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An integral representation of randomized

probabilities and its applications.

By

Nassif Ghoussoub.

Introduction: 1In this paper, we study the topological and extremal
properties of the set of random probabilities on a compact space.
Our main goal is to give a Choquet-type integral representation for
the measure theoretic notions to which one can associate a random

probability.

The representation applied, for instance, to randomized stopping
times shows that they are averages of true stopping times. The
behaviour of some stochastic processes on randomized stopping times
can then be easily understood from the behaviour of these processes
on the genuine ones. As an immediate application, we give a proof of

the Baxter-Chacon compactness argument.and of an optimal stopping problem.

Applied to positive operators on L, and C(K), the representation
implies that such operators are averages of point transformations:

a useful fact for extending some properties which are easily verifiable
in the case of operators induced by point transformationé to more

general operators. For an example we give a proof of the Ricsz-Thorin

convexity theorem.

The above representation also implies that operators on L1 of

a compact group are actually randomized multipliers and they become

convolution operators, that is averages of translations, only if they
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commute with these translations. We also discuss the possibility of
associating to any transition probability on a compact space K, a
Markov chain induced by a random walk on a group operating "measurably"
on K.

Finally, we study the connection between the various types of
convergence of a sequence of operators on L1 and the convergence
of the measures supported by the space of point transformationms,
which represent these operators. We show that while vague convergence
of the representing measures already implies mean convergence of the

operators, almost sure convergence is implied by a stronger topology

naturally imposed on these representing measures.

It is my pleasure to thank M. Emery, J. Fournier and E. Perkins

for the very stimulating and helpful discussions during the preparation

of this paper.

Integral representation of random probabilities:

Let K be a compact separable space and let (2,F,P) be a
probability space. Denote by
C the Banach space Ll(Q; C()) of all C(K)-valued Bochner integrable
random variables. Recall [13] that the dual of C is IL,,(2,M (K))
of all random measures Wu:(Q,F,P)+M(K) measurable for the weak-star

Borel subsets of M(K) and such that ess supluwl(K) is finite.

Consider the set D= {u e C*;u 20, ||u|l <1 and u@) = 1}
where 1 1s the unit process in C., Clearly D 1is a weak-star
compact convex subset of C*. In the sequel we want to identify the
extreme points of D in order to apply Choquet's integral representation.
For that, consider the convex set D1 of all probability measures on
KxQ (equipped with the product o-field) such that their projection

on @ is P. Let P(K) be the set of probability measures on K.
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Lemma I.l: There exists an affine bijection between D, and D.

1

Proof: Let v be in D1 . Since K 1is compact, every probability
measure on K 1is tight, hence by [8], there exists a strict
disintegration of v with respect to the projection pr:KxQ + Q and
P . That is an application v:w >V, from Q2 into P(K) such that
for every Borel subset B of K, w +vw(B) is measurable. It

is then clear that veD.

On the other hand, if veD, define the measure v on Kx by

v(A x B) = vaw(A)dP(w) whenever A 1is Borel in K and

BeF.

It is clear that v extends to the product o-field on KxQ
and that the projection of v on Q 1is P. The representation is
unique, since the processes of the form f(t)°g(w) where feC(K) and
geLl(Q) belong to C and they generate the whole product o-field
by the monotone class theorem. The uniqueness implies that vV is

affine.

For any measurable function o :Q-+K, denote by 60 the random
measure associated to the measure on the product KxQ defined by X~ E[Xo]
for any XeC .

Proposition I.2: a) D is c(C*, C) compact and convex and is separable

whenever the o-field F 1is.

b) The extreme points of D are the random measures 60 where o 1is a

measurable function from Q 4into K .

Proof: a) If F 1is a separable o-field, then Ll(ﬂ,C(K)) is a
separable Banach space since C(K) is. It follows that the dual ball

is a metrizable weak-star compact convex set.
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b) Follows from the first lemma and the well known fact that the
extreme points of the set of probability measures on QXK whose

projection on © is P, are the measures supported by the measurable

graphs from 2 into K. (See for instance [15]).

Denote now by G the space of all measurable functions from Q
to K and let d be the metric on K. We say that (on) in G
converges in probability to ¢ in G, if for any € >0,
lim P{lw e Q; d(on(w),o(w)) 2el =0
noo
Lemma I.3: If cn,c are in G, then cn+a in probability if and

*
only if 60 converges to §_  in a(C ,0).
n

Proof: Suppose 0,0 in probability. For any fe C(K), (f (cn))n
converges then in probability to f(o) and since (£ (cn) )n is bounded
in L_(2,F,P), it converges in c(Lm,Ll) , hence for every

geLl(Q,F,P) we get

fe@)E(e)s . dp > fg@w) . £(t) . & . dp.
n

Since the linear span of {g(w) . f(t) ; geLl(Q) , feCX)}

is dense in C, it follows that 60 > 60 in o(C*,C) .
n

*
Suppose nmow § > 8 in o(C ,0) . Take 0O0<e<J¥ . There exists
o
n
a partition {Bl’BZ""’Bm’l} of @ and elements t,,t,,...,t in K

such that for every w in Bi’ d(o(w),t:i) <e2/2 .

€
Let fi be the function in C(K) defined by fi(t) =d(t,t1) y
XBi
d let g. =Sy
an 17 P ,
Since § +6 in o(C ,C) we get that for every ge Ll(ﬂ) and
o o

n
feC(K), there exists N so that if n2N we have

I g(w)f(t)(so— sc)dp <e2/2 .

n
QK
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Applying this to the finite family (fi’gi)m , we get N so that
i=1

if n2N

P(xlsi) ‘ d(o,t,) - d(o,t,))dP <e?/2 .

;1

for any l<ic<m.

1
—_— 2/
Since P8 I d(c,ti)dP <e4d2 ,
i B
1
It follows that for any 1l<i<m and n2N

f d(o,t,)dP < eZP(Bi)

Bi
That is
P((d(cn.ti) >e) NB,) < eP(Bi)
Hence
P((d(on,o) 2¢€) “Bi)s eP(Bi)
and P(d(on,o) 2e) fe .

Identify now the elements in G which are equal almost everywhere.

The metric d defined on the equivalence classes of elements in G

by

= - d(o,1)
d(o,T) Lm . dp

defines clearly a topology on G which coincides with the topology
of convergence in probability and that (G,d) is a separable complete

metric space.

Denote by A(D) the space of all affine continuous functions on D .
For each element X= (Xt w)) in C and each random measure (uw)w in

*
C , the duality map is then defined by
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<X,uy = [ (fxt(w)duw(t))dp =E J X, (w)du ()
‘a X K
where E 1is the expectation with respect to P. If o0 € G, we

shall denote by E[XUJ the expression (X,So >.

Theorem I.4: To any random probability u in D, we can associate
a probability Radon measure § on (G,d) such that
1) Forany X in C, <X,ud =J E[XU]d;(o)

G

2) A(D) 1is dense in Ll(G,;) .

Proof: By the Choquet representation theorem [4] applied to the convex
compact set D and u, there exists a maximal and simplicial Radon
measure J on the extreme points of D (that is (G,d)) such that

A(D) = Ll(;) and for any h € A(D) we have
h(u) = J h(o)du (o)
G

Now, it is just enough to notice that any X € C, defines an

element in A(D) by the map v »<{X,v ).

We shall see later that this representation is not unique, that is

D 1is not a simplex.

Increasing processes and related notions:

a) Increasing processes: Suppose now K to be the interval [0,=].

An increasing process is a map A:[0,>] > Ll(Q,F,P) satisfying the
following properties
(i) (At) is right continuous from [0,~] into L .

(ii) OSAtSAS for all t<s

Let D, be the set of all increasing processes (At) such that

2
A =1 . It is then easy to show that to any random probability
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(u ) in D, one can associate a unique increasing process in D,
w

such that

At(w) = uw([O,t]) a.s.

The extreme points of D2 are then the increasing processes of
the form At(w) = I[O,t](c(w)) , where o 1is a measurable map from
Q to [0,=] .

Let now Bl= the space of measurable processes (Xt(w)) so that
szp |Xt| € Ll . Then every element Xe Bl defines a bounded affine

function on D2 via the map
_ 00
X: (At) +E L xtdAt

where a cadlag version of A has beén chosen. The above representation
says then that for any (At) in D, , there exists a Radon probability

measure i on the space G, of all measurable maps from Q into [0,=]

2
so that for any XeC ,

)
EIO XtdAt = JG E[XO]du (o)
2

The above equation holds also for any Xe Bl since they verify the
barycentric formula.

In this case, fi can be chosen in a natural way, since if we take
the increasing process (Bt) which is the inverse of (At) , that is
Bt =inf{s ; As >t} then

L 1
EIX dA =LE[ Jdt
o t t th
and {i can be chosen to be the image of the Lebesgue measure on [0,1]
by the map B: [0,1]->G2 . (It is easy to see that B is measurable

when G2 is equipped with the Borel o -field generated by the topology

of convergence in probability).
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We noted that C embeds in A(D) in a natural way and in general
C+R is dense in A(D) . However, in case K=[0,®] , one can as-
sociate to any affine and continuous function h on D2 , a process

Y in Ll(n:c([o,w])) such that
n(60)=E[Y0]

To sketch a proof of this fact, define for each t in [0,»] and

H ¢ F, the function %% u from @ into [0O,»] equal to t on H
b4

and 0 elsewhere.

For each t , define
Q () =h(8 ) - (s, )

Q, is additive since, if HnH'=¢ then

Q. (HuH") =h(§ ) - h[s =h(s ) -h(6 v
t ° { ot,HUH'] ° é %.H ot,H']
=h(s_) -h(s - 3 +h(s AS
%t,H R %,H ct,H'
=h(s ) —h[Got H] +h(s,) -h[dot H']

=Q (M) +Q (H") .

If Hn+¢ , then o converges to 0 in probability and Qt(Hn)

t,H
converges to zero by the continuity of h . It is also clear that Q.
dQ
is absolutely continuous with respect to P . Let Xt =d—Pt .

Since h is affine and continuous, it is Lipschitz with

Lipschitz constant equal to K say. For all t and s we have

J|xt - XsldP = Var(q, - Q) (®) =

sup {Z th(Hi) - Qs(Hi)l ; (H;) partition of @ } <
i
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H Q <
sup {; Kd (Gt:,HL’ os,Hi) 3 partition of }

sup {2 KIt—sIP(Hi) 5 (Hi) partition of Q } = K|t-s]
i
It is standard to show that there exists a modification of X
which is separable and measurable. The same proof as above shows

that for any simple functions o and T in G we have
- <
[Ix_ - X [P < Kd (1,0)

It follows that (Xt) has a modification which is continuous.

Note now that for any sequence of simple on's , we have

[lx, - X, |dP < Kd (0,0, ) <K; That is sup Iz, |d& <=. By Fatou's
n n

lemma, we get that sup HX0| <o , let now
0€G

1 = min{t; Xt(w) = max Xt(w)} , we get that

tel0,=]

Jsuplxtldl’ < JleldP <o and X e C.
t
The process Yt=h(60) -X_ will do the job.

Note that in general (unless f2={w} or (K)=R) D(hence D,

and D2) is not a Choquet simplex, that is the maximal representing
measure is not unique. For an example it is enough to take Q={0,1}
and P the probability assigning 1/2 to each of the sets {0} and
{1} .

1/2 if 0<t<1
Let At(0)=At(1)={

1 if t=1
Let o,, 1=1,2,3,4 be maps from {0,1} to [0,1] defined by
{ 1 if w=0 { 0 if w=0
g, = o.=
Vo 15 w=1 2 U1 4f w=1



0 if w=0 1 if w=0
0'33{ 04’{

0 if w=1

It is immediate that

1 1 ' 1 1
A =2 110,619 *72 110,e1492) =2 110,£1499) 32 T10,¢1¢%%) -

However, we have the following

Proposition II.1 : The map A-+Bol 1is a simplicial selection from

D2 onto P(G2) where B 1is the inverse of A and BOA is the prob-

ability on G2 , image by B of the Lebesgue measure A on [0,1] .

Sketch of proof: To prove that A(DZ) is dense in Ll(GZ,BO)\) it is

enough to show that the space

X-{f € L1[0,1] 'there exists Xt (w) lower semi-continuous on D2 and that £(t) = E[){.l

is dense in L1[0,1] . But this follows from the fact that X con-

tains the intervals (a,b) since X )(s) =E[X °B ].

(a,b IB_,B, [ s

Let now (A:) be a sequence of increasing processes in D2
and let (ﬁn) be a sequence of representing probabilities on G, .

It is clear that there exists a subsequence (ﬁn ) which is vaguely
k
convergent to say {i on C(D) , hence (A:) converges to (A:) (the

balf:enter of {i ) onm every continuous function on D which verifies
the barycentric formula. That is essentially the Baxter-Chacon com-
pactness argument in the case we are dealing with a constant filtration.
Let Al be the space of optional processes of class (D) . Every
element X in Al defines then a bounded affine function on D3 via
the map i:Atﬂ: u;(tdAt . (See [10]) .
Again, by the representation theorem we get a Radon probability

measure {i on the space G3 of all Ft - stopping times so that for

any XeA, we have

1

EIXdA =IE[X 1dii(o) .
bt ¢t G, o
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The following proposition reduces the topology of Baxter-Chacon

[1] to the vague topology on M(D3) .

Proposition II.2 : (Baxter-Chacon-Meyer) Every sequence (A:) of
n
randomized stopping times has a subsequence (Atk) such that for any

regular process Cxt) of class (D) we have

EJNX dAnk-*EImX dA
ptt o t ot
where (At) is also a randomized stopping time.

For the proof it is enough to take f{ie M(D3) to be a cluster
point in the vague topology of a sequence (ﬁn)n in M(G3) represent-
ing (A.:)n - Then A =barycenter of i is a limit of (A:)n on the
regular optional processes of class (D) since they induce bounded
affine maps on D3 , verify the baryentric formula and are continuous
on G3 .

Again, one can show that the map At-+BtoX is a simplicial selec-
tion from D3 onto P(G3) where Bt is the time change associated to
At .

Note that the vague convergence of (ﬁn) is stronger than the con-
vergence of Baxter-Chacon, since the elements of C(D3) are not necess-
arily induced by processes and we do not know if the space A(D3) is
strictly larger than the space of optional regular processes of class
(D) .

Another immediate application of the representation above is the

following optimal stopping rule.

Proposition II.3 For any regular process of class (D) QXt)
there exists a stopping time o such that E[Xa°]= sup E[XO]
° 0eG
3
_ o
Proof: It is enough to notice that X :At--*EJXtdAt is affine and con-

0

tinuous on the convex compact D hence it attains its maximum on an

3 ’

extreme point.
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b) Vector measures:

Suppose now K=[0,1] . Recall that an Ll(Q,F,P)—valued vector
measure F is a set function F from B (the Borel functions of

[0,1]) dinto Ll(Q,F,P) so that

(1) F(¢)=0 a.e.

-]
(11) F( 0 B)= ] F(B)) for any disjoint B ,B,,... in B.
i=1 1=1

Let D, be the set of all Ll(Q,F,P)-valued, positive vector

4
measures such that F[0,1]=1 a.e. One can show (see [2]) the exis-
tence of a unique increasing process (At) in D2 so that At=F[0,t]

a.e.

The extreme points of DA are then the vector measures F of

the form

F(A) =x -1 for some o :Q-[0,1]
o ~(4)

These are exactly the lattice orthogonally scattered measures

introduced in [14].

Integral representation of operators:

Let now K be a Hausdorff topological space with a countable

basis and let A be a Radon probability on K. Let T be a bounded
linear operator from Ll(K,)\) into Ll(ﬂ,P) . A disintegration

theorem of Fakhoury [9], asserts that there exists and application

H:Q > MK) so that

(1) w_= Tl(w) Vo where v, are Radon probability measures on K
w
(i) w-~ Hy, is measurable if MK) 1is equipped with the o-field of

weak-star Borel subsets.

(iii) Every f in Ll(K’)‘) is |uw|-integrable for P-almost all w

and Tf(w) = J f(t)duw(t) .
K

@ [l e < l7ll-a
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By combining this disintegration result and the representation

of section I we get

Theorem III.1l: If K is compact and T 1is a positive bounded linear
operator from Ll(K,A) into Ll(Q,F,P) , then there exists a

probability Radon measure v on (G,d) such that

1) For any f in Ll(K,A) we have

TEW) = TL(w) J £(o(w))dv(c) for P-almost all w
G

2) A(D) 1is dense in Ll(G,;)

Proof: Associate to T the random probability v = (Vw) in D.
By Theorem I.4, there exists a probability measure v on (G,d)

verifying 2) and for any X in Ll(Q,C(K))

{x,v) = JE[XGJdG(o) .

For any B in F and f in C(K), the process X(t,w) = Tl(w)XB(w).f(t)

belongs to C. Hence,

J (J £(e)TL(w)du_(t))dP = J ( J T1(w)£ (o (0) )dP (w))dv (o)
B ‘K G ‘B

That is

J Tf (w)dP (w) = J (J T1(w) £ (o (w))dP) dv (o)
B ¢ /s

In order to apply Fubini's theorem on G x Q, we still have to

prove that for any B ¢ F and £ € C(K) the map
Yy : Gx Q>R

defined by y(o,w) = XB(w)f(u(w)) is measurable for the v 8 P
completion of the product o-field on G x Q. Actually, we prove

the existence of a measurable version of the map (o,w) + o(w) . That
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——-

is a measurable map Y:G x @ » R so that for each o0 € G, we have

for P-almost all w.
foy(o,w) = f(c(w)) for all f in C(K).

It is clear that whenever we integrate with P, we can use
f(o(w)) instead of foy(o,w), and we shall do so for almost every-
where equalities.

Since (G,d) is separable, let (on) be a dense sequence in

G and let An r be the closed ball centered at Un and of radius

k4

r>0.

For any r>0, we have G = VA . Let B =A \uA
n n,r n,r n,r o Wm,T

and let < € B if B 0.
n,r n,T n,r

For any k>0, we have G = UuB ; . Define now ¢ (o,w) =
nl k

 —
k
o,k XBn (o,w) . That is Wk(o,w) = Tn,l(w) whenever
" K

For any ¢ > 0, let &' 2 (li)

Ve P {(0,w);dW,(@,w),¥,,(0,W) > el =

> JB Plw € 8540 (@), T, 5 @) > e}
,1
. T
1+e .
<ZJ : d(nl nl')d"(")
n=1 B
® 2
14 . 2 . ,~ (1+€) . € =
Z:J KA 17

(wk) is then Cauchy in probability, hence it converges to V.

A similar argument shows that for ¥ almost all ce G ,¥(o,w) = o(w)
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P-almost everywhere. (Note that if K={[0,~] one can choose V¥

independently of T) .

By applying Fubini's theorem for any Be F , we get

er aP= Ln(w) [ f@(o,w))d (0)dP= Ln(w) I f (o (w))d.(0)dP
G o

That is for any fe C(K) T£(w) =T1l(w) I f(o(w))adv (@) a.e.

Since C(K) 1is dense in Ll(K,x) , it is easy to show that the

above equation extends to all functions in Ll(K,A) .

Corollary III.1l: If T is any bounded linear operator from Ll(K,A)

into Ll(Q,F,P) , then there exists two probability measures 61 and

02 on (G,d) such that for any f in Ll(K,A) we have

TE(w) = T 1(w) I

f(a(w))dv, (o) - T 1(w) I £(o (W) v, (0)
G

G
For a proof it is enough to notice that every bounded Linear op-

erator on L1 is the difference of two positive operators T+ and T .

If now T is a positive operator from C(K) into Ll(Q,F,P) ,

then T extends to an operator from Ll(K,A) into Ll(Q,P) where A
POT

lITllll

an operator from C(K) into Ll(Q,F,P) is said to be regular if it is

is the probability measure on K equal to If we recall that

the difference of two positive operators from C(K) into Ll(Q,F,P) .

then the above theorem applies and we get

Corollary III.2: If T is a regular operator from C(K) into Ll(Q,F,P),

then there exists two probability Radon measures V., and 02 on G so

1
that for any fe C(K) we have

TE(w) = TT1(w) f

£(o(w))dv, (o) -T 1(w) f £(o(w))dv, (o) .
G

G

Corollary III.3: a) If (At)t is an increasing process on [0,~] , then

there exists a probability Radon measure {i on G, such that

2

A =A_" II[O,t](O)dﬁ(c) =A_ - fi{o; co(w) st}
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b) If (At) is a randomized stopping time then G, may be replaced

by the set G, of Ft—stopping times.

3

Proof: It is enough to notice that each increasing process defines an

operator from the cadlag functions on [0,1] into Ll(Q,F,P) by
Tf = I f(t)dAt
o

where the integral is in the sense of Lebesque-Steltjes. Applying now

Corollary III.2 to the function X[O,t] and note that At='rX[0’t] a.e.

Corollary III.4: If F is a positive L1«2,F,P) - valued vector measure

on the Borel subsets of [0,1] , then there exists a Radon probability
measure on G4 such that
F(A) =F[0,1][ X_1 dii(c) for any AeB .
G4 o (4)
Proof: Following [6] , there exists a measure A on [0,1] so that
A<<F . Moreover F defines a positive operator from Lm(l) into

L, (@,F,P) by
Tf = deF
where the integral is in the sense of Bartle-Dunford and Schwartz.

Recall that a tree in Ll(Q,F,P) is a family of functions

v 3 n=0,1,...5 k=1,2,...,2"} 1in L (2,F,P) verifying
’

2¢n,k= wn+l,2k-14'wn+1,2k for each n,k .

Let I k= {5:l Ji] be the diadic intervals of [0,1].
n,

t ]
2" 2"

Corollary III.5: If (wn k) is a bounded positive tree in Ll(Q,F,P),
’

then there exists a Radon probability ¥ on G such that for any

n and lskszn.

¥ dau (o)

n
=2 J X
nyk 0$1 G O'-l (In k)
il
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Proof: Associate to the tree (¢n k) §he operator T from
t]
I
n,k
L,[0,1] into L,(2,F,P) defined by T———=V for each n
1 1 o M n,k
and 1<k<2" and which can be extended by linearity and continuity.

Apply then Theorem III.1l to T.

The above representation can be useful for extending some
properties which are easily verifiable in the case of operators
induced by point transformations to more general operators. Here is

an immediate application of this representation.

' |2
The Riesz-Thorin convexity theorem: Every bounded linear opﬁétor on

L1 » whose restriction on L_ is also bounded, induces a bounded

operator on each L l<p<eo .,

p bl

Proof: Suppose that- T 1is a positive operator on L1 so that

Tlel . For any f in Lp s (|fpl € Ll) we have:

f |T£|Pap = [ [T1(w)|P | f f(ow))dv(o) [ dP <
Q Q ¢

dv(o) dP <

I |T1|P7t J |T1] |fp(o)
Q G

- -1
fmaf2t. | olelPaap < [l qimally - NPl
0 1 1

1
1-1 P
Hence [ITll, < llT2ll7® . lITll] -

Convolutions and multipliers:

Let K be a compact abelian group with a Haar measure A,

and let u be a positive Radon measure on K. Define the convolution

operator on Ll(G) by

TE(x) = f f(y-lx)du(y)
K

It is clear that u is a representation of T in the sense

of theorem III.1l. In this case u is actually supported by the set
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of translations on K which can be identified with K and is a

subset of G = {measurable transformations on K }.

More generally, let G be a group operating on a topological
space K. If u is a positive Radon measure on G , one can
associate an operator on the bounded Borel functions on K by

Tf(x) = J f(gx)du(g) .
G
The above theorem shows that any operator T on Ll(K,A) with
Tl = 1, is a "generalized" convolution where the canonical semi-group
operating "measurably" on K is the non-abelian semi-group of the
measurable transformations on K, equipped with the composition

operation.

We may also write Tf = f*; , which makes T appear like a

"randomized" multiplier. Note also that

T2£ (w) = j J £ (o1 ())dn (1)dn ()
G ‘G

That is the nth iterate of T 1is given by the formula

~k:
™F = f4y O,

It is enlightening at this stage to recall Wendell's theorem
[12], which asserts that an operator T on L1 of a compact abelian
group K, which commutes with translations can be written as
Tf = f * 4 where u is a Radon measure on K. The above
representation shows that the measure yu always exists and that
if T commutes with translations, then u 1is supported by the group
of translations. To give a proof of this fact, it is simpler to use
the first representation, that is if T is a bounded linear operator
on Ll(K,A), there exists a random measure u:K -+ M(K) such that

Tf(x) = J f(t)dux(t) for A-almost all x.
K
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For each yeK, denote by Ty the translation operator
associated to y. That is Ty (x) = y_lx, (Tyf)(x) = f(y—lx) and
('ryu)(f) = u('ryf) , where f is in L1 (K) and u is a Radon measure

on K. Let e be the unit element in K.

The fact that T commutes with translations means that for

an x and i K h = .
y y in we have ‘tx\ly uTxy

If y= e, we have 'rx"lue =u for any xeK. That is for

any f 1in Ll(K)’

TEGR) = u (£) = ff(xy)duem - J £ 0 ()
K K

where Ve is the image of Mo by the map y y-1 .

Another way to see it, is to show that the extreme points of the

subset D5 of D defined by

Dy = {(ux) eD; (Tyux)x = (uryx)x for each yeKk},

are the random probabilities of the form 61_ for some a in K.
a

Markov chains and random walks:

Let (K,B,A) be a compact separable space with a Radon
probability measure A on its Borel o-field B. Let P be a
transition probability .

Let G be the semi-group of measurable transformations
from K into itself. By Theorem [4] of [9] and Corollary (2),
there exists a probability Radon measure 4 on G such that for
any AeB we have

B(x,A) = [ X5 (0x)du (@) .
G
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Let P be the transition probability on G defined for any
o € G and bounded Borel function g on G by
P(o,g) = W * §,(g) = J g(10)du(x) .
G
Let (Q,F, Fn’xn’Po) be the canonical Markov chain associated
to it [11]; that is Xn : (Q,F) > G 1is a homogenuous Markov chain
with respect to the o-field (Fn) with transition probability P

and starting measures (Po) .
oeG

Let @ =KxQ, ?=B@F,?H=Ban and let e be the
identity transformation on K, and Pe the probability associated
with the starting measure Ge . If v 1is a probability measure on

K, we denote by Fv the probability measure v 8 Pe on @,F).
For w = (x,w), set Yo(v-l) = x and
Yn(G) = Xn(w) (x) (the transformation Xn(w) applied to x)

One can show that (Yn) is a Markov chain on K with respect
to the o-algebras ?n with transition probability equal to P and

for any starting probability measure Pv .

The chain is not the canonical chain associated to P . But it
might be of interest to know that one can associate to any transition

probability, a Markov chain induced by a "pseudo random walk" on a

canonical semi-group G. The case of interest might be when ﬁ'

is supported on the group G6 in G of all the invertible

transformations, since then Xn(w) can be written as

XOZl...ZI_l where the Zi's are independent, identically distributed

and of law 17

An interesting problem will be then to characterize the set D6

of transition probabilities on K, whose extreme points are the
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transition probabilities induced by the invertible point transformations.

It is clear that in case K 1is a group, D, contains D and the

6 5°
Markov chains associated to elements in D6 are the natural

extensions of the random walks.

Stronger topologies on M(D) :

Let (un) be a sequence of random probabilities in D and let
(G;) be a sequence of probabilities on G representing (E;) . We
have already seen that the vague convergence of (;;) is stronger
than the weak convergence of Baxter-Chacon, since the elements of
C(D) unlike those of A(D) are not induced by processes in C.
We shall see in the sequel that (;;) may converge on a large space
of functions than C(D) and this convergence is strong enough to

imply in some cases almost sure convergence.

Since D is not a simplex, the representing measures on (un)
are not unique. To keep more control on the representation, we
prefer to select for each v € D, a maximal measure vV on G
which is simplicial; that is one, which is extreme in the set of all
maximal measures representing v. If V is such a measure, then
AD) is dense in L1(G,%).

*® ~

Let now Vv = z 2—nun ; since the map v + v is not in general
linear and continﬁZis, we shall need the following lemma.

Lemma VI .l: There exists maximal Radon probabilities E; (resp V)

supported on G, representing L (resp v) so that

(1) A() is dense in Ll(s)

@ § 27 =%
n=1

Proof: Let V bea simplicial and maximal measure on G representing

o
v. The two measures on D, vV and z 2-n6u have the same barycenter
n=1 n
v, hence by [4], there exists a measurable map ¢:p > M(D) such that
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(1) ¢(nn) is maximal for each n.
(11) ¢(un) and L have the same barycenter for each n.

i) J 27 (¢) = 9.
n=1 Ya

It is clear that ﬁ; = ¢(un) verify (1) and (2) .

Note now that A(D) <C(D) 5L1(\7) and that ;n € Lm(;) for
each n. But even though (ﬁ;) is relatively compact for the vague
topology o(M(D), C(D)), it is not necessarily bounded in Lm(;).
Therefore, it is natural to put the (;;) in a space, where they are
bounded, and such that this space is conjugate to a space between
¢ and L'@).

*
For that let v be the (possibly infinite) subadditive and
positively homogenuous map on Ll(G) defined by
* ~
v (£) = sup |u ()]
n
1 *
Let E be the completion of the space {fel (V) ;v(lf[) <o},

It is immediate to see that E is a Banach lattice and that
CSg) SE SLI(G)
where the injection maps are continuous.

The crucial fact is, of course, that (ﬁ;) is a c(E*,E)
relatively compact sequence in E* » since it is in the positive
ball of E* . But, in general, E fails to be separable, hence we
can only expect to find a subnet of (;;) which is convergent on

the elements of E.

VII. Convergence of normalized positive operators:

Suppose now )\ 1is a Radon probability measure on K and let
(Sn) be a sequence of positive operators from Ll(K,A) into

Ll(Q,F,P) and let (un) be the random probabilities associated to
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-n
them. Set v = 2 2 Hoe By combining the representation of
n=1
section III, with the results of last section, we obtain that there
exists Radon probability measures (;n), v supported on G so that

M v=J 2™
n=1 n

(2) A(D) is dense in Ll(ﬁ)

(3) For each f in Ll(K) , we have
Snf(w)==Snl(w) I fo¢(0,w)dﬁn(c)

where ¢ :GxQx IR is measurable with respect to the V8P com-
pletion of the product o-field on GxQ .

Note that each Sn can be extended to the cone of all positive
and finite measurable functions on K, since if h is a function in
this cone which is not necessarily in Ll(K) , we can define S, b
as the limit of the sequence (thm)m where (hm) is a sequence
in Ll(K,A) increasing to h . ‘It is standard to show that th
does not depend on the particular sequence (hm) and it is easy to
see that equation (3) still holds for such an h .

Suppose now that Sn1= 1 and notice that if we fix fe Ll(K,A) ,
then almost all w's define an integrable function we in Ll(G,ﬁn)
via the map wf(0)= foy(o,w) and that if sgplsnf(w)l <o _ then we
belongs to the space E since ﬁn(wf)==Snf(w) .

The connection between the convergence of the operators and the con-

vergence of their representing measures is given by the following.

Proposition VII.1: a) If ﬁn converges vaguely to {i then there
exists an operator S:Ll(K,A)-*Ll(Q, ,P) so that Snf converges
weakly to Sf for each f in Ll(K,X) .

b) If ﬁn converges to {i in c(E*,E) then for every fe Ll(K,A) ,

Snf converges almost everywhere on the set {w; sup Snf(w)<~W} .
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If now a sequence of normalized operators is given, one can al-
ways find a subsequence of their representing measure which is con-
vergent vaguely. Unfortunately, it is not the case for the almost
sure convergence and in general one cannot expect to have convergence
in o(E*,E) of a subsequence of (ﬁn) but of a subnet. The natural
question is to find conditions on the sequence of operators (Sn)
to insure that the ball of E* is weak*—sequentially compact.

Another approach might be to find the right conditions to insure
the existence of a simplicial VU so that ﬁn are bounded in L_(V) .
In this case the weak convergence of the operators will imply auto-
matically the almost sure convergence (up to a maximal inequality)
since A(D) is then dense in Ll(G,O) .

Addendum: After this paper was written, M. Talagrand showed me a
recent paper of Edgar-Millet-Sucheston entitled "On compactness and
optimality of stopping times' in which the Choquet representation of
randomized stopping times is used to deal with some optimal stopping
problems.
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