cadlag functions with

the property that, for each i, > 0} is dense in [0, 1] . Let

~ ’ ~+ ; ~+ be continuous, increasing with })(0) = 0 . Then there is a

set A c (0,1) with the following properties:

(i) For all tEA and i > 1 there is a sequence t. ~ t .

20142014201420142014 - 2014201420142014201420142014201420142014~2014201420142014 i,n

with ~{ti~n-t) for all n. °

(ii) A is the countable intersection of open dense sets in (0,1) .

(iii) A is of second category in IR (and in particular uncountable)

and dense in [O,lj.

Proof. Let 
C. i,n 

= {t E [0,1]: ° for some h E and some e > 0 , ’

gi(t’+h) - gi(t’) > ~(h) for all t’ E (t-e, 

It is clear from the definition that C. i,n is open. Let (a,b)

be any interval in [0,1] : then there exists s E (a,b) with

> 0 . . Choose h  n 1 such that 0  ~(h)  Ag (s) : : then, as

gi has left limits, for some e > 0 we have gi(u+h) - gi(u) > ~(h) for

s - e  u  s . ° Thus Ci ,n n (a,b) is non-empty, and so Ci > n is dense

in [0,1] .

Now let A = n C : the set A is the intersection of a countable

number of open dense sets, and therefore, by Baire’s theorem’ (see [4, p. 249]),

is dense in [0,1]~ and of the second category. If tEA, the existence

of ti~n ~ t with the desired properties is immediate from the definition

of A . a

We say that a function g : is nowhere monotone if g is not

monotone in any interval: that is, given a  b there exist
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a  sl 
 

s2  s3 
 b such that g(s2) > g(sl) v g(s3) ’ °

Theorem 2.2. Let b : : ~t+ + Q~ be continuous and nowhere monotone. Let

f :IR+ -~ ~ be continuous, strictly increasing, and with f(0) - 0 .

There exists an uncountable dense set S , of the second category in IR , ,

such that, for all x E S , , and t E , there exist t ~ t with

b(t ) - b(t)  f(t -t) . .

Proof. For 0  r  s let

( inf b(U) , b (s) ) , ,
rus

gr,s(x) = sup{u E [r,s) : : b(u) = x} for x E .

As b(gr,s(x» = x  b(s) for x E , the function gr,s is right

continuous and increasing on I ’ . Further, the set > 0} is

dense in : if gr,s were continuous on an interval [u,v], , this

would imply that b was monotone on , gr,s(v)] . .

Let ~ be the inverse function to f, ,

" 

{x E : there exist x ~ x with
n

gr,s(x) > for each n} , ,

and u 

By (ii) of Proposition 2.1 Cr,s contains a countable intersection of

open sets each dense in . Therefore the same is true of S = n Cr,s .

By Baire’s theorem S is an uncountable dense set of the second category in
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. Let x ~ S and t E Ax(b) . If t’ = inf{u > t : b(u) = x} , then

t’ > t and there are rationals r, s with 0  r  t  s  t’ . Since

x E n there is a sequence x such that

> 03C6(xn-x) for each n. Let t 
= :

we have t - t > 03C6(xn-x) = 03C6(b(tn) - b(t)) . Thus b (t ) - b (t)  f {t -t)

for each n, and S has the required properties. D

As, with probability 1, B(w) is nowhere monotone, we deduce immediately

Theorem 2.3. Let f :~R+ + ~t be a continuous strictly increasing function

with f(0) - 0 . Then for a.a. w there is an uncountable dense set

such that for all x E and t E there exists

a sequence t with

Bt (w) - for all n. °
n

We may also look at the starting times of all excursions of B from

the level x. Let I~x = {t: Bt = x , Bs # x for t  s  t + e for some

E > 0} . Then, by making a few obvious changes in the previous arguments,

one obtains

Corollary 2.4. . Let f : : ~t+ -~ ~ b4 a continuous strictly increasing function

with f(0) - 0 . Then for a.a. w there is an uncountable dense set

such that for all x E and there exists a

sequence tn ~ t with

IBt (03C9) - Bt(03C9) I  for all n . .

n
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Remark 2.5. It is clear that these last two results also hold for any

process with sample paths which are continuous and nowhere monotone. There

are continuous Gaussian processes for which the local and global modulus

of continuity are identical - see Kahane [10]: nevertheless they still

exhibit this kind of sample function irregularity.

Let f(t) = and be the set obtained in Corollary

2.4. For x E we see that every excursion from x begins in an

unusually "slow" fashion, and this might suggest that there are asymptotically

more excursions of small duration from x than at a typical level.

In fact, this is not the case. If N (t,x) is the number of excursions

from x exceeding e in length completed by B before time t , then in

[13] it is shown that

(2.1) lim sup I(1 03C0~)1/2N~ (t,x) - 0 for all T > 0 , a.s.,

where Lt is the local time of B at x . This extends a well known result

of Levy [12]. Other characterisations of Brownian local time that hold

uniformly in x are given in [1] and [14].

In the light of these positive results it is of interest to note that

Corollary 2,4 leads to a characterisation of local time that holds a.s. for any

fixed level x , and therefore holds a.s. on a set of full Lebesgue measure,

but which fails miserably on the uncountable dense set S .

Example 2.6. Recall f(t) = exp{-l/t ~ } . Let

Cx - {w: IR+ -~ IR : : c~ is continuous, = x and there exist

0 with  f(t ) for each n} ,
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and let N’(t,x) be the number of excursions from x in that are of

length greater than e , and are completed by B by time t . As f is

a lower function for the Bes(3) process, N’(t,x) = N (t,x) for all e > 0 ,

t > 0 a.s., for each fixed x . Hence, by (2.1)

lim (1 203C0~)1/2 N’(t,x) = Lx for all t ~ 0 , a.s. for 

However, by Corollary 2.4, for each x e S(03C9) ,

lim 0 .
E~0 

2 ~

Clearly, we could replace f in the definition of Cx above by any

lower function for the Bes(3) process at 0 .

3. Hausdorff Dimension and Lower Functions

Recall that A = {t e A : there exist t with
p n

Bt 
" B t  for all n} . In this section we find the Hausdorff

n

dimension of the set A . Our main result (Theorem 3.6) could be proved

using the "first method" of Orey and Taylor [16]. Indeed, our proof of

the upper bound for the Hausdorff dimension follows their argument very

closely. Their proof for the lower bound is more involved. We present a

different argument here,

Lemma 3.1. Let T(t) be a stable subordinator of index a (0  a  1) .

For S  a 1 , let
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R (c~) - { t : lim sup h S (T (t) - T (t-h)) _ .

" 

Then a.s. °

Proof. Let

Cn = {[k2 n, , (k+2)2 n] , , k = 0,..,~2n+1}

S - {[S,t]: t T(t) - T(S) > 

Now P(T(1) > x)  cx , , and therefore

(3.1) P([s,t] E S) - P(T(1) > (t-s)~-l~a) (by scaling)

 c(t_s)1_as . .

If t E n [o, 1] , , there exist t , , and kn fi , such that

T(t) - T(u n ) > k We may take k 
n 

> 4~ for all n . . Let m 
n 

be

- m -1 -m

such that 2 
n 

 t - un  2 n : : then there is an interval sn] ] in

C such that [un, , [r , s ] . It follows that

- > k n 4-~ (s n -r ) ~ n
> (s -r ) S . .

Therefore each point in RS n [o, 1] is covered infinitely of ten by

intervals in u C n S . . Let N be the number of intervals in C n S , ,
m m m m

and v > Sa : : then by (3.1),
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E 03A3 Nm 2-m03B3 ~ c 03A3 2m+1 (2-m+1)1-03B103B2 2-m03B3

= c 2-m(Y-as)  ~
m

Then dim RB n [0, 1]  y and the result is now immediate. D

The above result is essentially due to Orey and Taylor [16]. Indeed

it follows from the above and (6.3) of [16] that dim RS = aB a.s.

Proposition 3.2. dim 1/4p for all p > 1/2 .

Proof . Let B = B - B for 0 ~ t ~ r , and r ~ 0 , let

M(r) - sup and S 
r 

= {t  r : > for all s  t} .

Then, if q  p , _

A c u {t : r-t E S , and lim inf h q(M(r) - M(r) ) - 0} .
p 

rE+ 
r 

h ~ 0 
r-t r-t-h

It is therefore sufficient to show that, if S = {t > 0 : Bt > B s for all

t} , and Mt = sup and

st

A = {t ~ S: lim inf h-q(Mt-Mt-h) = 0} ,

then dim A  1/4q . The image of A under M is the set

M(A) = {y > 0 : lim sup x 1/q(T(y) - r(y-x)) = °° , y is a
0

continuity point of T} ,

where Tx 
= inf{t > 0 : t Mt = x}. Now T is a stable subordinator of
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index 1 , , and so, by Lemma 3.1, dim a.s. As T(M ) = t for

all t E S , we have A = T(M(A)) . Hawkes and Pruitt, [8] show that,

if Y is a stable subordinator of index B  1 , then, for all Borel sets

B simultaneously, dim{Y , t E B} = B dim B . Applying this theorem to

M(A) and T , we have dim A = t dim M(A)  1 . Hence dim 1 , ’ and

letting q fi p we deduce the result. D

We now wish to obtain a lower bound on dim A (B) . Let X be a

Bes(3) process, Lx = sup{t > 0 : : Xt = x} , , and

r p 
= {x : there exists 0 such that X L + t n 

 x + tpn for all n} , °

We begin by obtaining a lower bound on dim r . The idea of the proof is to

fix a set A in [0, 1] of small dimension, and to attempt to apply the

condensation argument of [16] on the set A . If A n 0393p ~ Ø for suitable

sets A , then dim A + dim r > 1 .
P

Let 0  a  1 , 6 = 2 n , and let A have the following properties:

(3.2) (a) There exists a sequence of finite sets An such that

A = cl( u An)" 

n=l

(b) > 6 for all x, x ; y ,

(c) For all n > 1 , a E A and e > 0 , there exists M = M(n,a,e)

such that ~~(~ n (a, 
. 

a+c)) > for all m ~_ M .

(d) (0,1) for all n .

For n > 1 let

B = { x E A : there exists 0 
 t  1 03B4)-1

n n n n

with XL +t x  
x
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Lemma 3.3. Let a > 1 - 1/2p , let n > 1 , a E An and E > 0 . Then

P(Bm n (a, a+~) ~ Ø infinitely many m > n) - 1 .

Proof. Let m > n, y E Am , and Vt = XL +t y ’ . It y E Bm then Vt
y

falls below tp before L03B4 (V) - sup{t : Vt = . Now V is itself a
m

Bes (3) process and if Y > 1 then for u > 1 , , > L 1 (V) > u) > 

(see [ 18 ] and [19 ] ), Theref ore

P{y E B ) ? m > 

{V) 
 

L03B4m(V)p  (log 1) 8m p)

-  L {V)  (log 1) 1)
m m

- P(03B4-2+1/pm  L 1 {V)  s m 2 (log 1) ) 8
m

> ,81-1/2p ’

_ -1where Y ~ (1, 2(2-p 1) ) . Now let A n {a, a+E) _ {y ~ " ,~y } : using them 1 r
m

last-exit decomposition of X we have that the events {yi E Bm} are independent.

Therefore, if m is chosen large enough so that, by property (c) of A ,

r > E 8 a , we have
m- m

r
m

P (Bm n (a, a+e ) _ ~~= n Bm)"~ 
i=1 

~ ’~~

 - c 03B41-1/2pn)~ 
£ 

.

Since 03B41-1/2p-03B1 ~ ~ as m ~ ~ , P(Bm ~ (a, a+~) = ~)~ 0 , and therefore

Bm n (a, a+s) ~ ~ for infinitely many m , a.s.
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Proposition 3.4. If A satisfies (a), (b), (c), (d) and a > 1 - 1/2p , ,

then A n r # ~ a.s.
201420142014 

P .

Proof. Let F be the P-null set on which, for some a E A , the
2014201420142014 n n

conclusion of Lemma 3.3 fails to hold, and let F = u F . Set

C 
= {x E (0,1) : for some e > 0 , and t E (0,6 ) ,

3L +t y  tP for all x - E  y  x + s} .
y

C 
n 

is clearly open in [0,1] : we now show that, for c~ E F , C n (w) is

dense in A . Let (a,b) c [0,1] , with A n (a,b) ~ ~ . Then for

some n there exists x E A n (a,b) , and so, by Lemma 3.3, for infinitely many
n

m > n there exists y E B n (a,b) . For large enough m and for some e > 0 ,

(y, y+e) c C , while by property (c) of A , A n (y, y+~) ~ Ø .

We may now apply Baire’s theorem on the closed set A to deduce that

n n C n n , and since n n C 
n 

~r 
p 

, this completes the proof.

Now let (S~’,~’,P’) be another probability space carrying a stable

subordinator Yt of index S > a , with YO uniformly distributed on

(1/3, 2/3) . . For n > 1 let

Tn0=0 ~

Tn, - inf(t > Tn,j-1 : Yt > YT + 
An = {YTn,j , j ~0} ~ (0,1)
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Thus A is the closed range of the subordinator Y in (0,1) . We must

verify that A satisfies (3.2a-d) : the only one of these which is not

obvious is (c). So let E > 0 and n be fixed, j ~ 1 ,

Jm = Am n (YT , , , YT + £) , and Nm = ~~(Jm) . Then since

n, j

A n (YT , , , YT + u [y, y+8m] , , we have, writing my for the

n, j 

03B3-Hausdorff measure function,

n (YT , YT .+ £))  lim inf N ~Y .nj ’nj m ~ . 
~ ~

Now if Y  S , the mY measure of the range of Y is ~ a.s. : hence, as

the range is the countable union of sets of the form A n (YT . , , YT + £) ,
~nj nj

we deduce that n (YT , YT + £) ) - ~ . Thus -~ ~ as m -)- oo ,
nj nj m .

and so Nm > ~mY for all sufficiently large m : choosing a  Y  S we see

that (c) is satisfied.

Proposition 3.5. dim r > 1/2p for p > 1/2 , a.s.
p 2014 

20142014

Proof. A Borel set B is polar for a stable subordinator of index

if dim B  1 - S . Since n A((~’) ~C ~ p x p’ a.s. whenever

S > a > 1 - 1/2p , it follows that dim rp > 1 - S P -a.s. As a and

may be made as close as we wish to 1 - 1/2p , we conclude that

dim 1/2p P -a.s.

Theorem 3.6. dim Ap(B) - 1/4p for p ~_ 1/2 .

Proof. The result for p = 1/2 follows immediately from Proposition 3.2

and the result for p > 1/2 . Now {Lx , x E r } c O (X) , and therefore,
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by the theorem of Hawkes and Pruitt, and the fact that L is a stable

subordinator of index 1/2 , dim A (X) > dim{L , xEl’ } = 1 dim r > l/4p .
p 

2014 

x p 2 p 2014

Finally, as Brownian motion and the 3-dimensional Bessel process are

absolutely continuous on [n 1, n] , for any n > 1 , we deduce that

dim A (B) > 1/4p a.s., and hence, using Proposition 3.2, that

dim A (B) = 1/4p a.s. 

4. Upper Functions

Let ()(s) = 1/s)1/2 . If A > 0 , define

~ld = A~ (c~) - { t E ~ ~ Bt f or (0, ~) } . °

Theorem 4.1. (a) For a.a. w and each A > 0 ,

lim sup sup (B - B )~(h)~ ~ 1 .
h ~ 0 tEll , t~-1 

In particular,

sup lim sup (B + - Bt)03C6(h)-1 ~ 1 a.s.

(b) For a.a. (jj there is an uncountable dense set of times

t in A satisfying

(4.1) lim sup (B~ - B )~(h) 1 - 1 .
h ~ 0 

t+h t

Remarks. 1. In light of Levy’s modulus of continuity for B and the fact

that A is dense, it is.clear that (a) cannot be strengthened to

lim sup sup (B - Bt)03C6(h)-1 = 1 .
h ~  tEA, t1 

t+h t
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Indeed, the above lim sup equals 

2. In [15] it is shown that for certain optional sets A

= # if dim  1/2
(4.2) 

0 if dim A(oj)  1/2

~ 0 if dim > 1/2

(dim denotes Hausdorff dimension as usual). If

A (a)) = {t I lim sup (B - Bt)(03C6(h))-1 ~ a} ,

then (see [16]) dim(A ) - 1 - a2/2 a.s. and so (4.2) would imply that

t= Ø if a > 1

~ if a  1

This would almost prove Theorem 4.1. However, by the section theorem, A
a

is not optional, Further, there is an obvious dependence between the

random sets A a and A, , and as a result a different proof is required.

Let Mt = sup Bs and set

U = U(oo) = {t I Mt = Bt} . °

A time reversal argument shows there is a close connection between A and

U . We prove Theorem 4.1 by first establishing a similar result for U

(Theorem 4.3 below). To handle the aforementioned dependency problem we

need a lemma.

Lemma 4.2. If e, a > 0 and 0  s  t  s + e 1 , , then

P(IB t -B s ( > a ~(t-s) , [t, t+e] n U # ~)

_  4 s-1/2 ( t_s ) (1’+’~2) /2 + (t-s) a2/2 ~ 2 (t-s)} .
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Proof. Note that

P([t, t+E] n U ~ Ø |Ft )(03C9)  P(sup B(u)~-1/2 > (Mt(03C9) - Bt(03C9))~ 20141/2 )

 exp{-(2E) 1(M t (~) - B~(~)))~} . .

If Ms - Bs > then Mt - Bt > Bs (t>s) and so

B s I > a ~(t-s)) exp{.(2e) 1 (B t -B s )2}) (by the above)

(4.3)

 exp{-a2(2s) 1 ~~(t-s)} B~~ I ’ a ~(t-s))

 (t-s) a2/2 ~ 2 (t-s)} .

We also have

BSI > a ))(t-s) , 

_ ~0 f (2/Tr)~ e x2/2 > a ~( t-s ) ~ B - t B~ ~ 

. 

 2as 1/2 ~(t-s) Bsl ’ a ~(t-s))

+ ~0 f I(x ~ 2 as 1/2 ~(t-s) ) (2/’~) 1/2 exP{-x2/2 - 

_  2 s -1/2 (t-S) (1+a2)/2 + ~x0 
0 

(2/03C0)1/2 exp{-x2/203C32} dx 03C3 ,

where x~ = 2~rs 1/Z~(t-s) and ~ =(2(t-s)/(2t-s))1/2 . Therefore the above

is bounded by
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2s - 1/2 (t-s) (1+a2)/2 + Q exp{-x 0 2/2Q2}
(4.4) _ 2s-1/2(t-s)(1+03B12)/2 + (2(t-s)/t) 

~4s-~(t-s)~~ . .
(4.3) and (4.4) give the required result. D

For the next theorem, recall that by [5, Cor. to Thm. 2] (and the

equivalence in law between Mt and the local time of B at zero), we have

(4.5) lim sup sup (M +h - Mt) t)(h)’~- = 1 for all E > 0 a.s.

h -)- 0+ t~Un[0,e] ] 
t " "

Indeed, (b) of the following theorem is proved by applying the condensation

argument of [16] to (4.5).

Theorem 4.3. (a) lim sup sup ~B + - Bj ~(Ihl) 1 _ 1 for all T > 0
h -~ OJ~ tE [0, T] nU 

t h t

(b) For a.a. c~ there is an uncountable dense (in U) set of

times t in U satisfying

(4.6) lim sup - Mt| 03C6(|h|)-1 = 1 ’
~ h -~ 0+ 

" "

and therefore for all such times t we have

~(4.7) lim sup (~t+h - Bt) ~(h) 1 = 1 ’
h -~ 0+ 

’ ~ ’

and

(4.8) lim sup (Bt - Bt-h) ~(h) 1 - 1 .
h -~ 0+

Proof. Consider first the lim sup from the left in (a). We may assume



20

T = 1. . We follow Levy’s classical derivation of the modulus of continuity

of B. . Fix e E(o,l) and let 6 E (0, , E(2+E)-1) . . Define

A - {03C9 : there exists j1, j2 ~ N n [0,2n] such that j2-j1 E [2n03B4-1,2n03B4],

[J22 n, (j2+1)2 n] n U ~ ~ and IB(j2~ n) - )
> (1+£) ~-Ji)2~)} ~ .

Lemma 4.2 implies that

 ns (1+£)2 2 
log (2n(1-03B4))}P(An) ~ 2n03B4 exp{-(1+~)2 2 log (2n(1-03B4 )}

+  2n03B4 [22+n/2 j-1/21 2n(03B4-1)(1+(1+~)2)/2 + exp{-(1+~)2 2n-12n03B4-12-n}]

~ 2n(2~-1) + 12n ~2+e)a-E)+1 + exp{-(1+c2) 2nd-2}] , .

As the above bound is summable by the choice of d , , we have i.o.) = 0 . .

Fix w outside a null set so that there is an N(w) such that

whenever n > N the following conditions hold:

(i) A
n

(ii) [0, ’ 1], ’ s~  2 n => ~Bt - Bs~  (1+s) ~ ~(2 n)

 (£/2) ~(2-(n+1) (1-d))

(iii) 2-1+S - 21-nd ~ 1/2 . .

Fix 0  s ~ t  1 such that t E U and t-s  2-N(1-S) . . Choose

non-negative integers n > N and j1  j2  2n such that

2-(n+1)(1-8)  ,

and
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tj 1 -1) 2 n ~ s 1 Ji 2 n ~ j 2 2 n ~ - t  (j~+l)2~ . .

Then [j2 2 n, , ( j 2+1) 2 n ] n U ~ ~ and

2n03B4 > J 2 - j 1 > 2n(t-s) - 2 > 2n03B4(2-1+03B4 - 21-ns)

~ 2n03B4-1 (by (iii)) .

As A we therefore have
n ,

IB - B~ ~2 
+ IB j~2 2-n - B. ~1 2-n) ’~~8. ~1 2-n - I  (1+2~) ~(t-s)

(by (i) and (ii)) . . Letting 0 , , we get

(4.9)- lim sup sup a.s. .

h -~ 0- tE [O,lJnU

The analogous result (4.9)+ for the lim sup from the right is similar

and simpler, as the required version of Lemma 4.2 is now trivial by

independence. ..

To finish the proof of (a), , it suffices to prove (4.6), , because (4.7)

and (4.8) are then easy consequences of this and (4.9). . If N , let

DN = {t E U : IMt+h - M t I ’ for some h between 0

. and + N 1} , .

DN and are open sets in U by sample path continuity. We claim

DN and D are both a.s. dense in U for each N . By a time reversal

argument it suffices to show this for DN . Indeed, if T = inf{t|Mt = 1} ,
then the process (M ~T-t) + - B ~T-t) + , 1 - M (T-t) +) is equal in law to
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[20]) . If r ~ 0 let Tr = inf{t ~ r|t E U}

and

M(r)t = MTr+t - MTr = sup Bs+Tr - BTr ; U(r) = {t|M(r)t = Bt+Tr - BTr}

E U} .

Fix w outside a null set so that (4.5) holds with M(r) in place of M

for all non-negative rationals r . If t E U , choose non-negative

rationals r t t (r  t) . Then by the choice of w there are

tn ~ (0, t + 1 n - Tr) ~ U and a sequence {hn} decreasing to zeron n n r 
)nU and a sequence n n } decreasing to zero

n

such that

(rn) (rn) _1

Mt +h - Mt +t -.h - B +t > (1-n )~(hn) . °
n n n r n n r n

n n

For large n , T r + (this holds if h n  1 N N) and as
n

Tr +tn converges to t , the claim is proved.
n

As U is locally compact, it is a Baire space ([4, p. 249]) and so

n DN n DN - is a dense set in U which must also be uncountable as U is
N-1 N ~

perfect. If t is in this set then clearly

lim sup 1 .

By (4.9) we must have equality in the above and the proof is complete. D

Proof of Theorem 4.1. (a) Let B(r) - Br - and
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U(r) - {t ~ r ! ( B (r) = sup (r>0) .
t 

s~t 
s

Fix (jj (outside a null set) such that Theorem 4.3 (a) holds when (B,U,T)

is replaced by (B(r), U(r~, r) for any positive rational r .

Choose Q == M 1 for some M E tN . If t E ll 

M1 
n [O,MJ , there is an

2 (ri ) -1
i  2 M" + 1 such that ri - t E U n [(2M) , ri] where

r - (i0394)/2 . Therefore if h E (0, (2M) 1)

- 1 _1
sup 

" 

 max sup (Bu - Bu-h )f)(h) 
"

t~ -ln [U,MJ i~2M2+1 uEU

The lim sup as h -~- 0+ of the expression on the right is one.

(b) Let M~1) - sup B~1) where is defined as above.
t 

st 
s

By Theorem 4.3 (b) for a.a. oo there is an uncountable set of times t in

U~1) satisfying

(4.10) lim sup (M(1) - M(1) ) ~ ( I h I ) 1 - 1 .
h -~ 0- 

t t+h

Clearly for any such t  1 we have 1 - t E A , in fact BS > Bl-t
for all s E (1-t, 1] . Moreover, using (4.10) we have

B(1) - B(1)
lim sup (B1- + - B )~(h) 1 - lim sup t 

.... 

t-h 
> 1 .

h -~ 0+ 
t h 1-t 

h -~ 0+ ~ (h)

It follows that for a.a. ca there is an uncountable collection of times

t satisfying (4.1) in each interval with rational end points. This

completes the proof. 0
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By taking into account the two-sided nature of (4.6) in the above

proof of (b), one could prove the existence of an uncountable dense

set of times, t , in A satisfying (4.1) and

. 

lim inf (Bt - Bt-h)03C6(h)-1 = 1 .
h ~ 0+

Recall that

A = {t ~ I lim sup (B - B ) ~ (h) 1 ? a } ." 
h -~ 0+ 

In view of Theorem 3.6 it is natural to ask for the Hausdorff

dimension of A n A . Recall ([16]) that dim(A ) = 1 - a2/2 .
a a

Theorem 4.4. dim(AnA ) - (1-a2)/2 a.s. D

We omit the proof as it is similar to that of Theorem 3.6. For the

upper bound on dim(AnA ) , one can first show that

(4.11) dim(UnA’)  (1-a2)/2 ,
a -

where

A" = {t ! I lim sup (B - Bt-h)03C6(h)-1 ~ a)

The required result now follows easily by time reversal as in the proof of

Theorem 4.1. The proof of (4.11) is similar to the proof of Lemma 3.1 (and

even closer to the argument in [16, p. 80]). The role of (3.1) is now

played by Lemma 4.2.

The lower bound on dim A n A can be obtained by using the techniques

of Proposition 3.5.

5. Concluding Remarks

If A1 and A2 are subsets of 1R , one frequently finds that
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(5.1) dim(AlnA2) = dim A1 + dim A2 - 1 . °

Here a negative dimension indicates the set is empty and so

(5.2) A1~A2 { 
~ Ø if dim A1 + dim A2 > 1= Ø if dim 

In particular these relations hold if A1 and A2 are the ranges of

independent stable subordinators (see [6]). In general, (5.1) and (5.2)

seem to hold if Al and A2 are in some sense "independent". This idea

is pursued in [7]. However, the results of sections 2 and 3 indicate

how one can construct a sequence of independent random sets {Ai} , each
of Hausdorff dimension zero, whose intersection is an uncountable dense

set. By "independent" we mean each A is defined in terms of Xi ,
where is a collection of independent processes. For example, if

is a collection of independent stable subordinators of index

ae (0,1) , and

{ t I lim sup (Ti (t) - T (t-h) ) ,

h 4~ 0 
" i

then by Lemma 3.1 0 for all i a.s. Nonetheless,

Proposition 2.1 shows that n is a.s. an uncountable dense set

in [0, ~) . .

As a second example, consider a sequence of independent Brownian

motions and define

{t I lim B.(t)~~(h) 1 - 
h ~ 0 

" ~

where ~(h) = (h log 1/h)1/2 . . Then ([16]) dim C i (c~) - 0 a.s. ° but
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n is uncountable and dense. To see this latter result, note that

is the countable intersection of open dense sets and apply Baire’s

theorem. This kind of behaviour does not occur for the sets of slow

points

Si(c) = {t I lim sup I B.(t+h) - B (t)Ih 1~2  c} ,
h ~ 0 

1 i -

Indeed, it is shown in [2] that

if ci > 1 (so that dim S(ci) > 0 a.s.), then

n

dim( Si(c.) = I (n-1) a.s.

In particular n n S (c) == 0 a.s. if n > (1 - dim S(c)) 1 , ,

and the natural extensions of (5.1) and (5.2) to n sets are valid for

{S2(c 1 ),...,Sn(c n )} .
Finally, using arguments similar to those in section 2, it is not

hard to show that w.p. 1 there is an uncountable dense set, S , of the second

category, in IR such that for all x in S , all i and all t in

we have

lim sup (B (t+h) - B (t))~(h) 1 - 1
h ~ 0 

i i

and

lim inf (B (t+h) - B (t)) 0 .

In particular, there are times t in A which exhibit both the types of

bad behaviour, (i) and (ii), discussed in the introduction.
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