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PATHWISE DIFFERENTIABILITY WITH RESPECT TO A PARAMETER

OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS

by

Michel METIVIER

Ecole Polytechnique - Palaiseau - Fnance.

Abstract

We consider a stochastic differential equation

Xu(t) = Vu(t) + to03C3(u,s,Xus-)dSs + to f(u,sXus-,x) q(ds,dx)

where S is a semimartingale and q a random measure and rahere the

"coefficients" depend on a parameter u . We prove under suitable differentia-

bitity-conditions that the solution can be choosen for each u in

such a way that the mapping u  Xu(t,03C9) is continuously differentiable for

every (t,w) . .

I - INTRODUCTION .

The goal of this paper is to prove that under sufficient differentia-

bility conditions on the coefficients, stochastic differential equations of

the type

(1.1) Xu(t) = Vu(t) + to03C3(u,s,Xus-)dSs + tof(u,s,Xus-,x) q(ds,dx)

where S is a semimartingale, q a random measure with zero dual predictable

projection and u a parameter taking its values in a bounded open subset

G of Rd , admit for each u a solution which can be determined in such a

way that P.a.s. the functions u ~ are for every t continuously

differentiable.

This is a concept of differentiability different from the one considered

by Gikhmann (see [3] and [4]), who studied the differentiability of the

mapping u ~ Xt(.) as a mapping from G into lP(Q) for some p and in the
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framework of Ito-equations. Recently Bichteler took the same point of view

and considered equations of the type (1.1) with q =u and S and Xu possibly

infinite dimensional. J. Jacod in [6] considered differentiability "in probability’:

Pathwise differentiability was considered by P. Malliavin and M. Bismut

for the solutions of Ito-Stratonovitch equation as functions of the initial

conditions (see [2] ] and [8]). In [7] H. Kunita proved pathwise differentia-

bility with respect to the initial conditions for the solutions of an equation

driven by a continuous martingale. In [11] P.A. Meyer proved the same result

for equations driven by a semimartingale (equations of Doleans-Dade-Protter type).

We consider here equations of type (1.1) and of a more general type

with coefficients depending on a parameter u. .

In section II we recall a few facts on the type of equations which are

studied here. In section III we give sufficient conditions for the continuity

of solutions with respect to u and in section IV we deal with differentiability.

II - THE EQUATION UNDER CONSIDERATION

2.1. - InequaLities for stochastic integrals

We assume that the random measure q in (1.1) is of the form

v(w;ds;du) where is for each 00 and t a borelian

measure in an open subset E of {0} such that for some a > 0

 ~ denotes the variation of p and a does- * 1+Ixla
not depend on 03C9 and t ) and where v is the dual predictable projection of u).

IH denotes a separable Hilbert space. We have shown in [9] ] (see also

J. Jacod [5]) the existence of an increasing positive adapted process band

of a process {q(~,s,.) : (~,s> E ~ x ~t+} the vaLues of which are measures on

E x IE such that : :

i) For each H-valued function h on E such that  h(x),h(y) >~ is

$(w,s,dx ® dy) integrable,the integral l  h(x),h(y) ~ dy)

defines a positive optional process ;
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ii) If/ Y is an IH-valued p~BIF measurable (*) function on x ]E

and if we denote by X (Y) the IH-valued positive random variable

~s(Y) = ,x), Y(s, 

(set to be equal to +00 when the integral does not exist) and

iii) the foLLowing inequality holds for every stopping time T

(2.1) E(sup ~ 
] 0,t IE03B3(s,.x)q(.,ds,dx)~2) 

 4 E(

[ 0,03C4
[03BBs(Y)dbs)

where ( Y(s,.,x)q(.,ds,dx) is the stochastic integraL process of Y

with respect to q which is defined as soon as the process ( 
is finite. ]

If S is a K-vaLued ( K : : separable Hilbert space) right continuous

semimartingale we know that there exist two positive increasing adapted

processes a and a such that for every IH)-valued locally bounded

predictable process E R+ x S~} and every stopping time T : :

(2.2) E (sup ~ f(s,.)dSs~2) ~ E(ã03C4-- [0,03C1[~f(s)~2da(s))

To simplify the writing we shall caLL Zt the process

Z t : := which takes its values in (~(K ; ~) where

~~~ is the space of borelian measures v on IE such that

~x-~ - Ivl (du) .

Setting At := b(t) + a(t) At := 8 + 2at ~ :_ 

(2.3) ) f(s,.)dS + Y(s,.,x)q(.,ds,dx)
]O,t] 

~ ~]0,t] s 

and ’

(2.4) ~s(~) := II + 

the following inequality holds for every stopping time

(2.5) E(sup 

~]0,t]03A6(s)dZ~2)~E(Ã03C4]0,t]03BBs(03C6)dAs)
the a-algebra of predictable subsets of 03A9 and BIE of Borel

subsets of E. "-



493

Extending a classical argument on martingales (see [1~]~) it is also

easy to see that for every p ~ 2 exists an increasing positive adapted

process (Ãpt)t~0 such that for every stopping T

(2.6) E(sup~]0,t]03A6(s)dZs~p)  E(Ãp03C4-[0,t[ (03BBs(03A6))p/2 dAs)

2.2. - Hypothesis on equation (1.1)

The space of parameters u is an open bounded subset G of Rd . .

In equation (1.1) ? is a mapping from (G x IR+ x Q into

H) which is continuous on H and such that for every h ~ IH and

u E G the process (s,c~) E R+ X S2} is predictable. f is a

mapping of into ~I which if continuous on H and such that

for every u E G, h ~ H the mapping is 

measurable

In the sequel we shall caLL g the couple (o,f) and according to

the notations of (2.1) the equation (1.1) will be written in the abreviated

form :

(2.7) Xu(t) = Vu(t) + tog(u,s,Xus-)dZs

Here Uu is for each u E G a given H-vaLued adapted cad-lag process.

III - CONTINUITY OF THE SOLUTIONS WITH RESPECT TO u. .

3.1. - Hypothesis

L is an increasing positive adapted process and p is a positive real

number with p > d + e for some e > 0 . .

If 03BE is a cad-Lag IH-valued adapted process we write g(u,03BE) for

the process and X o g(u,~) for the positive

functional of this process defined by formula (2.4).
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Mith these notations we formulate the following hypotheses :

(H1) sup~Vus-Vvs~ ~ Lt~u-v~ for all t, u and v ~ G

and

sup II 

(H2) (Lipschitz hypotheses) :

] 0, t 
[~o(g(u~)-g(u~’))] 

P~ 

] 0 , t 
s

for every couple (;,;’) of lH-vaLued adapted cad-lag processes,’P.a.s.

(H3) ]0,t][03BBs o g(u,03BE)]
p/2 

]0,t] (1 + 

sup ~03BEs~p)dLs
for every u E G every 1H-valued adapted P-a.s.

~ ,

(H4) ~ being a given positive increasing (possibly constant) function

on R+ , for every stopping time T the following inequality holds
for every IH-valued cad-lag adapted; every u and v in G :

P/2

E(sup[03BBto [g(u,03BE)-g(v,03BE)] ) ~ u-v~d+~03C8(E(sup~03BEt~ p))

3.2. - Theorem

1°) Under the above hypotheses (H1) to (H4) , the equation (2.7) has for
each u a unique strong solution Xu on Dt+ and the random func.tion

can be determined in such a way that u  Xut(03C9) is continuous

3 G for every t and w while the mapping t  X(.)t(03C9) is for each w

cad-lag from R+ into the set Cb (G) of bounded continuous IH-valued

functions on G endowed with the uniform topology.

:°) There exists an increasing sequence (on) ) of stopping times and constants
such that

a) lim P{ ~ T} = 0 for every T > 0
n n

b) E(sup ~Xu(t) - Xv(t)~p)~ K(Y,n,p,Z) ~u-v~p
t~n ’
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Proof.

The stopping times an are defined as follows : :

an := inf {t : : ~ v Lt v sup 
v At > n}

uEGs~t

Next we have the following lemmas

3.3. - Lemma 1

2Pn2

E(sup ~Xut~p) ~ 2p(n+n2) 03A3 (2Pn2)j

Proof of Lemma 1

We remark that AQ_ ~ sup sup n

an an u 
~

n

We then apply inequality (2.6) to the second member of (2.7) and get

E (sup ~Xut~p ~ 2(P-1) n +2(P-1) E(Ãp03C3-n ]0,03C3n[03BBs o g(u,xu)]p/2 dA )
and property (H3) gives for every stopping time T  an

E(sup ~Xut~ p) ~ 2(P-1) (n+n2) + 2(P-1) n E(]0,03C4[ (sup ~Xus~P)dLs)t ~ 
. ~]O~T[ st s ~~

Applying the "Gronwall stochastic lemma" as in [10] section 7.1

we get the inequality of the lemma.

3.4. - Lemma 2

There exist constants such that

V u,v E sup (I u-v II p
n
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Proof of Lemma 2

Applying again inequality (2.6) to the stochastic integrals
and

- 

and using properties (H.)~ (N2) and (H,) we can write for every stopping time

T0, :

E sup ~ ~ S 

+ 3(P-1)n E~f 
t~s s

Applying as above the same "GronwaLL-inequality" we obtain the Lemma.

Theorem 3.2 is now a direct consequence of the following Lemma which
is a straightforward extension of a Lemma as stated by Neveu in [12] (see aLso

P. Priouret [13] chap. 3. Lemme 13 : :

3.5 - Lemma 3

Let : t E IR+ , (jj E 03A9, u E G] an IH-valued random function
such that for every u : : t ~ is a.s. cad-lag and such that for every t :

Then there exists a mapping Y* : : E D~ such that

a~ u ~ is continuous

b~ V u E G , Y(t,u,.) = Y*(t,u,.) for aZZ t a.s.

b) t  Y*(t,.,w) is for P-almost all 03C9 a cad-lag mapping from IR+

into Cb (G) endowed with the uni form topology.

Proof.

We omit the proof which is pretty similar to the one given in [13].

This finishes the proof of theorem 3.2. ’
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IV - PATHWISE DIFFERENTIABILITY

4.1. - Hypothesis

We consider the same equation (1.1) or in abreviated notation : (2.7).

For a couple g := (a,f) of "coefficients" as in (1.1) we write to simplify:

II g(U,S,UJ,h,. )II ll :_ [~03C3(u,s,03C9,h)~2£ K , )
+ IE IEf(u,s,03C9,h,x),f(u,s,03C9,h,y)> IH

® dy) 2
We set v*t := sup sup ~DuVus ~ + ~Vus ~ + ~D2u2Vus ~

were Du03A6 denotes the  derivative  with respect to u of a function 03A6 on u . .~ 
t 

L ~’ t~c u ~u~.a~ 
In the hypothess below C is a constant and (Kt)t~0 is an increasing

positive process.

[D1] For all t and w the derivatives and exist

and v*t ~

[D2] The derivatives Dug(s,u,x) Du g(s,u,x) D u,x g(s,u,x) and Dxg(s,u,x)
exist and

sup (I) + + II + II C
u,s,x 

u U ux X H

For all x,y u and v :

+ II u-vll)

4.2. - Theorem

Under the above hypothesis [D1] to equation (2.7) has a

unique (up to indistinguability) solution Xu on IR+ and there exists a

version (c~,t,u) ~ of this random function such that for P-almost all

w :

a) u ~ is continuously differentiable for every t

b~ t ~ and t ~ are cad-lag for the uniform norm on

Cb (G; ~I) and Cb (G ; ~(G; 1H)) respecti ve ly .

c) For every u the stochastic process is a strong solution of the

following stochastic equation Xu is the process solution of 2.7 as

in theorem 3.2) : :

(4.1) Yu(t) = D uVut + ]0,t](Dug(s,u,Xus -) + Dxg(s,u,Xus -) o Yus)dZ
s
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Proof.

The proof is in several steps corresponding to lemmas 4 and 5 and
section 4.5 bellow:

4.3. - Lemma 4

Under hypothesis [D1], [DZ], [D3], equations (2.7) and (4.1) satisfy
the conditions [H1] to [H4] of section 3.1 for every p  2 on any interval

] 0 ’On] as defined in theorem 1.

Proof.

Let us first consider equation (2.7). (H1) is trivially implied by

[D1]. [D2] implies also the Lipschitz property (H2) and conditions (H3) and (H4)
which is here expressed in the much s.tronger form ~u-v~.

We turn now to equation (4.1). The only condition (Hi) which is not
immediately implied by the hypothesis of the lemma is condition tH4). We write

~Dug(s,v,Xvt_) - Dug(s,u,Xut_) + Dxg(s,v,Xvt_) o 03BEt - Dxg(s,u,Xut_) o 03BEt-~pA

 4P
-1 

{~Dug(s,v,Xxt_) - Dug(s,u,Xvt_)~pA} +

+ 4P- 1 
{~ Dug(s,u,Xvt_) - Dug(s,u,Xut_)~ p^}

+ 4P-1 {~ [Dxg(s,v,Xvt_) - Dxg(s,u,Xvt_) ] o 03BEt-~p^}

+ 4P- 1 
{~ [Dxg(s,u,Xvt_) - Dxg(s,u,Xut_)] o 03BEt-~ p^}

4P-1 CP (~ u-v~ p + ~ Xvt_ - Xut_ ~ p +

+ 4P-1 CP~ u-v~ p ~03BEt_~ p + 4P-1 CP~ (Xvt_ - Xut_) o 03BEt-~ p

One knows from proposition 2 that there exists an increasing sequence
of stopping times and constants Cn such that

E sup II Y u (s) - Y v (s)II 2p ~ C II u-vil Zp

n 
n

If we write for every stopping time T

E sup II (X~ - Xt ) o p or,;;

tTA6n
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. 2p 2..L
[E(sup ~Xvt - Xut ~2p)]2[E(sup ~ 03BEt ~ 2p-1) ] 2

~ Cn1 2~u-v~P E(sup ~03BEt ~03B1)p/03B1

wi th 03B1 = 2p 2p-1
Therefore

E~ sup 4p’1 E(  sup ]
/ 

1 p/a
[E (. sup (I 03BEt~03B1) ] 

If we remark that E( sup [E( ( sup 

t03C4^03C3n t03C4^03C3n

we see that property (H4) holds with

03C8(03C1) = 1 + Cn + (1 + C1 2n)03C1
4.4. - Lemma 2

If we define

~ (e,u,a) = -.- e]

there exists an increasing sequence of stopping times such that

lim P{T  T} = 0 and a sequence Cn of constants such that

E {sup ~03A6t(e,.,03BB)~2L2(G)} ~ Cn 03BB2
n

Proof.

For each u the process is solution of

(4.2) ~(e~u~) = ~ a +

+ ]0,t ]1 03BB [g(s,u+03BBe,Xu+03BBes-) - g(s,u,Xus_) -
03BB Deg(s,u,Xus_) - 03BB Dxg(s,u,Xus_) o Yus_ o e ] dSs
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We may wri te for x,y E H and n H)

(4.3) g(s,u+Xe,y) - Dxg(s,u,x) o n o e =

À Deg(s,u,y) + Dxg(s,u,x) o (y-x) - À Deg(s,u,x) - J~ Dxg(s,u,x) o ~ o e +

+ 

= o o e) + 

with

(4.4) ~ IÀI K + (~I)

for some constant K

The equation (4.2) can therefore be written

(4.5) = +) J~~j dZ 
s

where the process H(u,X,e) satisfies

(4.6) ~Ht(u,03BB,e)~IH |03BB| vkt + ~]0,t] 1 03BBh(s,u,Xu+03BBes_,Xus_,Yus_o e) dZ s)~

Using (4.5) we obtain from (4.6) for every stopping time Q : :

E sup ~ 2 ~2 v*- + [J12 + ] dA ’)~ ~ ~ T [ 
S S S

Using then theorem we see that there exists a sequence (an) of stopping

times and a sequence of constants (Kn) such that

(4.7) sup (Ãs v As)  n and

(4.8) E( sup Kn 03BB2 (use a standard stopping procedure
n for processes v , A and A ).
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This implies

(4.9) E( sup G ~Ht(u,03BB,e)~2 du)  G Kn 03BB2 du  Kn 03BB2

We next consider the L2(G)-vaLued process (~ (e~.~~)) ~2014

As Dxg is bounded by some constant C,inequality (4.6) shows that

:he L2(G)-valued process satisfies an inequaLity of the foLLowing type for

every stopping time 03C4  an

{ sup ~03A6t(e,.,03BB)~L2(G)}  2 Kn 03BB2 + 2 E( Ã03C4_[0,03C4[ C2 sup~03A6s (e,.,03BB)~2L2(G) dAs)

 2 Kn 03BB2 + 2n C2[0,03C4[sup ~03A6s(e,.,03BB)~L2(G) dAs

The already used "Gronwall inequality" of [10] shows immediately the

existence of a constant C as in the lemma.
n

..5. - End of the proof of the theorem

We make use of the following easily proved property : : let f E L ~ (G)
.et f E L2(T; H) fl C(G; 1H) and f E L2(G ; .~(~I; JH) fl C(G ; such

:hat for all e E all u E ~d and some decreasing sequence ~k J~ 0 : :

lim ~f(u+03BBke) - f(u) - 03BBk f(u) o e~L2(G ; H) = 0

’hen f is the derivative of f in the sense of distributions and therefore

in the ordinary sense in every point u E G. Let us consider for each (jj and n

i P-negligeable set Qn and a sequence ak such that 0 and

lim sup ~03A6t(e,.,03C9,03BBk)~L2(G) = 0 for every 03C9 L 03A9n

The above property shows that for every w and t  

is the derivative of u  Xut(03C9) at point u. . Therefore is the

lerivative of u  Xut(03C9) for all t03C4n(03C9) and 03C9 ~ (U03A9n) .

This proves the theorem..
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