SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

MICHEL MÉTIVIER

Pathwise differentiability with respect to a parameter of solutions of stochastic differential equations

Séminaire de probabilités (Strasbourg), tome 16 (1982), p. 490-502

http://www.numdam.org/item?id=SPS 1982 16 490 0>

© Springer-Verlag, Berlin Heidelberg New York, 1982, tous droits réservés.

L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail.mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

PATHWISE DIFFERENTIABILITY WITH RESPECT TO A PARAMETER OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS

by

Michel METIVIER

Ecole Polytechnique - Palaiseau - France.

Abstract

We consider a stochastic differential equation

$$X^{u}(t) = V^{u}(t) + \int_{0}^{t} \sigma(u,s,X_{s-}^{u})dS_{s} + \int_{0}^{t} f(u,s,X_{s-}^{u},x) q(ds,dx)$$

where S is a semimartingale and q a random measure and where the "coefficients" depend on a parameter u. We prove under suitable differentiability-conditions that the solution $X^U(t,\omega)$ can be chosen for each u in such a way that the mapping $u \sim X^U(t,\omega)$ is continuously differentiable for every (t,ω) .

I - INTRODUCTION

The goal of this paper is to prove that under sufficient differentiability conditions on the coefficients, stochastic differential equations of the type

(1.1)
$$X^{u}(t) = V^{u}(t) + \int_{0}^{t} \sigma(u,s,X_{s}^{u})ds_{s} + \int_{0}^{t} f(u,s,X_{s}^{u},x) q(ds,dx)$$

where S is a semimartingale, q a random measure with zero dual predictable projection and u a parameter taking its values in a bounded open subset G of ${\bf R}^d$, admit for each u a solution which can be determined in such a way that P.a.s. the functions u ~ ${\bf X}^U(t,\omega)$ are for every t continuously differentiable.

This is a concept of differentiability different from the one considered by Sikhmann (see [3] and [4]), who studied the differentiability of the mapping $u \sim X_{t}^{u}(.)$ as a mapping from G into $L^{p}(\Omega)$ for some p and in the

framework of Ito-equations. Recently Bichteler took the same point of view and considered equations of the type (1.1) with q = u and S and X^U possibly infinite dimensional. J. Jacod in [6] considered differentiability "in probability".

Pathwise differentiability was considered by P. Malliavin and M. Bismut for the solutions of Ito-Stratonovitch equation as functions of the initial conditions (see [2] and [8]). In [7] H. Kunita proved pathwise differentiability with respect to the initial conditions for the solutions of an equation driven by a continuous martingale. In [11] P.A. Meyer proved the same result for equations driven by a semimartingale (equations of Doleans-Dade-Protter type).

We consider here equations of type (1.1) and of a more general type with coefficients depending on a parameter $\, u \, . \,$

In section II we recall a few facts on the type of equations which are studied here. In section III we give sufficient conditions for the continuity of solutions with respect to u and in section IV we deal with differentiability.

II - THE EQUATION UNDER CONSIDERATION

2.1. - Inequalities for stochastic integrals

We assume that the random measure q in (1.1) is of the form $\mu(\omega;ds;du) = \nu(\omega;ds;du) \quad \text{where} \quad \mu(\omega;]0,t],du) \quad \text{is for each} \quad \omega \quad \text{and} \quad t \quad \text{a borelian}$ measure in an open subset $\quad \mathbf{E} \quad \text{of} \quad \mathbf{R}^m = \{0\} \quad \text{such that for some} \quad \alpha > 0$ $\int \frac{|\mathbf{x}|^\alpha}{1+|\mathbf{x}|^\alpha} |\mu|(\omega;]0,t],du) < \infty \quad (|\mu| \quad \text{denotes the variation of} \quad \mu \quad \text{and} \quad \alpha \quad \text{does}$ not depend on ω and t) and where ν is the dual predictable projection of μ).

IH denotes a separable Hilbert space. We have shown in [9] (see also J. Jacod [5]) the existence of an increasing positive adapted process b and of a process $\{ {}_{\mathbf{Q}}^{\mathbf{Q}}(\omega,s,.) : (\omega,s) \in \Omega \times \mathbb{R}^{+} \}$ the values of which are measures on $\mathbb{E} \times \mathbb{E}$ such that :

i) For each H-valued function h on \mathbb{E} such that $<h(x),h(y)>_{\mathbb{H}}$ is $\stackrel{\circ}{q}(\omega,s,dx\otimes dy)$ integrable, the integral $\int <h(x),h(y)>_{\mathbb{H}} \stackrel{\circ}{q}(\omega,s,dx\otimes dy)$ defines a positive optional process;

ii) If \not Y is an \mathbb{H} -valued $\mathscr{P}\otimes\mathscr{B}_{\mathbb{E}}$ measurable function on $\mathbb{R}^*\times\Omega\times\mathbb{E}$ and if we denote by $\lambda_{\mathrm{S}}(Y)$ the \mathbb{H} -valued positive random variable

$$\lambda_{s}(Y) := \int \langle Y(s, ,x), Y(s, ,y) \rangle_{H} \stackrel{\circ}{q}(.,s,dx \otimes dy)$$

(set to be equal to $+\infty$ when the integral does not exist) and iii) the following inequality holds for every stopping time τ

$$(2.1) \quad \mathbb{E}\left(\sup_{t < \tau} \|\int_{]0,t] \times \mathbb{E}} Y(s, x) q(., ds, dx) \|^{2} \right) \leq 4 \ \mathbb{E}\left(\int_{[0,\tau[}^{\lambda} S(Y) db_{s}) dx\right)$$

where $\left(\int_{]0,t]\times\mathbb{E}} Y(s,.,x)q(.,ds,dx)\right)_{t\geqslant0}$ is the stochastic integral process of Y with respect to q which is defined as soon as the process $\left(\int_{]0,t]^s} x(Y)db(s)\right)_{t\geqslant0}$ is finite.

If S is a **K**-valued (**K**: separable Hilbert space) right continuous semimartingale we know that there exist two positive increasing adapted processes a and \tilde{a} such that for every $\mathfrak{L}(\mathbf{K};\mathbf{H})$ -valued locally bounded predictable process $\{f(s,\omega);(s,\omega)\in\mathbf{R}^+\times\Omega\}$ and every stopping time τ :

(2.2)
$$E\left(\sup_{t \le \tau} \|\int f(s, \cdot) ds_{s}\|^{2}\right) \le E\left(\tilde{a}_{\tau}^{-} \cdot \int_{[\hat{0}, \tau[} \|f(s)\|^{2} da(s))\right)$$

To simplify the writing we shall call Z_t the process $Z_t:=(S_t,q(.,]0,t],dx))$ which takes its values in $(\pounds(K;H)\times M^{\alpha})$ where M^{α} is the space of borelian measures ν on \mathbb{E} such that $\int_{\mathbb{R}} \frac{|x|^{\alpha}}{1+|x|^{\alpha}} |\nu| \ (du) < \infty \ .$

Setting
$$A_t := b(t) + a(t)$$
 $\widetilde{A}_t := 8 + 2\widetilde{a}_t$ $\Phi := (f,Y)$

(2.3)
$$\int_{]0,t]}^{\Phi(s)dZ_s} = \int_{]0,t]}^{f(s,.)dS_s} + \int_{]0,t]\times \mathbb{E}}^{Y(s,.,x)q(.,ds,dx)}$$

and

(2.4)
$$\lambda_{s}(\Phi) := \|f(s,.)\|^{2} + \lambda_{s}(Y)$$

the following inequality holds for every stopping time

(2.5)
$$E\left(\sup_{t < \tau} \|\int_{]0,t|} \Phi(s) dZ_s\|^2\right) \leq E\left(\widetilde{A}_{\tau} - \int_{]0,\tau|} \lambda_s(\Phi) dA_s\right)$$

^(*) $\mathscr P$ is the σ -algebra of predictable subsets of $\mathbb R^+ \times \Omega$ and $\mathscr B_{\mathbb R}$ of Borel subsets of $\mathbb E$.

Extending a classical argument on martingales (see [13]) it is also easy to see that for every $p \ge 2$ exists an increasing positive adapted process $(\widetilde{A}_{+}^{p})_{+\geqslant 0}$ such that for every stopping τ

$$(2.6) \quad \mathbb{E}\left(\sup_{t \leq \tau} \left\| \int_{\left\{0, t\right\}} \Phi(s) dZ_{s} \right\|^{p}\right) \leq \mathbb{E}\left(\widetilde{A}_{\tau}^{p} \cdot \int_{\left\{0, \tau\right\}} \left(\lambda_{s}(\Phi)\right)^{p/2} dA_{s}\right)$$

2.2. - Hypothesis on equation (1.1)

The space of parameters $\, u \,$ is an open bounded subset $\, {\tt G} \,$ of $\, {\tt I\!R}^d \,$.

In equation (1.1) σ is a mapping from $(G \times \mathbb{R}^+ \times \Omega \times \mathbb{H})$ into $L(\mathbb{K}; \mathbb{H})$ which is continuous on \mathbb{H} and such that for every $h \in \mathbb{H}$ and $u \in G$ the process $\{\sigma(u,s,\omega,h): (s,\omega) \in \mathbb{R}^+ \times \Omega\}$ is predictable. f is a mapping of $(G \times \mathbb{R}^+ \times \Omega \times \mathbb{H}, \mathbb{E})$ into \mathbb{H} which if continuous on \mathbb{H} and such that for every $u \in G$, $h \in \mathbb{H}$ the mapping $(s,\omega,x) \sim f(u,s,\omega,h,x)$ is $\mathscr{P} \otimes \mathscr{B}_{\mathbb{E}}$ measurable

In the sequel we shall call g the couple (σ,f) and according to the notations of (2.1) the equation (1.1) will be written in the abreviated form:

(2.7)
$$X^{u}(t) = V^{u}(t) + \int_{0}^{t} g(u,s,X_{s-}^{u})dZ_{s}$$

Here V^{U} is for each $u \in G$ a given \mathbb{H} -valued adapted cad-lag process.

III - CONTINUITY OF THE SOLUTIONS WITH RESPECT TO u.

3.1. - Hypothesis

L is an increasing positive adapted process and p is a positive real number with p \geqslant d + ϵ for some $\,\epsilon>0$.

If ξ is a cad-lag IH-valued adapted process we write $g(u,\xi)$ for the process $(t,\omega) \sim g(u,s,\omega,\xi_{s^-}(\omega))$ and λ_s o $g(u,\xi)$ for the positive functional of this process defined by formula (2.4).

With these notations we formulate the following hypotheses :

(H₂) (Lipschitz hypotheses):
$$\forall t \in \mathbb{R}^+ \int_{\substack{0 < t \\ 10 < t \\ 1}} [\lambda_s \circ (g(u, \xi) - g(u, \xi'))]^{p/2} dA_s \leq \int_{\substack{0 < t \\ 10 < t \\ 1}} \sup_{\substack{0 < t \\ 1}} |\xi_r - \xi'||^p dL_s$$

for every couple (ξ, ξ') of IH-valued adapted cad-lag processes, P.a.s.

$$(H_{3}) \int_{]0,t]} [\lambda_{s} \circ g(u,\xi)]^{\frac{p}{2}} dA_{s} \leq \int_{]0,t]} (1 + \sup_{r \leq s} \|\xi_{s}\|^{p}) dL_{s}$$

for every $u \in G$ every H-valued adapted called ξ , P.a.s. (Note that (H_3) is implied by (H_2) in most classical cases).

(H₄) Ψ being a given positive increasing (possibly constant) function on \mathbf{R}^+ , for every stopping time τ the following inequality holds for every \mathbb{H} -valued cad-lag adapted ξ every \mathbb{U} and \mathbb{V} in \mathbb{G} :

$$E\left(\sup_{t < \tau} \left[\lambda_t \circ \left[g(u,\xi) - g(v,\xi)\right]\right]^{p/2}\right) \leq \|u - v\|^{d+\epsilon} \Psi\left(E\left(\sup_{t < \tau} \left\|\xi_t\right\|^p\right)\right)$$

3.2. - Theorem

- 1°) Under the above hypotheses (H₁) to (H₄), the equation (2.7) has for each u a unique strong solution X^U on \mathbb{R}^+ and the random function (t, ω ,u) ~ X_t^U (ω) can be determined in such a way that u ~ X_t^U (ω) is continuous on G for every t and ω while the mapping t ~ $X_t^{(.)}$ (ω) is for each ω cad-lag from \mathbb{R}^+ into the set $C_b^{\mathbb{H}}$ (G) of bounded continuous \mathbb{H} -valued functions on G endowed with the uniform topology.
- 3°) There exists an increasing sequence (σ_{n}) of stopping times and constants $K(\Psi,n,p,Z)$ such that

a)
$$\lim_{n \to \infty} P\{\sigma_n < T\} = 0$$
 for every $T > 0$

b)
$$E\left(\sup_{t<\sigma_n} \|X^u(t) - X^v(t)\|^p\right) \leq K(Y,n,p,Z) \|u-v\|^p$$

Proof.

The stopping times σ_n are defined as follows:

$$\begin{array}{lll} \sigma_n := \inf \; \{t \; : \; \widetilde{A}_t^p \; v \; L_t \; v \; \underset{u \in G}{\sup} \; \| V_t^u \|^p \; v \; A_t > n \} \end{array}$$

Next we have the following lemmas

3.3. - Lemma 1

$$E\left(\sup_{t < \sigma_{n}} \|X_{t}^{u}\|^{p}\right) \le 2^{p}(n+n^{2}) \sum_{j=0}^{2^{p}n^{2}} (2^{p}n^{2})^{j}$$

Proof of Lemma 1

We remark that $A_{\sigma_{n}}^{p} \leq n, L_{\sigma_{n}}^{-} \leq n, \sup_{t \leq \sigma_{n}} \sup_{u} \|v_{t}^{u}\|^{p} \leq n$

We then apply inequality (2.6) to the second member of (2.7) and get

$$\mathbb{E}\left(\sup_{t<\sigma_{\mathbf{n}}}\|\mathbf{X}_{t}^{\mathbf{u}}\|^{p}\right)\leq 2^{(P-1)} + 2^{(P-1)} \mathbb{E}\left(\widetilde{A}_{\sigma_{\mathbf{n}}}^{p}\right) \left[\left(\lambda_{s} \circ g(\mathbf{u},\mathbf{x}^{\mathbf{u}})\right)^{P/2} dA_{s}\right)$$

and property (H₃) gives for every stopping time $\tau \leq \sigma_n$

$$E\left(\sup_{t < \sigma_n} \|\boldsymbol{\chi}^{\mathsf{u}}_t\|^p\right) \leq 2^{(P-1)}(\mathsf{n} + \mathsf{n}^2) + 2^{(P-1)} \mathsf{n} \ E\left(\int_{]0,\tau[} (\sup_{s < t} \|\boldsymbol{\chi}^{\mathsf{u}}_s\|^P) \mathsf{dL}_s\right)$$

Applying the "Gronwall stochastic lemma" as in [10] section 7.1 we get the inequality of the lemma.

3.4. - Lemma 2

There exist constants $K(\Psi,n,p,A,\widetilde{A}^{p})$ such that

$$\forall u,v \in \left(\sup_{t \leq \sigma_n} \|X_t^u - X_t^v\|^p\right) \leq K(\Psi,n,p,A,\widetilde{A}^p) \|u-v\|^p$$

Proof of Lemma 2

and using properties (H₁), (H₂) and (H₄) we can write for every stopping time $\tau \leqslant \sigma_n$:

$$\begin{split} E\bigg(\sup_{s \leq \tau} \| \, \chi^u(s) - \chi^v(s) \, \|^{\, p} \, \bigg) \leqslant \, 3^{P-1} n^P \| \, u - v \, \|^{\, p} + \, 3^{\, (P-1)} n \, \, \Psi\bigg(E\bigg(\sup_{s \leq \tau} \| \, \chi^u_s \|^{\, p} \, \bigg) \bigg) \\ + \, 3^{\, (P-1)} n \, \, E\bigg(\int_{\,]0, \, \tau} \big[\sup_{t \leq s} \| \, \chi^u(s) - \chi^v(s) \|^{\, P} \, \big) \, dL_s \bigg) \end{split}$$

Applying as above the same "Gronwall-inequality" we obtain the lemma.

Theorem 3.2 is now a direct consequence of the following lemma which is a straight—forward extension of a lemma as stated by Neveu in [12] (see also P. Priouret [13] chap. 3. lemme 13:

3.5 - Lemma 3

Let $\{Y(t,\omega,u):t\in \mathbb{R}^+,\omega\in\Omega,\ u\in G\}$ an H-valued random function such that for every $u:t\sim Y(t,\omega,u)$ is a.s. cad-lag and such that for every $t:E\left(\sup_{s\leq t}\|Y_{s,u}-Y_{s,v}\|^p\right)\leqslant a_{t,p}\|u-v\|^{d+\epsilon}$

Then there exists a mapping Y^* : $(t,\omega,u) \sim Y^*(t,\omega,u) \in \mathbb{H}$ such that

- a) $u \sim Y^*(t,\omega,u)$ is continuous
- b) $\forall u \in G$, $Y(t,u,.) = Y^*(t,u,.)$ for all t a.s.
- b) t $\sim \gamma^*(t,.,\omega)$ is for P-almost all ω a cad-lag mapping from \mathbb{R}^+ into $C_b^{\mathbb{H}}(G)$ endowed with the uniform topology.

Proof.

We omit the proof which is pretty similar to the one given in [13].

This finishes the proof of theorem 3.2.

IV - PATHWISE DIFFERENTIABILITY

4.1. - Hypothesis

We consider the same equation (1.1) or in abreviated notation: (2.7).

For a couple $g := (\sigma, f)$ of "coefficients" as in (1.1) we write to simplify: $\|g(u,s,\omega,h,.)\|_{\Lambda} := \left[\|\sigma(u,s,\omega,h)\|_{LK}^{2}; H\right] + \int_{\mathbb{E}\times\mathbb{E}} \langle f(u,s,\omega,h,x), f(u,s,\omega,h,y) \rangle_{H}$ $\stackrel{Q}{q}(\omega,s,dx\otimes dy)^{\frac{1}{2}}$

We set
$$v_t^* := \sup_{u \in G} \sup_{s \le t} \|D_u V_s^u\| + \|V_s^u\| + \|D_{u^2}^2 V_s^u\|$$

were $D_u \Phi$ denotes the/derivative/with respect to u of a function Φ on u. full order and Ω^2 Φ the second order derivative

In the hypothes ${\mathfrak E}$ below C is a constant and $(K_t)_{t\geqslant 0}$ is an increasing positive process.

- [D_1] For all t and ω the derivatives D_u^U(t, ω) and D_u^2 V^U(t, ω) exist and v_t^* < ∞
- [D₃] For all x,y u and v: $\|D_xg(s,u,x) - D_yg(s,v,y)\|_{\Lambda} \le C(\|y-x\| + \|u-v\|)$

4.2. - Theorem

Under the above hypothesis $[D_1]$ to $[D_3]$ equation (2.7) has a unique (up to indistinguability) solution X^U on \mathbb{R}^+ and there exists a version $(\omega,t,u)\sim X_t^U(\omega)$ of this random function such that for P-almost all ω :

- a) $u \sim X_{+}^{U}(\omega)$ is continuously differentiable for every t
- b) $t \sim X_t^{(.)}(\omega)$ and $t \sim D_u X_t^{(.)}(\omega)$ are cad-lag for the uniform norm on $C_b(G; H)$ and $C_b(G; L(G; H))$ respectively.
- c) For every u the stochastic process $(D_u X_t^u)_{t \ge 0}$ is a strong solution of the following stochastic equation (where x^u is the process solution of 2.7 as in theorem 3.2):

$$(4.1) Y^{u}(t) = D_{u}V_{t}^{u} + \int_{]0,t} \left(D_{u}g(s,u,X_{s-}^{u}) + D_{x}g(s,u,X_{s-}^{u}) \circ Y_{s}^{u}\right) dZ_{s}$$

Proof.

The proof is in several steps corresponding to lemmas 4 and 5 and section 4.5 bellow:

4.3. - Lemma 4

Under hypothesis $[D_1]$, $[D_2]$, $[D_3]$, equations (2.7) and (4.1) satisfy the conditions $[H_1]$ to $[H_4]$ of section 3.1 for every $p \ge 2$ on any interval $[D,\sigma_p]$ as defined in theorem 1.

Proof.

Let us first consider equation (2.7). (H₁) is trivially implied by [D₁]. [D₂] implies also the Lipschitz property (H₂) and conditions (H₃) and (H₄) which is here expressed in the much stronger form $\|g(s,u,x)-g(s,v,x)\|_{\Lambda} \le C \|u-v\|$.

We turn now to equation (4.1). The only condition (H_i) which is not immediately implied by the hypothesis of the lemma is condition (H_4) . We write

$$\begin{split} &\| \, \mathsf{D}_{\mathsf{u}} \mathsf{g}(\mathsf{s},\mathsf{v},\mathsf{X}^{\mathsf{v}}_{\mathsf{t}^{-}}) \, - \, \mathsf{D}_{\mathsf{u}} \mathsf{g}(\mathsf{s},\mathsf{u},\mathsf{X}^{\mathsf{u}}_{\mathsf{t}^{-}}) \, + \, \mathsf{D}_{\mathsf{X}} \mathsf{g}(\mathsf{s},\mathsf{v},\mathsf{X}^{\mathsf{v}}_{\mathsf{t}^{-}}) \, \circ \, \xi_{\mathsf{t}} \, - \, \mathsf{D}_{\mathsf{x}} \mathsf{g}(\mathsf{s},\mathsf{u},\mathsf{X}^{\mathsf{u}}_{\mathsf{t}^{-}}) \, \circ \, \xi_{\mathsf{t}^{-}} \|_{\Lambda}^{\mathsf{p}} \\ & < 4^{\mathsf{P}-1} \, \, \{ \| \, \mathsf{D}_{\mathsf{u}} \mathsf{g}(\mathsf{s},\mathsf{v},\mathsf{X}^{\mathsf{v}}_{\mathsf{t}^{-}}) \, - \, \mathsf{D}_{\mathsf{u}} \mathsf{g}(\mathsf{s},\mathsf{u},\mathsf{X}^{\mathsf{v}}_{\mathsf{t}^{-}}) \|_{\Lambda}^{\mathsf{p}} \} \, + \\ & + \, 4^{\mathsf{P}-1} \, \, \{ \| \, \mathsf{D}_{\mathsf{x}} \mathsf{g}(\mathsf{s},\mathsf{u},\mathsf{X}^{\mathsf{v}}_{\mathsf{t}^{-}}) \, - \, \mathsf{D}_{\mathsf{x}} \mathsf{g}(\mathsf{s},\mathsf{u},\mathsf{X}^{\mathsf{v}}_{\mathsf{t}^{-}}) \|_{\Lambda}^{\mathsf{p}} \} \\ & + \, 4^{\mathsf{P}-1} \, \, \{ \| \, [\, \mathsf{D}_{\mathsf{x}} \mathsf{g}(\mathsf{s},\mathsf{v},\mathsf{v},\mathsf{X}^{\mathsf{v}}_{\mathsf{t}^{-}}) \, - \, \mathsf{D}_{\mathsf{x}} \mathsf{g}(\mathsf{s},\mathsf{u},\mathsf{X}^{\mathsf{v}}_{\mathsf{t}^{-}}) \| \, \circ \, \xi_{\mathsf{t}^{-}} \|_{\Lambda}^{\mathsf{p}} \} \\ & + \, 4^{\mathsf{P}-1} \, \, \{ \| \, [\, \mathsf{D}_{\mathsf{x}} \mathsf{g}(\mathsf{s},\mathsf{u},\mathsf{X}^{\mathsf{v}}_{\mathsf{t}^{-}}) \, - \, \mathsf{D}_{\mathsf{x}} \mathsf{g}(\mathsf{s},\mathsf{u},\mathsf{X}^{\mathsf{u}}_{\mathsf{t}^{-}}) \| \, \circ \, \xi_{\mathsf{t}^{-}} \|_{\Lambda}^{\mathsf{p}} \} \\ & < 4^{\mathsf{P}-1} \, \, \, c^{\mathsf{P}} (\| \, \mathsf{u} - \mathsf{v} \|^{\mathsf{p}} \, + \, \| \, \mathsf{X}^{\mathsf{v}}_{\mathsf{t}^{-}} \, - \, \mathsf{X}^{\mathsf{u}}_{\mathsf{t}^{-}} \|^{\mathsf{p}} \, + \\ & + \, 4^{\mathsf{P}-1} \, \, c^{\mathsf{P}} \| \, \mathsf{u} - \mathsf{v} \|^{\mathsf{p}} \, \| \, \xi_{\mathsf{t}^{-}} \|^{\mathsf{p}} \, + \, 4^{\mathsf{P}-1} \, \, c^{\mathsf{P}} \| \, (\mathsf{X}^{\mathsf{v}}_{\mathsf{t}^{-}} \, - \, \mathsf{X}^{\mathsf{u}}_{\mathsf{t}^{-}}) \, \circ \, \xi_{\mathsf{t}^{-}} \|^{\mathsf{p}} \end{split}$$

One knows from proposition 2 that there exists an increasing sequence (σ_n) of stopping times and constants $\,^{\rm C}_n$ such that

E
$$\sup_{\Delta < \sigma_n} \| Y^u(s) - Y^v(s) \|^{2p} \le c_n \| u - v \|^{2p}$$

If we write for every stopping time
$$\tau$$

$$E\left(\sup_{t<\tau\wedge\sigma_n}\|(X_t^V-X_t^U)\circ\xi_{t^-}\|^p\right)\leqslant$$

$$\begin{split} \left[E \left(\sup_{t < \tau \wedge \sigma_n} \| \, \boldsymbol{x}_t^{\boldsymbol{V}} \, - \, \boldsymbol{x}_t^{\boldsymbol{u}} \, \|^{2p} \right) \right]^{\frac{1}{2}} \left[E \left(\sup_{t < \tau \wedge \sigma_n} \| \, \boldsymbol{\xi}_t \, \|^{\frac{2p-1}{2p-1}} \right) \right]^{\frac{2p-1}{2}} \\ & \leq c_n^{\frac{1}{2}} \| \, \boldsymbol{u} - \boldsymbol{v} \|^{p} \, E \left(\sup_{t < \tau \wedge \sigma_n} \| \, \boldsymbol{\xi}_t \, \|^{\alpha} \right)^{p/\alpha} \end{split}$$
 with $\alpha = \frac{2p}{2p-1}$

Therefore

$$\begin{split} E \left(\sup_{\mathbf{A} < \tau \wedge \sigma_{n}} \| \, g(s,u,\xi_{s^{-}}) - g(s,v,\xi_{s^{-}}) \|_{\Lambda}^{p} \right) &\leq 4^{p,1} \, c^{p} \| \, u - v \|_{L^{p}} [1 + c_{n} + E(\sup_{\mathbf{A} \in \tau \wedge \sigma_{n}} \| \, \xi_{\mathbf{A}} \|_{L^{p}})] \\ &+ c_{n}^{\frac{1}{2}} [E(\cdot \sup_{\mathbf{A} \in \tau \wedge \sigma_{n}} \| \, \xi_{t} \|_{L^{q}})] \end{split}$$

If we remark that $\text{E(}\sup_{t < \tau \wedge \sigma_n} \|\xi_{t^-}\|^p) \ge \left[\text{E(}\sup_{t < \tau \wedge \sigma_n} \|\xi_{t^-}\|^\alpha)\right]^{p/\alpha}$

we see that property $(H_{\underline{\iota}})$ holds with

$$\Psi(\rho) = 1 + C_n + (1 + C_n^{\frac{1}{2}})\rho$$

4.4. - <u>Lemma 2</u>

If we define

$$\Phi_{t}(e,u,\lambda) = \frac{1}{\lambda} [X_{t}^{u+\lambda e} - X_{t}^{u} - \lambda Y_{t}^{u} \circ e]$$

there exists an increasing sequence $~(\tau_n)~$ of stopping times such that $\lim_n P\{\tau_u < T\} = 0~$ and a sequence $~c_n~$ of constants such that

$$E \left\{ \sup_{t < \tau_n} \| \Phi_t(e, .., \lambda) \|_{L^2(G)}^2 \right\} \le c_n \lambda^2$$

Proof.

For each u the process $(\Phi_{\mathbf{t}}(\mathbf{e},\mathbf{u},\lambda))_{\mathbf{t}\leqslant\mathbf{T}}$ is solution of

$$\begin{aligned} (4.2) \quad & \Phi_{\mathbf{t}}(\mathbf{e},\mathbf{u},\lambda) = \frac{1}{\lambda} \; (\mathbf{v}_{\mathbf{t}}^{\mathbf{u}+\lambda\mathbf{e}} - \mathbf{v}_{\mathbf{t}}^{\mathbf{u}} - \lambda \; \mathbf{D}_{\mathbf{e}} \mathbf{v}_{\mathbf{t}}^{\mathbf{u}}) \; + \\ & \quad + \int_{\left]0,\mathbf{t}\right]^{\frac{1}{\lambda}} \left[\mathbf{g}(\mathbf{s},\mathbf{u}+\lambda\mathbf{e},\mathbf{X}_{\mathbf{s}^{-}}^{\mathbf{u}+\lambda\mathbf{e}}) \; - \; \mathbf{g}(\mathbf{s},\mathbf{u},\mathbf{X}_{\mathbf{s}^{-}}^{\mathbf{u}}) \; - \\ & \quad \quad \lambda \; \mathbf{D}_{\mathbf{e}} \mathbf{g}(\mathbf{s},\mathbf{u},\mathbf{X}_{\mathbf{s}^{-}}^{\mathbf{u}}) \; - \; \lambda \; \mathbf{D}_{\mathbf{x}} \mathbf{g}(\mathbf{s},\mathbf{u},\mathbf{X}_{\mathbf{s}^{-}}^{\mathbf{u}}) \; \circ \; \mathbf{Y}_{\mathbf{s}^{-}}^{\mathbf{u}} \; \circ \; \mathbf{e} \right] \; \mathrm{dS}_{\mathbf{s}} \end{aligned}$$

We may write for $x,y \in \mathbb{H}$ and $\eta \in \mathcal{L}(\mathbb{H};\mathbb{H})$

(4.3)
$$g(s,u+\lambda e,y) - g(s,u,x) - \lambda D_e g(s,u,x) - \lambda D_x g(s,u,x) \circ \eta \circ e =$$

$$\lambda D_e g(s,u,y) + D_x g(s,u,x) \circ (y-x) - \lambda D_e g(s,u,x) - \lambda D_x g(s,u,x) \circ \eta \circ e +$$

$$+ h(s,u,x,y,\eta,\lambda,e)$$

= $D_g(s,u,x)$ o $(y-x-\lambda\eta$ o e) + $\widetilde{h}(s,u,x,y,\eta,\lambda)$

with

(4.4)
$$\|\widetilde{h}(s,u,x,y,\eta,\lambda)_{\Lambda} \leq \|\lambda\| K (\|y-x\| + |\lambda|)$$

for some constant K

The equation (4.2) can therefore be written

(4.5)
$$\Phi_{t}(e,u\lambda) = H_{t}(u,\lambda,e) + \int_{10,t} D_{x}g(s,u,X_{s}^{u}) \circ \Phi_{s}(e,u,\lambda) dZ_{s}$$

where the process $H(u,\lambda,e)$ satisfies

(4.6)
$$\|H_t(u,\lambda,e)\|_{\mathbf{H}} \le |\lambda| v_t^k + \|\int_{[0,\pm 1]} \frac{1}{\lambda} h(s,u,X_{s^-}^{u+\lambda e},X_{s^-}^u,Y_{s^-}^u \circ e) dZ_s\|$$

Using (4.5) we obtain from (4.6) for every stopping time σ :

$$E\left(\sup_{t < \sigma} \|H_{t}(u,\lambda,e)\|^{2}\right) \leq 2 \lambda^{2} v_{\sigma}^{*} + E\left(\widetilde{A}_{\tau}^{-} \cdot \int_{\left]0,\tau\right[} [\lambda^{2} + c^{2} \|X_{s}^{u+\lambda e} - X_{s}^{u}\|^{2}] dA_{s}\right)$$

Using then theorem we see that there exists a sequence (σ_n) of stopping times and a sequence of constants (K_n) such that

(4.7)
$$\sup_{s < \sigma_n} (\widetilde{A}_s \vee A_s) \le n$$
 and

(4.8) E(
$$\sup_{t < \sigma_n} \|H_t(u,\lambda,e)\|^2$$
) $\leq K_n \lambda^2$ (use a standard stopping procedure for processes v^*, \widetilde{A} and A).

This implies

$$(4.9) \quad E\left(\sup_{t \leq \sigma_{n}} \int_{G} \|H_{t}(u,\lambda,e)\|^{2} du\right) \leq \int_{G} K_{n} \lambda^{2} du \leq \widetilde{K}_{n} \lambda^{2}$$

We next consider the $L^2(G)$ -valued process $(\Phi_t(e,.,\lambda))_{t \leq T}$

As D $_{\chi}g$ is bounded by some constant C,inequality (4.6) shows that the L 2 (G)-valued process Φ_{t} satisfies an inequality of the following type for every stopping time $\tau \leqslant \sigma_{n}$

$$\begin{split} & \left\{\sup_{\mathbf{t}<\tau}\|\Phi_{\mathbf{t}}(\mathbf{e},.,\lambda)\|_{L^{2}(G)}\right\} \leq 2\ \widetilde{K}_{n}\ \lambda^{2} + 2\ \mathbf{E}\left(\widetilde{A}_{\tau}^{-}\int_{\left[0,\tau\right[}\mathbf{c}^{2}\sup_{\mathbf{s}<\mathbf{t}}\|\Phi_{\mathbf{s}}(\mathbf{e},.,\lambda)\|_{L^{2}(G)}^{2}\ dA_{\mathbf{s}}\right) \\ & \leq 2\ \widetilde{K}_{n}\ \lambda^{2} + 2n\ \mathbf{c}^{2}\int_{\left[0,\tau\right[}\sup_{\mathbf{s}<\mathbf{t}}\|\Phi_{\mathbf{s}}(\mathbf{e},.,\lambda)\|_{L^{2}(G)}\ dA_{\mathbf{s}} \end{split}$$

The already used "Gronwall inequality" of [10] shows immediately the existence of a constant $\, {\rm C}_{\rm D} \,$ as in the lemma.

We make use of the following easily proved property: let $f \in L^2_{JH}(\overline{G})$.et $f \in L^2(JG; JH) \cap C(G; JH)$ and $\overline{f} \in L^2(G; \mathcal{L}(JH; JH)) \cap C(G; \mathcal{L}(JH; JH))$ such that for all $e \in \mathbb{R}^d$, all $u \in \mathbb{R}^d$ and some decreasing sequence $\lambda_k \neq 0$:

$$\lim_{k\to\infty} \|f(u+\lambda_k e) - f(u) - \lambda_k \overline{f}(u) \circ e\|_{L^2(G; \mathbb{H})} = 0$$

Then \overline{f} is the derivative of f in the sense of distributions and therefore in the ordinary sense in every point $u \in G$. Let us consider for each ω and $n \in P$ -negligeable set Ω_n and a sequence λ_k such that $\lambda_k \neq 0$ and $\lim_{k \to \infty} \sup_{t < \tau_n(\omega)} \| \Phi_t(e, \cdot, \omega, \lambda_k) \|_{L^2(G)} = 0 \quad \text{for every } \omega \notin \Omega_n$

The above property shows that for every $\omega\not\in\Omega_n$ and $t<\tau_n(\omega)$ is the derivative of $u\sim X_t^u(\omega)$ at point u. Therefore $Y_t^u(\omega)$ is the lerivative of $u\sim X_t^u(\omega)$ for all $t<\tau_n(\omega)$ and $\omega\not\in(U\Omega_n)$.

This proves the theorem. ■

BIBLIOGRAPHY

- [1] S. BICHTELER
 Stochastic Integrations with Stationary Independent increments
 (To appear in Z. Wahr. verw. Geb.)
- [2] M. BISMUT A generalized formula of Ito and some other properties of stochastic flows Z. Wahr. verw. Geb. 55, 1981, pp. 331-350.
- [3] I.I. GIKHMAN
 On the theory of differential equations of random processes
 Uhr. Mat. Zb. 2, n° 4, 1950, pp. 37-63.
- [4] I.I. GIKHMAN and A.V. SKOROKHOD Stochastic Differential equations Springer-Verlag, 1972.
- [5] J. JACOD Calcul stochastique et problèmes de martingales Lecture Notes Math. 714, Springer-Verlag, New York, 1979.
- [6] J. JACOD Equations différentielles stochastiques : continuité et dérivabilité en probabilité (Preprint)
- [7] H. KUNITA On the decomposition of solutions of stochastic differential equations. Proc. of the L.M.S. Symposium on Stoch. Diff. Equations, Durham, juillet 1980, Lecture Notes in Math. Springer-Verlag, 1981.
- [8] P. MALLIAVIN Stochastic Calculus of variations and Hypoelliptic operators. Proc. of the Intern. Symposium on Stochastic Differential Equations of Kyoto, 1976, pp. 195-263. Tokyo, Kinokuniya and New York, Wiley, 1978.
- [9] M. METIVIER Stability theorems for stochastic Integral Equations driven by random measures and semimartingales J. of Integral Equations, 1980 (to appear).
- [10] M. METIVIER and J. PELLAUMAIL Stochastic Integration Acad. Press. New York, 1980.
- [11] P.A. MEYER
 Flot d'une équation différentielle stochastique
 Séminaire de Probabilité XV. Lecture Notes in Math. 850, SpringerVerlag, 1981.
- [12] J. NEVEU Intégrales stochastiques et applications Cours de 3e Cycle. Univ. de Paris VI, 1971-1972.
- P. PRIOURET
 Processus de diffusion et équations différentielles stochastiques
 Ecole d'Eté de Prob. de St-Flour. Lecture Notes in Math. 390,
 Springer-Verlag, 1974.