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A MARTINGALE APPROACH TO SOME WIENER-HOPF PROBLEMS, II,

by

R.R. London, H.P. McKean, L.C.G. Rogers, and David Williams

To a large extent, this paper, II, may be read independently of Paper I.

Please see the introductory remarks to Paper I for a brief indication of

the relationship between the two papers.

PART A. A NEW LOOK AT THE MARKOV-CHAIN CASE

1. Fluctuating clocks for Markov chains. Let E be a finite set, let X

be an irreducible Markov chain on E with Q-matrix Q, and let m denote the

unique invariant probability measure for X. For x E E, Px denotes the law

of X when X = x. Let v be a map ~{0}, and put E + = v -1 (0,~),

E 1 _ v 1(-~,0). We suppose that both E+ and E are non-empty. For

t ~ 0, define

(1.1) 03C6t ~ t0v(Xs)ds, 03C4+t = 03C4-t = inf(s:-03C6s > t},

Y+t ~ X(03C4+t), Y-t ~ X(03C4-t).
It is elementary to prove that Y+ and Y are Markov chains on E+ and E

respectively. We suppose that

(1.2) Vm(E) > 0,

where Vm is the signed measure on E with Vm(x) = v(x)m(x). Then Y

has infinite lifetime, and Y has finite lifetime. Let G+ be the

E+ x ~+ matrix which is the Q-matrix of Y+, and let G be the Q-matrix

of Y . . Let 1I+ and II (respectively) be the E x E+ and E+ x E
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matrices with entries:

(1.3) = a], II (a,b) - = b], for a E E+, b E E . .

Let V be the diagonal matrix diag(v(i)), or, in other words, the

operator of multiplication by v. The partitioning E = E U E of E

induces the partitioning:

V-1Q = 

of the matrix V iQ. It is obvious from the probabilistic interpretation that

(1.4) G" = A + Blf, if = etDCetG+dt,
so that

(1.5) 03A0+G+ = etDCetG+G+dt = -C-DII+

(by integration by parts). On combining (1.4) and (1.5) with their ’minus’

analogues, we obtain the ’Wiener-Hopf factorization’ of V Q:

(1.6) 

(1+ I A -C 
A 

II+ I j ) _ 0 -G _. .

It is easy to see that the matrix inverse occurring on the left-hand side of

(1.6) exists because of assumption (2.2).

The existence of the factorization (1.6) was proved by a different

(martingale) method in Barlow-Rogers-Williams [1 ]. 
~ 

It was also shown there

that the f actorization (1.6) is unique in the strong sense now to be explained.
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Suppose that fl , G+ and G are any four matrices (on E x E+,

E x E , , E x E and E x E respectively) such that every eigenvalue of

G+ has nonpositive real part, every eigenvalue of G has negative real part,

and (1.6) holds. Then II+ and TI must be as at (1.3), and (hence) G+ and

G must be the Q-matrices of Y+ and Y respectively.

So as not to look for difficulties, we shall assume throughout the remainder

of this paper that

(1.7, Assumption) v 1Q has distinct eigenvalues. It is then easy

to prove the uniqueness assertion for the factorization (1.6) stated above, for

it hinges on the following lemma.

(1.8) LEMMA. Let f = ( -) be a function on E (with restrictions f+

and f to E+ and E respectively.)

(i) If V 1Qf = af for some a with nonpositive real part, then

f = (~+)f+, and G+f+ - af+.

(ii) If V Qf = Sf for some ~ with strictly positive real part, then

f = ( ~ ) f , ’ and G f - - Sf . °

It follows that V 1Q has exactly eigenvalues of non-positive real

part, and I eigenvalues of strictly positive real part. 

2. A spectral expansion f or Let

~r ~2’ ... , Sk (k = 

be the eigenvalues of V 1Q of strictly positive real part. From Lemma 1.8,

we know that (with o(.) denoting spectrum):
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(2.1) a(G ) _ ~-~1, -S2, ... , ’ 

Now it follows quickly from (1.6) that

(2.2) D + (I - 

so that the matrix D + 03A0+B is similar to the matrix G . . By standard matrix

theory, there exist E x E matrices J1, J2, ... , , Jk such that (with I

denoting the identity E x E matrix):

(2.3) Ji = Ji, E Ji = I , ~ + 

From (1.4) and (1.5),

(2.4) C + D03A0+ + + = 0 ,

Hence,

JiC + 0

and so

A) 1 . .

Since EJi = I , , we have proved the following theorem.

(2.5) THEOREM.

1I+ = E A)-1 . .
z

Now, for A > 0, the matrix C(1 - A) 
1 

has an obvious significance as the

Laplace transform of an entrance law from E to E+ for a chain Z with

Q-matrix

.C D .

We obtain such a chain Z via the classical time-substitution:
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u

(2.6) Zt = X(pt), where pt = inf{u: 0|v(Xs)|ds > t}.
We have shown that

(2.7) for bEE, - the law n + (b,.) of under Pb is a ’mixture’ of 
.

Laplace transforms of entrance laws for Z from E 
- 

to E+ with Laplace-

transform parameters 03B21, 03B22, ... , 03B2k, the eigenvalues of -G .

It should be noted that the ’symmetric appearance’ of (2.4) suggests that

a dual form of the second equation at (1.4) must hold:

(2.8) ~+ _ et(D+ 1I B)CetAdt ,
and that it is (2.8) which provides the motivation for Theorem 2.5. We shall

now see that (2.8) is best proved by a time-reversal argument.

3. Time-reversal. Suppose now that X~ is chosen according to the invariant

*
measure m. Then the time-reversal X of X is a Markov chain with Q-matrix

Q * which is the adjoint of Q on LZ(E,m):

(Q*f)x - 03A3 q*xy fy, where qx - myqyxm-1x .

For an E X E+ matrix H = (hba), define H* to be the E+ X E matrix

with hab = mbhbam-1a ; and so on. By simple algebraic operations on (1.4),

(3.1) 
I (03A0+)*) -1 A* C* I (n+)* (p+1T C)* 0[ )* I *] -B* 

* 

-D* (II )* I *] 0 

- * 

-(D+II+B)* t
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and this is the unique Wiener-Hopf factorization of V-1Q*. The probabilistic

interpretation now implies that

(03A0+)* = etA*C*et(D + 03A0+B)*dt,

and equation (2.8) follows on taking adjoints on L2(E,m).

4. The ’symmetrizable’ case. The most interesting case is that in which

*

(4.1) Q = Q , , .

that is, in which m q 
= 

m q and X is ’symmetrizable’ (identical in law

*
to its time-reversal X ).

Assume now that (4.1) holds. Then, on comparing (1.4) with (3.1), we

see that

(4.2) (03A0+)* = 03A0-, (03A0-)*=03A0+ , G+ = (A + 03A0- C)*, G- = (D+03A0+B)*.

Let us now follow up some of the ’algebra’ of the situation.

The operator V 1Q is self-adjoint relative to the indefinite inner-

product defined as follows:

~f ~ g~’Vm - ,~~ 
xeE 

~ ~ ~ ~

g denoting the complex conjugate of gX. . If f and g are vectors on

E+, define

~f + ~g + ~+ - , where f - (~+)f+ ~ , 8 - ~~+)g+.
Then

~f+’g+!+ = 
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the inner product on the right being the inner product in L2(E+,(Vm)+),

(Vm)+ being the restriction of Vm to E+. From (4.2), the matrix

is self-adjoint on L2(E+,(Vm)+). Further, since 03A0-03A0+ is

substochastic and definitely not stochastic, it is easily shown that

is strictly positive-definite. (For example, one can express

by binomial expansion.) In particular, if f is an

eigenvector of V 1Q corresponding to an eigenvalue a of nonpositive real .

part, then

= ~f+’ f+~+ > 0 0

and we can use the old-f amiliar argument to show that a is real:

.

- = 

so that a = a . .

Analogously, if f and g are vectors on E , , define

(f’,g’}_ - where f - (~ )f , g - (~ )g ,
so that

where (Vm) is minus the restriction of Vm to E- (so that Vm = (Vm)+ - (Vm) ).

Then ’(’,’) is a negative-definite inner-product, and we can show as above

that if ~ is an eigenvalue of V 1Q with strictly positive real part, then

- S is an eigenvalue of G and S is real.

Thus, every eigenvalue of V 1Q is real, and the usual undergraduate

method shows that eigenvectors of V 1Q corresponding to different

eigenvalues are orthogonal for the inner product ~*’’)By ’ . As a consequence
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G has real eigenvalues and eigenvectors which are orthogonal relative to

the inner-product {’~’) ’ . Hence,

(4.3) G is self-adjoint relative to the inner-product . Since

we know from (4.2) that G- = (D + 03A0+B)* , the result (4.3) does in fact

follow immediately from (2.2). However, the inner-product concepts prove

to give a helpful way of thinking about things.

Take m-adjoints in (2.3):

(4.4) (J*)2= Ji, EJi = I , ’ G Ji = ’

For 1  i  k, let 03C8i = (03C8i(b):b ~ E-) be a real eigenvector of G

corresponding to -Si,  and normalise the 03C8i so that

~i’~- = -’ij - °

Then, for any vector n on E , , we have

where, for Hence,

(4.5) . J i = .

5. Recapitulation. Let us collect together some of the f acts which we have

established for the case when X is symmetrizable.

Firstly, we know that the eigenvalues -~1,-52,...,-Bk of G are real

and negative; and from (4.4) we have the resolvent expansion:
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(5.1) (03BB - G-)-1 = 03A3J*i 03BB + 03B2i (a > 0).

Secondly, we have:

k

(5.2) J1C(S1_ A)-1i=l ~ ~

(restating (2.5)) ; and, since this is now an expansion of II + in terms of

real matrices, the ’interpretation’ (2.6) is a little more meaningful.

Finally, we have (4.5).

6. A special case. We now make the further assumption that E contains

a ’special’ state labelled 0 such that jumps from E 
- 

to E+ can be made

only from state 0. It follows from the symmetrizability assumption that

jumps from E to E can only be made to state 0.

We shall prove under this assumption that

(6.1) 0 (Vi), ,

so that, from (5.2), is a convex combination of the Laplace transforms

of the entrance law for Z f rom 0 into E of parameters .

Moreover, we have, from (5.1) and the f act that Ji(O,O) = Ji(0,0),

(6.2) (03BB - G-)-1 (0.0) = 03A3Ji(0,0) 03BB + 03B2i .

Note on the ’Brownian’ case. In the ’Brownian’ case considered in

Paper I, the entrance law of Z from 0 into (0,°°) is of course

identical to the entrance law of a reflecting Brownian motion from 0 into

(0,~). The Laplace transform of this entrance law with parameter

03B2 = 1 2r2 (r > 0) is well known to be the measure
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2e ~dx

(in terms of the standard local time at 0). An ’explanation’ of the

fundamental formula:

(6.3) p4(dx) - 

from Paper I - with J a (nonnegative)measure - is therefore now before us;

and the way in which the measure J in (6.3) features in the resolvent of

Y in equation (21) of Paper I corresponds exactly to our equation (6.2) D

Proof of inequality (6.1). Because of (4.5), we need only show that

(6.4) (f* - and f (0) have the same sign whenever

f = (f-) _ ()f- is an eigenvector of V 1Q corresponding to an eigenvalue

S > 0. (For we can take S = Si and f = 03C8i.) Now since Qf = ’

is a local martingale under every Py measure. Let

n - inf{t:Xt ~ E-}.

Let x e E+. Then, under Px,

is a bounded local martingale, and hence a martingale. Hence, for x E E+,

(6.5) f {x) - = = 

since we are assuming that X can enter E from E+ only at the point 0.

Obviously, we need only prove (6.4) under the assumption that f (0) > 0.

But then, from (6.5),

{II f ) {x) _ f (0) (~x E E~),
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and, since fl~ is substochastic (in fact, stochastic),

(fl~fl f )(0) ~ f (0),

and the result (6.4) follows. D

7. Another expression for Now that the reader has seen that the chain

case can indeed throw light on the diffusion case, perhaps he will tolerate one

further small rephrasing of the analytic form of 03C0 in the general ’symmetrizable’

case for chains. The reader will appreciate that what is merely a trivial

rephrasing in the finite-dimensional case may correspond to something deeper in

the infinite-dimensional context.

So, let X be symmetrizable. Every eigenvalue of V ~Q is real. If

k = )E ), then we can find k linearly indep,endent real eigenvectors f. i
(I  I  k) of with corresponding eigenvalues positive. Each f.

i

has the form

f~ = ~I 1r ~ 
where 11, is the restriction of f, to E . We can (and do) choose the
i i -

f. so that
1

Let 03BEi = (I - 03C0+03C0- )03C8i. Then

so that (E.) is a dual basis for (Y.) relative to the classical inner product:

for real vectors on E-.
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Moreover,

Ji = 03BEi03C8*i

and

03C0+ = 03A3Ji03C0+ = 03A303BEi(03C0- Y’i) .

Thus,

k

(7.3) Tf + (b,a) = ( E (b E E , , a E E+).

PART B. DETAILED CALCULATIONS FOR A DIFFUSION EXAMPLE.

8. Let B be a Brownian motion, and let

03C6t ~ t0I(0,~)(Bs)ds - t0I[-1,0](Bs)ds.

For t ~ 0, let

inf{u:~u > t}, inf{u:~u  -t}, ’

Yt = ’ ’Yt = B(Tt).

Here, we clearly have a ’symmetrizable’ situation with m(dx) = dx on

1-1~),

and

on (0,~),

-1 on [-1,0].

The Operator A (say) corresponding to V 1Q is the operator with

f = 

f" on (0,~)

f = - f" on [-1,0]

where 
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3)(A) = c~[-l,°o) n C2(-i,p) n C~(0,~)
n {f:f’(-1) = f’(-1+) = 0}.

We hope that the reader will allow a notational shift which proves to be

convenient. We shift [-1,0] to [0,1]. Thus, we shall write:

y for a typical point of (0,°°)

x in [0,1] for the point which is really the point x - 1 in C-1,0].

This will become clear in a moment. Actually, there is rather more than mere

notational convenience involved here ....

With this understanding, note that

A has the bounded eigenfunction g , , where

g6(x) = cosh6x on (really, cosh6(x+l) on [-1,0]),

cosh6 cos 9y + sinh 6 sin 8y on (0,~ ),

corresponding to the NEGATIVE eigenvalue 

By analogy with (1.8.i), or directly from the martingale argument in Paper I,

we know that if

(8.1) E dy],

then

(8.2) y03C0(x,dy) (cosh 03B8 cos 03B8y + sinh 03B8 sin 03B8y) = cosh 03B8x.

Moreover, we know from Part 3 of Paper I that

(8.3) the measure ~r(x,.) on (0,~) is uniquely’determined by the fact that

(8.2) holds for all 8 > 0.

We note that:

A has the bounded eigenfunction f , where
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fn(x) = cos 03B1nx/cos 03B1n on [0,1],

fn(y) = e-03B1ny on (o,~),

corresponding to the POSITIVE eigenvalue ia2, where

a = (n + 1 4)03C0, n = 0,1,2,...

We note that

°

From (7.3), we expect that

(8.4) 1r(x ,dy) = 1T(x,y)dy

where

- a y
(8.5) = E Hn(x)e 

n

"

and the ’dual basis’ H satisfies:
n

(8.6) 10 Hm (x)cos 03B1n xdx = 03B4mn cos 03B1n.

Moreover, since T = (~r ) , , we expect that

Py[y E dx] = ,

and, by analogy with (1.8.ii), that 
’

(8.7) 1003C0(x,y)cos 03B1nx dx = e

-03B1

ny 
cos 03B1n.

The problem is that equation (8.2) for ir, equation (8.7) for 1r, and

equations (8.6) for the H , are none of them of conventional form.
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It was only after very considerable effort - and a remarkable piece of

luck - that we discovered that for 0  x  1,

(8.8) - 

cosh 1 203C0y(cos 1 203C0x sinh 1 203C0y)1 2 21 2(sinh2 1 203C0y + cos2 1 203C0x)
.

9. Evaluation of some integrals. Let us now verify that if ~r is

defined as at (8.8), then

(9.1) (cosh 6 cos ay + sinh 6 cosh 03B8x, when 0  x  1,

6 > 0.

Consider the contour integral

cosh 1 203C0z(sinh 1 203C0z)1 2 sinh21 203C0z + cos2 1 203C0x 
e i03B8zdz

around the contour:

There is no problem with the square root because

Im sinh 1 203C0z ~ 0 inside and on the contour. It is trivial that

the contribution from the ’vertical’ parts of the contour tends to 0 as

N + oo, so that we can ’take N = oo*.

The poles occur when

sinh 1 203C0z = ± i cos 

and so the only poles within the contour are at

(1 + x) i and (1 - x) i .
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The residues at these poles are found to be

- 6(1 + x) -8(1- x)
e 03C0(i cos 1 203C0x) 1 2 

and 3 03C0(i cos 1 203C0x)1 2 respectively.

Because

,

the total contribution to C from the horizontal parts of the contour is

(1 + ie-203B8) 

cosh 1 203C0z (sinh 1 203C0z)1 2 sinh2 1 203C0z + cos2 1 203C0x 

ei03B8z dz.

It is now a straightforward exercise to deduce the desired result (9.1)

from the Residue Theorem.

Because of (8.3), we have now determined the law of Y~.
****************************************

We can prove in a similar f ashion that if Tr is again defined via (8.8),

then (8.7) holds. This time, we evaluate

(cos 1 203C0z)1 2ei03B1nz sinh2 1 203C0y + cos 21 203C0x
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around the contour

****************************************

Next, notice that if 03C0 is defined as at (8.8), then Tr has the form

(8.5) as can be seen by binomial expansion; and then (8.6) follows from (8.7).

It is interesting to note that

H 0 (x) - °

10. A brief sketch of our route to (8.8). Some interesting complex analysis

underlies this work, and it is very likely that it will be taken up by some of

us in a further paper. In particular, the contours used in §9 relate to our

problem in a fascinating way.

For now, we explain briefly how we arrived at the formula (8.8).

We began by solving for this example the problem considered in Paper I,

namely,that of determining the law of Y+. We assume now that the reader is

familiar with the results of Paper I.

[At this point, DW apologizes - for the fault is his - for the f act that

the notation in these two papers could have been better integrated. But there

are not enough letters to go round, and one needs an enormous number of letters

to describe certain Wiener-Hopf expansions which make essential companions to

those mentioned in this paper.]
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The bounded eigenfunction h (say) of  (= 1 2sgn (x)DZ) corresponding

to eigenvalue and normalized so that he(0) = 1, is given on (0,~) by

h03B8(y) = 03B8 -1 coth 6 cos 8y + 03B8 -1 sin 8y.

Hence, since pl and p2 are obviously zero, we must f ind a measure J on

(0,~) such that

f J(dr)
(10.1) cosh 6 _ 

r2 + e2

r(r2 + 62)

But one of the recurring themes of these two papers is that J must be

supported by r-values such that 1 2r2 is a positive eigenvalue of . Thus J

must be supported by the set

{a0,al,a2,...}, where an 
= (n + ~)~r.

We shall write anHn = J{an}. Then (10.1) takes the form:

aH

E 
nn

cosh 6 
- 

03B12n + 03B82 03B803A3n 03B12n + 03B82
sinh 6 

- 

H 
’

03B803A3n 03B12n + 03B82

Write i6 for 6 and rearrange to get:

H

n

(10.2) 
cos6 - sin 8 

- 
an + e 

.

cos 6 + sin 8 H 
’

a - 6
n

Note that the two sides have the same zeros in ~ and the same poles (with

correct residues) in ~. It follows from Paper I that amongst non-negative

sequences, the sequence Hn is unique modulo multiplication by a constant.
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We discovered that

(10.3) Hn - T(n + 1) (modulo a constant multiplier)

by considering the Mittag-Leffler expansion of

cosec(z-.) Tr (1 - z2 (k - 1 4)203C02).

and then discovered that applied mathematicians had spotted (10.3). (But

we have found the Mittag-Leffler technique useful in other probabilistic

examples.) For (Hn) as at (10.3),

Hn r(4 + 6)
(10.4) ~a + 8 = 

3 6 ’r(4+ ~)

Since we now know the measure J, we can calculate the Levy measure for

Y+. We f ind that

_ 

constant

p4(y’ ) = 

The calculation of seems to be altogether more challenging.

Since we know the Levy measure for Y+, we can show by entirely standard

arguments that

(10.5) E dy~ - b y (t}dy (t > 0, y > 0)

where, for Y > 0,
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2a H -a y

2 n Z (e 
(10.6) e-1 203B32tby(t)dt = n 03B3- - 03B1-n 03B3Hm 03B1m + 03B3

From (10.6) and (10.2), it follows that if

(10.7) (k + ~) ~r, k = 0,1, 2, ...

f 1 
2a H -a y

(10.8) e ~, r ~ 2 n n2 e n
( 0 ~) 

where

r, 
= = -~ .rk 

1’ ( k + 5 4) 
.

But it is probabilistically obvious - compare the second equation at (1.4),

and use the strong Markov theorem for rigour - that

(10.9) - 

ax(t)by(t)dt (0 _ x  1, y >_ 0)

- ’(0,co)

where for 0 _ x  1,

(10.10) ax(t)dt - Px[RBM first hits 1 within (t,t+dt)],

where RBM signifies a Brownian motion reflected at 0.

It is well known that, for Y > 0,
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(0,~)

e-1 203B32ta x(t)dt = cosh 03B3x cosh 03B3 = 

(-1)k03B3k cos 03B3kx 1 203B32k + 1 203B32

- (0,~)e-1 203B32t(03A3 Rk(x)e-1 203B32kt), R (x) - 

Hence

- 

(10.11) ax(t) - ER(x)e .

" 
k 

"

On putting together (10.8), (10.9), and (10.11), we see that

- a y

(10.12) E Hn(x)e 
n 

(Cheers !)
n

where

(10.13) H n (x) - 

k r (-1)k03B3kcos 03B3kx 03B3krk(03B32k - 2n)
.

But

cos a x (-1)k2ykcos ~kx

so that

f cosau

(10.14) 03B1nHn | g(x-u)n cos 03B1du,
- 1 n

where
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(10.15) g(x) = 03A31 (k + 1 2)03C0 0393(k + 5 4) 0393(k + 3 4) cos(k+1 2)03C0x.
Do note the range of integration in (10.14).

As a consequence of a preposterous guess, we were able to sum this series

and show that

(10.16) g(x) = ~~ f 1 __3 2du (0  x  1).(10.16) g(x) = 

8 I (x,1) 2 
du (0  x  1).

Formula (8.8) now follows on putting together (10.12), (10.14), and (10.16).

Of course, you may well feel that there is just as much chance of guessing

(8.8) as of guessing that the sum of (10.15) is given by (10.16); and you may

well be right! But we have told it the way it happened. The fact that (10.15)

and (10.16) do agree follows from our uniqueness theorems and the calculations

in §9; but we intend to indicate a direct proof of this fact and related facts

elsewhere.
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