SÉminaire de probabilités (Strasbourg)

Michel Métivier

 Pathwise differentiability with respect to a parameter of

 Pathwise differentiability with respect to a parameter of solutions of stochastic differential equations

 solutions of stochastic differential equations}Séminaire de probabilités (Strasbourg), tome 16 (1982), p. 490-502
http://www.numdam.org/item?id=SPS_1982__16__490_0
© Springer-Verlag, Berlin Heidelberg New York, 1982, tous droits réservés.
L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numbam

Article numérisé dans le cadre du programme

PATHWISE DIFFERENTIABILITY WITH RESPECT TO A PARAMETER

 OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONSby
Michel METIVIER
Ecole Polytechnique - Palaiseau - France.

Abstract

We consider a stochastic differential equation

$$
x^{u}(t)=v^{u}(t)+\int_{0}^{t} \sigma\left(u, s, x_{s^{-}}^{u}\right) d S_{s}+\int_{0}^{t} f\left(u, s, x_{s^{-}}^{u}, x\right) q(d s, d x)
$$

where s is a semimartingale and q a random measure and where the "coefficients" depend on a parameter u. We prove under suitable differentia-bility-conditions that the solution $\mathrm{X}^{\mathrm{u}}(\mathrm{t}, \omega)$ can be choosen for each u in such a way that the mapping $u \sim x^{u}(t, \omega)$ is continuously differentiable for every (t, ω).

I - INTRODUCTION

The goal of this paper is to prove that under sufficient differentiability conditions on the coefficients, stochastic differential equations of the type
(1.1) $x^{u}(t)=v^{u}(t)+\int_{0}^{t} \sigma\left(u, s, x_{s^{-}}^{u}\right) d s_{s}+\int_{0}^{t} f\left(u, s, x_{\left.s^{-}, x\right)}^{u} q(d s, d x)\right.$
where S is a semimartingale, q a random measure with zero dual predictable projection and u a parameter taking its values in a bounded open subset G of $\boldsymbol{R}^{\mathbf{d}}$, admit for each u a solution which can be determined in such a way that P.a.s. the functions $u \sim X^{u}(t, \omega)$ are for every t continuously differentiable.

This is a concept of differentiability different from the one considered by Gikhmann (see [3] and [4]), who studied the differentiability of the mapping $u \sim X_{t}^{u}($.$) as a mapping from G$ into $L^{p}(\Omega)$ for some p and in the
framework of Ito-equations. Recently Bichteler took the same point of view and considered equations of the type (1.1) with $q=u$ and s and X^{u} possibly infinite dimensional. J. Jacod in [6] considered differentiability "in probability".

Pathwise differentiability was considered by P. Malliavin and M. Bismut for the solutions of Ito-Stratonovitch equation as functions of the initial conditions (see [2] and [8]). In [7] H. Kunita proved pathwise differentiability with respect to the initial conditions for the solutions of an equation driven by a continuous martingale. In [11] P.A. Meyer proved the same result for equations driven by a semimartingale (equations of Doleans-Dade-Protter type).

We consider here equations of type (1.1) and of a more general type with coefficients depending on a parameter u.

In section II we recall a few facts on the type of equations which are studied here. In section III we give sufficient conditions for the continuity of solutions with respect to u and in section $I V$ we deal with differentiability.

II - THE EQUATION UNDER CONSIDERATION

2.1. - Inequalities for stochastic integrals

We assume that the random measure q in (1.1) is of the form $\mu(\omega ; d s ; d u)-\nu(\omega ; d s ; d u)$ where $\mu(\omega ;] 0, t], d u)$ is for each ω and t a borelian measure in an open subset \mathbf{E} of $\mathbb{R}^{m}-\{0\}$ such that for some $\alpha>0$ $\left.\left.\int \frac{|x|^{\alpha}}{1+|x|^{\alpha}}|\mu|(\omega ;] 0, t\right], d u\right)<\infty \quad(|\mu|$ denotes the variation of μ and α does not depend on ω and t) and where ν is the dual predictable projection of μ).

```
    IH denotes a separable Hilbert space. We have shown in [9] (see also J. Jacod [5]) the existence of an increasing positive adapted process \(b\) and of a process \(\left\{\underset{q}{0}(\omega, s,):.(\omega, s) \in \Omega \times \mathbb{R}^{+}\right\}\)the values of which are measures on E \(\times\) 正 such that :
```

```
i) For each H-valued function h on 正 such that <h(x),h(y)}\mp@subsup{\rangle}{H}{}\mathrm{ is
    q(\omega,s,dx \otimesdy) integrable, the integral \int<h(x),h(y)}\mp@subsup{\sum}{\mathbb{H}}{q
    defines a positive optional process ;
```

ii) If Y is an \mathbb{H}-valued $\mathscr{P} \otimes \mathscr{B} \mathbb{F}$ measurable ${ }^{(*)}$ function on $\mathbb{R}^{+} \times \Omega \times \mathbb{E}$ and if we denote by $\lambda_{s}(Y)$ the H-valued positive random variable

$$
\lambda_{s}(Y):=\int\left\langle Y(s,, x), Y(s,, y\rangle_{H} Q_{q}^{O}(., s, d x \otimes d y)\right.
$$

(set to be equal to $+\infty$ when the integral does not exist) and iii) the following inequality holds for every stopping time τ

$$
\text { (2.1) } E\left(\sup _{t<\tau} \| \int_{] 0, t] \times \mathbb{I}} \underset{(s, . x) q(., d s, d x) \|}{ }\right) \leqslant 4 E\left(\int_{[0, \tau[s} \lambda_{s}(Y) d b_{s}\right)
$$

 with respect to q which is defined as soon as the process $\left(\int_{] 0, t]} \lambda_{s}(Y) d b(s)\right)_{t \geqslant 0}$
is finite.

If S is a K-valued (K : separable Hilbert space) right continuous semimartingale we know that there exist two positive increasing adapted processes a and \tilde{a} such that for every $\mathcal{L}(\mathbf{K} ; H)$-valued locally bounded predictable process $\left\{f(s, \omega) ;(s, \omega) \in \mathbf{R}^{+} \times \Omega\right\}$ and every stopping time τ :
(2.2) $E\left(\sup _{t<\tau}\left\|\int f(s, .) d S\right\|_{S^{2}}\right) \leqslant E\left(\tilde{a}_{\tau^{-}} \int_{[0, \tau[}\|f(s)\|^{2} d a(s)\right)$

To simplify the writing we shall call Z_{t} the process
$\left.\left.Z_{t}:=\left(S_{t}, q(.] 0, t,\right], d x\right)\right)$ which takes its values in $\left(\mathcal{L}(\mathbb{K} ; H) \times \mathbb{M}^{\alpha}\right)$ where
the ${ }^{\alpha}$ is the space of borelian measures v on 正 such that $\int_{\text {I正 }} \frac{|x|^{\alpha}}{1+\mid x!^{\alpha}}|\nu|$ (du) $<\infty$.

Setting $A_{t}:=b(t)+a(t) \quad \tilde{A}_{t}:=8+2 \tilde{a}_{t} \quad \Phi:=(f, Y)$
(2.3) $\int_{[0, t]} \Phi(s) d Z_{s}:=\int_{[0, t]} f(s, ..) d s_{s}+\int_{10, t] \times \mathbb{E}}^{Y(s, \ldots, x) q(., d s, d x)}$
and
(2.4) $\quad \lambda_{s}(\Phi):=\|f(s, .)\|^{2}+\lambda_{s}(Y)$
the following inequality holds for every stopping time
(2.5) $E\left(\sup _{t<\tau}\left\|\int_{j 0, t]} \Phi(s) d Z_{s}\right\|^{2}\right) \leqslant E\left(\tilde{A}_{\tau^{-}} \cdot \int_{j 0, \tau]} \lambda_{s}(\Phi) d A_{s}\right)$

Extending a classical argument on martingales (see [13]) it is also easy to see that for every $p \geqslant 2$ exists an increasing positive adapted process $\left(\widetilde{A}_{t}^{p}\right)_{t \geqslant 0}$ such that for every stopping τ
(2.6) $E\left(\sup \left\|_{t<\tau} \int_{00, t]} \Phi(s) d Z_{s}\right\|^{p}\right) \leqslant E\left(\tilde{A}_{\tau^{-}}^{p} \cdot \int_{[0, \tau}\left(\lambda_{s}(\Phi)\right)^{p / 2} d A_{s}\right)$

2.2. - Hypothesis on equation (1.1)

The space of parameters u is an open bounded subset G of $\mathbb{R}^{\mathbf{d}}$.

In equation (1.1) σ is a mapping from ($G \times \mathbb{R}^{+} \times \Omega \times \mathbb{H}$) into $\mathcal{L}(\mathbf{K} ; \boldsymbol{H})$ which is continuous on H and such that for every $h \in H$ and $u \in G$ the process $\left\{\sigma(u, s, \omega, h):(s, \omega) \in \mathbf{R}^{+} \times \Omega\right\}$ is predictable. f is a mapping of $\left(G \times \mathbf{R}^{+} \times \Omega \times \mathbf{H}, \mathbb{E}\right)$ into H which if continuous on H and such that for every $u \in G, h \in \mathbb{H}$ the mapping $(s, \omega, x) \sim f(u, s, \omega, h, x)$ is $\mathscr{P} \otimes \mathscr{B O}_{\mathbb{B}}$ measurable

In the sequel we shall call g the couple (σ, f) and according to the notations of (2.1) the equation (1.1) will be written in the abreviated form :
(2.7) $x^{u}(t)=v^{u}(t)+\int_{0}^{t} g\left(u, s, x_{s^{-}}^{u}\right) d z_{s}$

Here V^{u} is for each $u \in G$ a given H-valued adapted cad-lag process.

III - CONTINUITY OF THE SOLUTIONS WITH RESPECT TO u.
3.1. - Hypothesis
L is an increasing positive adapted process and p is a positive real
number with $p \geqslant d+\varepsilon$ for some $\varepsilon>0$.

If ξ is a cad-lag H-valued adapted process we write $g(u, \xi)$ for the process $(t, \omega) \sim g\left(u, s, \omega, \xi_{s^{-}}(\omega)\right)$ and $\lambda_{s} \circ g(u, \xi)$ for the positive functional of this process defined by formula (2.4).

With these notations we formulate the following hypotheses :
$\left(H_{1}\right) \quad \sup _{s \leqslant t}\left\|v_{s}^{u}-v_{s} v_{l} \leqslant L_{t}\right\| u-v \| \quad$ for $a l l \quad t, u$ and $v \in G$
and

$$
\sup _{u \in G} \| v_{t} u_{t}<\infty
$$

$\left(\mathrm{H}_{2}\right) \quad$ (Lipschitz hypotheses) :
$\forall t \in \mathbb{R}^{+} \int_{10, t]}\left[\lambda_{s} o\left(g(u, \xi)-g\left(u, \xi^{\prime}\right)\right)\right]^{p / 2} d A_{s} \leqslant \int_{] 0, t] r \leqslant s} \sup _{r}\left\|\xi_{r}-\xi_{r}^{\prime}\right\|^{p} d L_{s}$
for every couple $\left(\xi, \xi^{\prime}\right)$ of \mathbb{H}-valued adapted cad-lag processes, P.a.s.
$\left(H_{3}\right) \quad \int_{j 0, t]}\left[\lambda_{s} \circ g(u, \xi)\right]^{p / 2} d A_{s} \leqslant \int_{10, t]}\left(1+\sup _{r \leqslant s}\left\|\xi_{s}\right\|^{p}\right) d L_{s}$
for every $u \in G$ every \mathbb{H}-valued adapted cal-lag ξ, P.a.s.
(Note chat $\left(\mathrm{H}_{3}\right)$ is implid by $\left(\mathrm{H}_{2}\right)$ in mot dan'cul cases).
$\left(\mathrm{H}_{4}\right) \quad \Psi$ being a given positive increasing (possibly constant) function on \mathbf{R}^{+}, for every stopping time τ the following inequality holds for every \mathbb{H}-valued cad-lag adapted ξ every u and v in G : $E\left(\sup _{t<\tau-}\left[\lambda_{t} \circ[g(u, \xi)-g(v, \xi)]\right]^{p / 2}\right) \quad \leqslant \quad\|u-v\| \|^{d+\varepsilon_{\Psi}}\left(E\left(\sup \left\|_{t<\tau} \xi_{t}\right\|^{p}\right)\right)$

3.2. - Theorem

$\left.1^{\circ}\right)$ Under the above hypotheses (H_{1}) to $\left(\mathrm{H}_{4}\right)$, the equation (2.7) has for each u a unique strong solution X^{u} on \mathbb{R}^{+}and the random function $(t, \omega, u) \sim X_{t}^{u}(\omega)$ can be determined in such a way that $u \sim X_{t}^{u}(\omega)$ is continuous On G for every t and ω while the mapping $t \sim X_{t}^{(.)}(\omega)$ is for each ω cad-lag from \mathbf{R}^{+}into the set $C_{b}^{I H}(G)$ of bounded continuous H-valued functions on \mathbf{G} endowed with the uniform topology.
20) There exists an increasing sequence (σ_{n}) of stopping times and constants $K(\Psi, n, p, Z)$ such that
a) $\lim _{\mathrm{n}} \mathrm{P}\left\{\sigma_{\mathrm{n}}<\mathrm{T}\right\}=0$ for every $\mathrm{T}>0$
b) $E\left(\sup _{t<\sigma_{n}}\left\|x^{u}(t)-x^{v}(t)\right\|^{p}\right) \leqslant K(y, n, p, z)\|u-v\|^{p}$

Proof.

The stopping times σ_{n} are defined as follows:
$\sigma_{n}:=\inf \left\{t: \tilde{A}_{t}^{p} \vee L_{t} \vee \sup _{\substack{u \in G \\ s \leqslant t}} \| v_{t}^{u_{\|} p} \vee A_{t}>n\right\}$

Next we have the following lemmas

3.3. - Lemma 1

$E\left(\sup _{t<\sigma_{n}}\left\|x_{t}^{u}\right\|^{p}\right) \leqslant 2^{p}\left(n+n^{2}\right) \sum_{j=0}^{2^{P} n^{2}}\left(2^{P} n^{2}\right)^{j}$

Proof of Lemma 1

We remark that $A_{\sigma_{n}^{-}}^{p} \leqslant n, L_{\sigma_{n}^{-}} \leqslant n, \sup _{t<\sigma_{n}} \sup _{u} \| V_{t}^{u}{ }^{p} \leqslant n$
We then apply inequality (2.6) to the second member of (2.7) and get $E\left(\sup _{t<\sigma_{n}}\left\|x_{t}^{u}\right\|^{p}\right) \leqslant 2^{(P-1)} n+2^{(P-1)} E\left(\widetilde{A}_{\sigma_{n}^{-}}^{p} \int_{] 0, \sigma_{n}[}\left[\lambda_{s} \circ g\left(u, x^{u}\right)\right]^{P / 2} d A_{s}\right)$
and property $\left(\mathrm{H}_{3}\right)$ gives for every stopping time $\tau \leqslant \sigma_{n}$
$E\left(\sup _{t<\sigma_{n}}\left\|X_{t}^{u}\right\|^{p}\right) \leqslant 2^{(p-1)}\left(n+n^{2}\right)+2^{(p-1)} n E\left(\int_{\left.] 0, \tau\left[\sup _{s<t}\left\|x_{s}^{u}\right\|^{p}\right) d L_{s}\right)}\right.$
Applying the "Gronwall stochastic lemma" as in [10] section 7.1 we get the inequality of the lemma.

3.4. - Lemma 2

There exist constants $K\left(\Psi, n, D, A, \tilde{A}^{p}\right)$ such that
$\forall u, v \quad E\left(\sup _{t<\sigma_{n}}\left\|x_{t}^{u}-x_{t}^{v}\right\|^{p}\right) \leqslant K\left(\Psi, n, p, A, \widetilde{A}^{p}\right)\|u-v\|^{p}$

$$
\begin{aligned}
& \text { Applying again inequality (2.6) to the stochastic integrals } \\
& \int_{j 0, t]}\left(g_{s}\left(u, x_{s^{-}}^{u}\right)-g_{s}\left(v, x_{s^{-}}^{u}\right)\right) d z_{s} \quad \text { and } \\
& \int_{10, t]}\left[g_{s}\left(v, x_{s^{-}}^{u}\right)-g_{s}\left(v, x_{s^{-}}^{v}\right)\right] d z_{s} \\
& \text { and using properties }\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right) \text { and }\left(\mathrm{H}_{4}\right) \text { we can write for every stopping time } \\
& \tau \leqslant \sigma_{n} \quad: \\
& E\left(\sup _{s<\tau}\left\|X^{u}(s)-x^{v}(s)\right\|^{p}\right) \leqslant 3^{P-1} n^{P}\|u-v\|^{p}+3^{(P-1)} n \psi\left(E\left(\sup _{s<\tau}\left\|x_{s}^{u}\right\|^{p}\right)\right) \\
& \left.+3^{(P-1)} n E\left(\int_{10, \tau[(\sup \| s} X^{u}(s)-X^{v}(s) \|^{P}\right) d L_{s}\right)
\end{aligned}
$$

Applying as above the same "Gronwall-inequality" we obtain the lemma.

Theorem 3.2 is now a direct consequence of the following lemma which is a straight forward extension of a lemma as stated by Neveu in [12] (see also P. Priouret [13] chap. 3. Lemme 13 :

3.5 - Lemma 3

$$
\text { Let }\left\{Y(t, \omega, u): t \in \mathbb{R}^{+}, \omega \in \Omega, u \in G\right\} \text { an } H \text {-valued random function }
$$ such that for every $u: t \sim Y(t, \omega, u)$ is a.s. cad-lag and such that for every $t:$

$$
E\left(\sup _{s \leqslant t}\left\|Y_{s, u}-Y_{s, v}\right\|^{p}\right) \leqslant a_{t, p}\|u-v\|^{d+\varepsilon}
$$

Then there exists a mapping $\mathrm{Y}^{*}:(\mathrm{t}, \omega, \mathrm{u}) \sim \mathrm{Y}^{*}(\mathrm{t}, \omega, \mathrm{u}) \in \mathbb{H}$ such that
a) $u \sim Y^{*}(t, \omega, u)$ is continuous
b) $\forall u \in G, Y(t, u,)=.Y^{*}(t, u,$.$) for all t$ a.s.
b) $\mathbf{t} \sim \mathbf{Y}^{*}(\mathrm{t}, \ldots, \omega)$ is for P -almost all ω a cad-lag mapping from \mathbb{R}^{+} into $C_{b}^{\text {IH }}(G)$ endowed with the uniform topology.

Proof.

We omit the proof which is pretty similar to the one given in [13].

This finishes the proof of theorem 3.2. \quad

IV - PATHWISE DIFFERENTIABILITY

4.1. - Hypothesis

We consider the same equation (1.1) or in abreviated notation : (2.7).

For a couple $g:=(\sigma, f)$ of "coefficients" as in (1.1) we write to simplify:
$\|g(u, s, \omega, h, .)\|_{\Lambda}:=\left[\|\sigma(u, s, \omega, h)\|_{\mathcal{L} K}^{2} ; \mathbb{H}\right)+\int_{\mathbb{I} \times \mathbb{E}}\langle f(u, s, \omega, h, x), f(u, s, \omega, h, y)\rangle_{\mathbb{H}}$

$$
\stackrel{O}{q}(\omega, s, d x \otimes d y)]^{\frac{1}{2}}
$$

We set $v_{t}^{*}:=\sup _{u \in G} \sup _{s<t}\left\|D_{u} v_{s}^{u}\right\|+\left\|v_{s}^{u}\right\|+\left\|D_{u^{2}}^{2} v_{s}^{u}\right\|$
were $D_{u} \Phi$ denotes the/derivative/with respect to u of a function Φ on u. fuitouder and $n_{u^{2}}^{2}$ 中 the second urdu derivature
In the hypotheses below C is a constant and $\left(K_{t}\right)_{t \geqslant 0}$ is an increasing positive process.
$\left[D_{1}\right] \quad$ For all t and ω the derivatives $D_{u} v^{u}(t, \omega)$ and $D_{u^{2}}^{2} v^{u}(t, \omega)$ exist
and $v_{t}^{*}<\infty$
[$\left.D_{2}\right]$ The derivatives $D_{u} g(s, u, x) \quad D_{u} g(s, u, x) \quad D_{u, x} g(s, u, x)$ and $D_{x} g(s, u, x)$ exist and
$\sup _{u, s, x}\left(\left\|D_{u} g(s, u, x)\right\|_{\Lambda}+\left\|D_{u}^{2} g(s, u, x)\right\|_{\Lambda}+\left\|D_{u x}^{2} g(s, u, x)\right\|_{\Lambda}+\left\|D_{x} g(s, u, x)\right\|_{\Lambda}\right) \leqslant c$
$\left[D_{3}\right]$ For all $x, y \quad u$ and v :
$\left\|D_{x} g(s, u, x)-D_{x} g(s, v, y)\right\|_{\Lambda} \leqslant c(\|y-x\|+\|u-v\|)$

4.2. - Theorem

Under the above hypothesis $\left[D_{1}\right]$ to $\left[D_{3}\right]$ equation (2.7) has a unique (up to indistinguability) solution X^{u} on \mathbb{R}^{+}and there exists a version $(\omega, t, u) \sim X_{t}^{u}(\omega)$ of this random function such that for P-almost all ω :
a) $u \sim x_{t}^{u}(\omega)$ is continuously differentiable for every t
b) $t \sim X_{t}^{(.)}(\omega)$ and $t \sim D_{u} X_{t}^{(.)}(\omega)$ are cad-lag for the uniform norm on $C_{b}(G ; H)$ and $C_{b}(G ; \mathcal{L}(G ; H))$ respectively.
c) For every u the stochastic process $\left(D_{u} X_{t}^{u}\right)_{t \geqslant 0}$ is a strong solution of the following stochastic equation (where x^{4} is the process solution of 2.7 as in theorem 3.2) :
(4.1)

$$
r^{u}(t)=D_{u} v_{t}^{u}+\int_{[0, t]}\left(D_{u} g\left(s, u, x_{s^{-}}^{u}\right)+D_{x} g\left(s, u, x_{s^{-}}^{u}\right) \circ Y_{s}^{u}\right) d z_{s}
$$

Proof.

The proof is in several steps corresponding to lemmas 4 and 5 and section 4.5 bellow :

4.3. - Lemma 4

Under hypothesis $\left[D_{1}\right],\left[D_{2}\right],\left[D_{3}\right]$, equations (2.7) and (4.1) satisfy. the conditions $\left[\mathrm{H}_{1}\right]$ to $\left[\mathrm{H}_{4}\right]$ of section 3.1 for every $\mathrm{p} \geqslant 2$ on any interval]0, $\left.\sigma_{n}\right]$ as defined in theorem 1.

Proof.

Let us first consider equation (2.7). (H_{1}) is trivially implied by $\left[\mathrm{D}_{1}\right]$. [D_{2}] implies also the Lipschitz property (H_{2}) and conditions (H_{3}) and (H_{4}) which is here expressed in the much stronger form $\|g(s, u, x)-g(s, v, x)\|_{\Lambda} \leqslant C\|u-v\|$.

We turn now to equation (4.1). The only condition (H_{i}) which is not immediately implied by the hypothesis of the lemma is condition (H_{4}). We write $\left\|D_{u^{\prime}} g\left(s, v, x_{t^{-}}^{v}\right)-D_{u} g\left(s, u, x_{t^{-}}^{u}\right)+D_{x} g\left(s, v, x_{t^{-}}^{v}\right) \circ \xi_{t}-D_{x} g\left(s, u, x_{t^{-}}^{u}\right) \circ \xi_{t^{-}}\right\|_{\Lambda}^{p}$

$$
\leqslant 4^{P-1}\left\{\left\|D_{u} g\left(s, v, X_{t}^{v}\right)-D_{u} g\left(s, u, X_{t^{-}}^{v}\right)\right\|{ }_{\Lambda}^{p_{1}}\right\}+
$$

$$
+4^{P-1}\left\{\left\|D_{u^{\prime}} g\left(s, u, x_{t^{-}}^{v}\right)-D_{u} g\left(s, u, x_{t^{-}}^{u}\right)\right\|_{\Lambda}^{p_{i}}\right\}
$$

$$
+4^{P-1}\left\{\left\|\left[D_{x} g\left(s, v, x_{t^{-}}^{v}\right)-D_{x} g\left(s, u, x_{t^{-}}^{v}\right)\right] \circ \xi_{t^{-}}\right\|_{\Lambda}^{p}\right\}
$$

$$
+4^{P-1}\left\{\left\|\left[D_{x} g\left(s, u, x_{t^{-}}^{v}\right)-D_{x} g\left(s, u, x_{t^{-}}^{u}\right)\right] \circ \xi_{t^{-}}\right\|_{\Lambda}^{p}\right\}
$$

$$
\leqslant 4^{p-1} c^{P}\left(\|u-v\|^{p}+\left\|x_{t^{-}}^{v}-x_{t^{-}}^{u}\right\|^{p}+\right.
$$

$$
+4^{P-1} c^{P}\|u-v\|^{p}\left\|\xi_{t^{-}}\right\|^{p}+4^{P-1} c^{P}\left\|\left(x_{t^{-}}^{v}-x_{t^{-}}^{u}\right) \circ \xi_{t^{-}}\right\|^{p}
$$

One knows from proposition 2 that there exists an increasing sequence (σ_{n}) of stopping times and constants C_{n} such that

$$
E \sup _{A<\sigma_{n}}\left\|Y^{u}(s)-Y^{v}(s)\right\|^{2 p} \leq c_{n}\|u-v\|^{2 p}
$$

If we write for every stopping time τ
$E\left(\sup _{t<\tau \wedge \sigma_{n}}\left\|\left(x_{t}^{v}-x_{t}^{u}\right) \circ \xi_{t}-\right\| p\right) \leqslant$

$$
\begin{aligned}
& {\left[E\left(\sup _{t<\tau \wedge \sigma_{n}}\left\|x_{t}^{v}-x_{t}^{u}\right\|^{2 p}\right)\right]^{\frac{1}{2}}\left[E\left(\sup _{t<\tau \wedge \sigma_{n}}\left\|\xi_{t}\right\|^{\frac{2 p}{2 p-1}}\right)\right]^{\frac{2 p-1}{2}} } \\
\leqslant & c_{n}^{\frac{1}{2}\|u-v\|^{p} E\left(\sup _{t<\tau \wedge \sigma_{n}}\left\|\xi_{t} \cdot\right\|^{\alpha}\right)^{p / \alpha}}
\end{aligned}
$$

with $\alpha=\frac{2 p}{2 p-1}$

Therefore

$E\left(\sup _{d<\tau \wedge \sigma_{n}}\left\|g\left(s, u, \xi_{s^{-}}\right)-g\left(s, v, \xi_{s^{-}}\right)\right\|_{\Lambda}^{p}\right) \leqslant 4^{p, 1} c^{p_{\|u-v\|^{p}}^{p}\left[1+c_{n}+E\left(\sup _{f<\tau \wedge \sigma_{n}}\left\|\xi_{i \delta}\right\|^{p}\right)\right]}$ $+C_{n}^{\frac{1}{2}}\left[E\left(\sup _{t<\tau \wedge \sigma_{n}}\left\|\xi_{t}\right\|^{\alpha}\right)\right]^{p / \alpha}$
If we remark that $E\left(\sup _{t<\tau \wedge \sigma_{n}}\left\|\xi_{t^{-}}\right\| p \geqslant\left[E\left(\sup _{t<\tau \wedge \sigma_{n}}\left\|\xi_{t^{-}}\right\|^{\alpha}\right)\right]^{p / \alpha}\right.$
we see that property $\left(\mathrm{H}_{4}\right)$ holds with

$$
\Psi(\rho)=1+C_{n}+\left(1+C_{n}^{\frac{1}{2}}\right) \rho
$$

4.4. - Lemma 2

If we define

$$
\Phi_{t}(e, u, \lambda)=\frac{1}{\lambda}\left[x_{t}^{u+\lambda e}-x_{t}^{u}-\lambda Y_{t}^{u} \circ e\right]
$$

there exists an increasing sequence (τ_{n}) of stopping times such that $\lim _{n} P\left\{\tau_{u}<T\right\}=0$ and a sequence C_{n} of constants such that

$$
E\left\{\sup _{t<\tau_{n}}\left\|\Phi_{t}(e, ., \lambda)\right\|_{L^{2}(G)}^{2}\right\} \leqslant c_{n} \lambda^{2}
$$

Proof.

$$
\text { For each } u \text { the process }\left(\Phi_{t}(e, u, \lambda)\right)_{t \leqslant T} \text { is solution of }
$$

(4.2) $\Phi_{t}(e, u, \lambda)=\frac{1}{\lambda}\left(v_{t}^{u+\lambda e}-v_{t}^{u}-\lambda D_{e} v_{t}^{u}\right)+$

$$
\begin{aligned}
+\int_{j 0, t]^{\lambda}} & \frac{1}{\lambda}\left[g\left(s, u+\lambda e, x_{s^{-}}^{u+\lambda e}\right)-g\left(s, u, x_{s^{-}}^{u}\right)-\right. \\
& \left.\lambda D_{e} g\left(s, u, x_{s^{-}}^{u}\right)-\lambda D_{x} g\left(s, u, x_{s^{-}}^{u}\right) \circ Y_{s^{-}}^{u} \circ e\right] d s_{s}
\end{aligned}
$$

We may write for $x, y \in \mathbb{H}$ and $\eta \in \mathcal{L}(\mathbb{H} ; H)$
(4.3)
$g(s, u+\lambda e, y)-g(s, u, x)-\lambda D_{e^{g}} g(s, u, x)-\lambda D_{x} g(s, u, x) \circ \eta \circ e=$

$$
\begin{aligned}
& \lambda D_{e^{g}}(s, u, y)+D_{x} g(s, u, x) o(y-x)-\lambda D_{e} g(s, u, x)-\lambda D_{x} g(s, u, x) o \eta o e+ \\
& \quad+h(s, u, x, y, \eta, \lambda, e) \\
& \quad=D_{x} g(s, u, x) \quad 0(y-x-\lambda \eta \circ e)+\tilde{h}(s, u, x, y, \eta, \lambda)
\end{aligned}
$$

with
(4.4) $\| \tilde{h}(s, u, x, y, \eta, \lambda)_{\Lambda} \leqslant \quad|\lambda| K(\|y-x\|+|\lambda|)$
for some constant K

The equation (4.2) can therefore be written
(4.5)

$$
\Phi_{t}(e, u \lambda)=H_{t}(u, \lambda, e)+\int_{j 0, t]} D_{x} g\left(s, u, X_{s^{-}}^{u}\right) \circ \Phi_{s^{-}}(e, u, \lambda) d Z_{s}
$$

where the process $H(u, \lambda, e)$ satisfies
(4.6) $\left\|H_{t}(u, \lambda, e)\right\|_{H} \leqslant|\lambda| v_{t}^{k}+\left\|\int_{j 0, t]} \frac{1}{\lambda} h\left(s, u, x_{s^{-}}^{u+\lambda e}, x_{s^{-}}^{u}, Y_{s^{-}}^{u} 0 e\right) d z_{s}\right\|$

Using (4.5) we obtain from (4.6) for every stopping time σ :
$E\left(\sup _{t<\sigma}\left\|H_{t}(u, \lambda, e)\right\|^{2}\right) \leqslant 2 \lambda^{2} v_{\sigma^{-}}^{*}+E\left(\tilde{A}_{\tau^{-}}-\int_{] 0, \tau[}\left[\lambda^{2}+c^{2} \| x_{s^{-}}^{u+\lambda e}-x_{s^{\prime}}{ }^{2}\right] d A_{s}\right)$

Using then theorem we see that there exists a sequence (σ_{n}) of stopping times and a sequence of constants $\left(K_{n}\right)$ such that
(4.7) $\sup _{s<\sigma_{n}}\left(\tilde{A}_{s} \vee A_{s}\right) \leqslant n \quad$ and
(4.8) $E\left(\sup _{t<\sigma_{n}}\left\|H_{t}(u, \lambda, e)\right\|^{2}\right) \leqslant K_{n} \lambda^{2}$
(use a standard stopping procedure for processes v^{*}, \tilde{A} and A).

This implies
(4.9)
$E\left(\sup _{t<\sigma_{n}} \int_{G}\left\|H_{t}(u, \lambda, e)\right\|^{2} d u\right) \leqslant \int_{G} K_{n} \lambda^{2} d u \leqslant \tilde{K}_{n} \lambda^{2}$
We next consider the $L^{2}(G)$-valued process $\left(\Phi_{t}(e, \ldots, \lambda)\right)_{t \leqslant T}$

As $D_{x} g$ is bounded by some constant C, inequality (4.6) shows that :he $L^{2}(G)$-valued process Φ_{t} satisfies an inequality of the following type for zvery stopping time $\tau \leqslant \sigma_{n}$

$$
\leqslant 2 \tilde{K}_{n} \lambda^{2}+2 n c^{2} \int_{[0, \tau[s<t} \sup _{s<t}\left\|\Phi_{s}(e, \ldots, \lambda)\right\|_{L^{2}(G)} d A_{s}
$$

The already used "Gronwall inequality" of [10] shows immediately the existence of a constant C_{n} as in the lemma.

i.5. - End of the proof of the theorem

We make use of the following easily proved property: let $f \in L_{H_{H}}^{2}(\bar{G})$.et $f \in L^{2}(\mathbf{G} ; \mathbf{H}) \cap C(G ; H)$ and $\bar{f} \in L^{2}(G ; \mathcal{L}(\mathbb{H} ; H) \cap C(G ; \mathcal{L}(\mathbb{H} ; H))$ such :hat for all $e \in \mathbb{R}^{d}$, all $u \in \mathbb{R}^{d}$ and some decreasing sequence $\lambda_{k}+0$:
$\lim _{k \rightarrow \infty}\left\|f\left(u+\lambda_{k} e\right)-f(u)-\lambda_{k} \bar{f}(u) \circ e\right\|_{L^{2}(G ; H)}=0$
hen \bar{f} is the derivative of f in the sense of distributions and therefore in the ordinary sense in every point $u \in G$. Let us consider for each ω and n 1 P-negligeable set Ω_{n} and a sequence λ_{k} such that $\lambda_{k} \downarrow 0$ and $\lim _{k \rightarrow \infty} \sup _{t<\tau_{n}(\omega)}\left\|\Phi_{t}\left(e, \ldots, \omega, \lambda_{k}\right)\right\|_{L^{2}(G)}=0$ for every $\omega \notin \Omega_{n}$

The above property shows that for every $\omega \notin \Omega_{n}$ and $t<\tau_{n}(\omega)$ ${ }_{t}^{u}(\omega)$ is the derivative of $u \sim X_{t}^{u}(\omega)$ at point u. Therefore $Y_{t}^{u}(\omega)$ is the lerivative of $u \leadsto X_{t}^{u}(\omega)$ for all $t<\tau_{n}(\omega)$ and $\omega \notin\left(U \Omega_{n}\right)$.

BIBLIOGRAPHY

[1] S. BICHTELER
Stochastic Integrations with Stationary Independant increments (To appear in Z. Wahr. verw. Geb.)
[2] M. BISMUT
A generalized formula of Ito and some other properties of stochastic flows
Z. Wahr. verw. Geb. 55, 1981, pp. 331-350.
[3] I.I. GIKHMAN
On the theory of differential equations of random processes
Uhr. Mat. Zb. 2, $\mathrm{n}^{\circ} 4$, 1950, pp. 37-63.
[4] I.I. GIKHMAN and A.V. SKOROKHOD
Stochastic Differential equations
Springer-Verlag, 1972.
[5] J. JACOD
Calcul stochastique et problèmes de martingales
Lecture Notes Math. 714, Springer-Verlag, New York, 1979.
[6] J. JACOD
Equations différentielles stochastiques : continuité et dérivabilité en probabilité
(Preprint)
[?] H. KUNITA
On the decomposition of solutions of stochastic differential equations. Proc. of the L.il.S. Symposium on Stoch. Diff. Equations, Durham, juillet 1980, Lecture Notes in Math. Springer-Verlag, 1981.
[8] P. MALLIAVIN
Stochastic Calculus of variations and Hypoelliptic operators. Proc. of the Intern. Symposium on Stochastic Differential Equations of Kyoto, 1976, pp. 195-263. Tokyo, Kinokuniya and New York, Wiley, 1978.
[9] M. METIVIER
Stability theorems for stochastic Integral Equations driven by random measures and semimartingales
J. of Integral Equations, 1980 (to appear).
[10] M. METIVIER and J. PELLAUMAIL
Stochastic Integration
Acad. Press. New York, 1980.
[11] P.A. MEYER
Flot d'une équation différentielle stochastique
Séminaire de Probabilité XV. Lecture Notes in Math. 850, SpringerVerlag, 1981.
[12] J. NEVEU
Intégrales stochastiques et applications
Cours de 3e Cycle. Univ. de Paris VI, 1971-1972.
[13] P. PRIOURET
Processus de diffusion et équations différentielles stochastiques Ecole d'Eté de Prob. de St-Flour. Lecture Notes in Math. 390, Springer-Verlag, 1974.

