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PATHWISE DIFFERENTIABILITY WITH RESPECT TO A PARAMETER
OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS

by
Michel METIVIER
Ecole Polytechnique - Palaiseau - France.

Abstract

We consider a stochastic differential equation

*
<

xUo = v + r oCu,s,X;)ds_ + J fCu,s,X;.,%) qlds,dx
o o
where S 18 a semimartingale and q a random measure and where the
‘eoefficients"depend on a parameter u . Wé‘prove under suitable differentia-
bility-conditions that the solution XY(t,w) can be choosen for each u in
such a way that the mapping u ~ xUt,w  is continuously differentiable for
every (t,w) .

I - INTRODUCTION

The goal of this paper is to prove that under sufficient differentia-
bility conditions on the coefficients, stochastic differential equations of
the type

t

t
(.1 xYw = W + I o(u,s,X:-)dSs + I f(u,s,X:.,x) q(ds,dx)
o

o
where S 1is a semimartingale, q a random measure with zero dual predictable
projection and u a parameter taking its values in a bounded open subset

G of Rd
way that P.a.s. the functions u ~ Xu(t,w) are for every t continuously
differentiable.

, admit for each u a solution which can be determined in such a

This is a concept of differentiability different from the one considered
by Sikhmann (see [ 3] and [ 4 ]1),who studied the differentiability of the

mapping u ~ x:(.) as a mapping from G into LP(Q) for some p and in the
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framework of Ito-equations. Recently Bichteler took the same point of view
and considered equations of the type (1.1) with q =u and S and x4 possibly

infinite dimensional. J. Jacod in [6] considered differentiability "in probability"

Pathwise differentiability was considered by P. Malliavin and M. Bismut
for the solutions of Ito-Stratonovitch equation as functions of the initial
conditions (see [2] and [ 8]). In [ 7] H. Kunita proved pathwise differentia-
bility with respect to the initial conditions for the solutions of an equation
driven by a continuous martingale. In [11] P.A. Meyer proved the same result

for equations driven by a semimartingale (equations of Doleans-Dade-Protter type).

We consider here equations of type (1.1) and of a more general type

with coefficients depending on a parameter u .
In section II we recall a few facts on the type of equations which are

studied here. In section I1I we give sufficient conditions for the continuity

of solutions with respect to u and in section IV we deal with differentiability.

II - THE EQUATION UNDER CONSIDERATION

2.1. - Inequalities for stochastic integrals

We assume that the random measure q in (1.1) is of the form
ulw;ds;du) - v(w;ds;du) where uw;10,t],du) 1is for each w and t a borelian
measure in an open subset E of R"™- {0} such that for some o >0
o
j -in—a lul(w;J0,t],du) <o (Jul denotes the variation of u and a does
1+1x1

not depend on w and t ) and where Vv is the dual predictable projection of n)d.

HH denotes a separable Hilbert space. We have shown in [9] (see also
J. Jacod [5]) the existence of an increasing positive adapted process b and
of a process {g(m,s,.) : (w,s) € Q x R*'} the values of which are measures on
E x E such that :

i) For each H-valued function h on E such that <:h(x),h(y)>i‘ is
a(w,s,dx ® dy) integrable, the integral J<:h(x),h(y)3h8(w,s,dx ® dy)

defines a positive optional process ;
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ii) If/ Y is an M-valued @@QE measurablé*)function on R**x Q x E

“and if we denote by )\S(Y) the H-valued positive random variable
AN = J’<Y(s, X, Y, LBy qC.,s,dx ® dy)

(set to be equal to + = when the integral does not exist) and

ii1) the following inequality holds for every stopping time T

Q.1 E(sup IIJ Y(s,.x)q(.,ds,dx)lla < 4 E(I A (Y)dbs)

t<t 710,t]xE (o,t[°
where (J Y(s,.,x)q(.,ds,dx)) is the stochastic integral process of Y
10,tIxE t=0
with respect to q which is defined as soon as the process ([ A (Y)db(s))
e 10,t1° =0
is finite. 4

If § 1is a K-valued (K : separable Hilbert space) right continuous
semimartingale we know that there exist two positive increasing adapted
processes a and a such that for every L(K'; H)-valued locally bounded

predictable process {f(s,w);(s,w) € R*x Q} and every stopping time T :

2.2) E(sup Iljf(s,.)dSJz) < E(E‘T_. J ) Ilf(s)llzda(s))
t<t [OIT[

To simplify the writing we shall call Zt the process

Zt := (St,q(.,]O,t],dx)) which takes its values in (L(X; H) x#%y where

M is the space of borelian measures v on I such that

o
[ o an <o
1+x12

E
Setting A := b(t) + a(t) T\‘t = 8 + 2§t ® = (f,Y)

(2.3) J <I>(s)dZs = I f(s,.)dSs + j Y(s,.,x)q(. ,ds,dx)
10,t] 10,t] 10,t1xE

and
(2.4) A (@) == 11fCs, D% + A (N
the following inequality holds for every stopping time

2.5) E(sup n[ (I)(s)dZsllz) < E(T\‘ _.I A (®)dA )
t<r 9]0,t] T o, s

(¥)  9Pis the o-algebra of predictable subsets of R*x Q and “?IE of Borel
subsets of E.
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Extending a classical argument on martingales (see [13]) it is also
easy to see that for every p = 2 exists an increasing positive adapted

. N
process (At)QO

p/2
2.6) E(supHJ o(s)dzsup) < E(K?..I {As(¢)) dAs)
t<t ’]0,t] [0,t

such that for every stopping T

2.2. - Hypothesis on equation (1.1)

The space of parameters u 1is an open bounded subset G of ]Rd .

In equation (1.1) o s a mapping from (G x R*x Q x H) into
L(K; H) which is continuous on H and such that for every h € H and
u € G the process {o(u,s,w,h) : (s,w) € R*x Q} is predictable. f is a
mapping of (GXR™*QxH , E) into M which if continuous on H and such that
for every u€ G, h € H the mapping (s,w,x) ~ f(u,s,w,h,x) is ﬁ@ﬂf
measurable

In the sequel we shall call g the couple (o,f) and according to
the notations of (2.1) the equation (1.1) will be written in the abreviated
form :

t
.0 x4 = v + | glu,s,xYordz
° S S

Here VY is for each U € G a given H-valued adapted cad-lag process.

III - CONTINUITY OF THE SOLUTIONS WITH RESPECT TO u .

3.1. - Hypothesis

L 1is an increasing positive adapted process and p 1is a positive real

number with p=>d + € for some € >0 .

If £ 1is a cad-lag H-valued adapted process we write g(u,f) for
the process (t,w) ~ g(u,s,w,Es_ (w)) and )‘s o gu,8) for the positive

functional of this process defined by formula (2.4).
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With these notations we formulate the following hypotheses :
(H,) sup v - v < Lllu-vl for all t , U and v EG
s s t
s<t
and

sup "":“ <w

u€G s<t
(HZ) (Lipschitz hypotheses) :
p/2
VtER* J [)\so(g(u,t’;)-g(u,i'))] dAS < J sup "Er_gr""des
10,t] 10,t]r<s

for every couple (£,£') of H-valued adapted cad-lag processes, P.a.s.

h

p
(H) D‘s o g(u,8)] dAs <

p
3 (1 + sup |l Esll )dLS

J]U,'c] J‘]O,t] r<s

for every u € G every H-valued adapted cal-lag £ , P.a.s.

( Nole dﬂ* (H3) A Lm,aeu'ﬁ( e‘} (Hz) “e wun b (,pm'c«lcw ) .

(Hl.) Y being a given positive increasing (possibly constant) function
on R' , for every stopping time T the following inequality holds
for every H-valued cad-lag adapted & every u and v in G :

ph

E(sup[)\ (0 B, E)-g(v,E) ]] ) < luev d+€‘l’(E(sup|l £l p))
<t~ t<t

3.2. - Theorem

1°) Under the above hypotheses () to (H,) , the equation (2.7) has for
each u a unique stromg solution X' on R and the random function

(t,w,u) ~ X:(w) can be determined in such a way that u ~ Xlt"(w) 18 continuous
On G for every t and w while the mapping t ~ Xé')(w) s for each
cad-lag from R* into the set C;H (G) of bounded continuous M-valued

funetions on G endowed with the uniform topology.

2°) There exists an increasing sequence (on) of stopping times and constants
KY,n,p,2) such that

a) Llim P{on< T} =0 for every T>0
n

b) E( sup lIxYce) - xVeol p)< K(Y,n,p,2) llu-viiP
t<on
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Proof.

The stopping times o, are defined as follows :

o :=inf {t : A v L, vsup IVAIPvaA >n}
n t t t t
ueG
s<t

Next we have the following lemmas

3.3. - Lemma 1

2Pn2
E( sup |l x“up) < 2P(n+n?) Z , 2Pn2y3
t -
t<'on j=0

Proof of Lemma 1

We remark that AP < n,L.<n,sup supl V"'IIp <n
[9) o] t
n n t<0n u

We then apply inequality (2.6) to the second member of (2.7) and get

€ (sup “x:" p) < 2P o P-D E(~p

u Ph
o J [As o glu,X)] dAs)
t<bn n ]0,0n[

and property (H3) gives for every stopping time T < %n

E(sup le: “p) < 2P D nenzy + 2PV E(J (sup le:llp )dLs)
t<0n . ]OIT[ s<t

Applying the "Gronwall stochastic lemma” as in [10] section 7.1
we get the inequality of the lemma.

3.4. - Lemma 2

There exist constants K(W,n,p,A,ﬁp) such that

Y u,v E(sup I x: - x‘t’ np) < K¥,n,p,AAP) Nlu-vIIP
<o,
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Proof of Lemma 2

Applying again inequality (2.6) to the stochastic integrals

u u

J]D t](gs(u,xs_) gs(v,xs.))dZS and
’

u v
J]O’t][gs(v,xs-) gs(v,Xs_)]dZS

and using properties (H1), (HZ) and (H4) we can write for every stopping time
T< o,
E(sup 1x"¢sr-xV¢s) "p) < 3P_1nPII u-vii®+ 3(P-1)n Ll’(E(sup ] X: P ))

s<t s<T

+ 3D, E(J , (supllxu(s)-xv(sllp)dLs)
10,t[ t<s

Applying as above the same "Gronwall-inequality" we obtain the Llemma.

Theorem 3.2 is now a direct consequence of the following lemma which
is a straightAforward extension of a lemma as stated by Neveu in [12] (see also
P. Priouret [13] chap. 3. lemme 13 :

3.5 - Lemma 3

Let {Y(t,w,u) : t € R*, w €Q, u€ G} an H-valued random function
such that for every u : t ~ Y(t,w,u) s a.s. cad-lag and such that for every t :

- p _,q dte
E(sup g Ys,v" ) < % b Hu-vii

s<t ’

Then there exists a mapping Y* : (t,u,u) ~ Y*(t,w,u) € H such that

a) um~ Y*(t,w,u) 18 continuous

b) Yu€eae, Y(t,u,.) = Y*(t,u,.) for all t a.s.

b) ta~ Y*(t,.,w) is for P-almost all w a cad-lag mapping from R*
into CéF(G) endowed with the uniform topology.

Proof.
We omit the proof which is pretty similar to the one given in [13].

This finishes the proof of theorem 3.2. n
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IV - PATHWISE DIFFERENTIABILITY

4.1. - Hypothesis
We consider the same equation (1.1) or in abreviated notation : (2.7).

For a couple g := (g,f) of "coefficients” as in (1.1) we write to simplify:

"g(u,s,w,h,.)"A := [Ilo(u,s,w,h)ll2 + J <f(u,s,w,h,x),f(u,s,w,h,y)>

LKX; H) ExXE H

-
1

o z
qlw,s,dx ® dy)]

* u u 2 U
We set v_:=sup sup HDUVSH + HVSH + uouzvsu
u€G s<t

were Du¢ denotes the/derivative/with respect to u of a function ¢ on u.

/“‘f"d‘*— cuedl f}z}‘¥’6£‘ e comedd ondle dewiva live
In the hypothes¢s below C is a constant and (Kt)t>0 is an increasing
positive process.
(0,1 For all t and @ the derivatives Duvu(t,w) and Dazvu(t,w) exist
and v* <
t
[DZ] The derivatives Dug(s,u,x) Du g(s,u,x) Du’xg(s,u,x) and ng(s,u,x)

exist and
sup (I Dug(s,u,x)llA+ IID‘ig(s,u,x)|lA+ I Dﬁxg(s,u,x)IIA+ o g¢s,u,lp < ¢
u,s,x
[03] For all x,y u and v :
Hng(s,u,x) - ng(s,v,y)m\< Clly=xll + lu=-vi)

4.2. - Theorem

Under the above hypothesis (0,1 to 03] equation (2.7) has a
unique (up to indistinguability) solution XY on R* and there exists a
version (w,t,u) ~ X:(w) of this random function such that for P-almost all

w

a) u~ X:(w) is continuously differentiable for every t

b) t ~ X:')(m) and t ~ DUXZ')(m) are cad-lag for the uniform norm on
Cb(G; H) and Cb(G ; £(G; H)) respectively.

e) For every u the stochastic process (DUXL:)t>0 18 a strong solution of the
following stochastic equation (whear X is the process solution of 2.7 as
in theorem 3.2) :

u _ u ( u u wu
G.1) Y () = Dth + J]O t]\Dug(s,u,xs_) + ng(s,u,xs_) oY )dZs
’
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Proof.

The proof is in several steps corresponding to Lemmas 4 and 5 and

section 4.5 bellow :
4.3. - Lemma 4

Under hypothesis [D1], [D2], [03], equations (2.7) and (4.1) satisfy
the conditions [H1] to [H4] of section 3.1 for every p > 2 on any interval
]0,on] as defined in theorem 1.

Proof.

Let us first consider equation (2.7). (H1) is trivially implied by
[D1]. [DZ] implies also the Lipschitz property (Hz) and conditions (H3) and (HA)

which is here expressed in the much stronger form Hg(s,u,x)-g(s,v,x)%cic lu-vil .

We turn now to equation (4.1). The only condition (Hi) which is not
immediately implied by the hypothesis of the lemma is condition (H4). We write

1 bug<s,v,x‘t’.) - Dug(s,u,xr_) + oxg(s,v,x‘t’-> &, - oxg(s,u,x‘t‘.) o Et'"/‘:
<" g gesvxl - D¢, uX{IP} +
+ 477 Qo ats,u Xl - D9 ¢s,u,X{- 1P
+ 4P1 {H[ng(s,v,X:-) - ng(s,u,xz-)] o Et-"X}

P-1
+ 4 {H[ng(s,u,Xz-) - ng(s,u,X:_)] ) Et-HX}

P-1

<P Pau-wiP + Xg- = XIP o+

+ 4P

Flu-viP g 1P + 4P P - Xy o e P
t t t t
One knows from proposition 2 that there exists an increasing sequence
(on) of stopping times and constants Cn such that

E sup IYY(s) - VWP < ¢ flu-vi P

Ao,

If we write for every stopping time T

gl sup HxY -Xu)oéj-llp <
t t t
t<Z'rA0n
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v _ u,.2p 2p-1 2
[E( sup  IIXg X )] [E( sup  1E, I }]

t<tAC t<TtAC
n n

1 p/a
< ¢ Yu-vi® E( sup 1I1E,. u“)
n t
t<kA0n

2p

with o = Zo-1

Therefore

E(‘sup Nats,u,E) - g(s,v,Es_)IIX)< P Ry u=vi PL1+C + EC sup I WA P

<kAon TAC,
1 p/a
+ C;[E(-sup Hit 11%y]
t<tac
n
If we remark that E( sup IIEt_HB? [EC sup IIEt.IIG‘)]p/(Jl

t<-r/\on t<1't/\on
we see that property (HL) holds with

1
- 3
Y() =1+ Cn + (1 + Cn dp
4.4, - Lemma 2

If we define

utle

[X;

u u
Xt AYt o e]

>l

¢t(e,u,l) =

there exists an increasing sequence (Tn) of stopping times such that

Lim P{'ru < T} =0 and a sequence €, of constants such that
n

2 2
E { sup Ild>t(e,.,A)IILz (G)} < ¢, A
t<I-rn

Proof.

For each u the process (@t(e,u,k))«T is solution of

utie

_1
(4.2) ¢t(e,u,A) = X'(Vt

u u
Vt A Dth) +

+ j % [g(s,u+ke,XZfAe) - g(s,u,xg-) -
10,t]

u u u
A Deg(s,u,xs-) - A ng(s,u,Xs-) [} Ys- o) e] dss
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We may write for x,y € H and n € L(H; H)
4.3) g(s,utle,y) - g(s,u,x) - A Deg(s,u,x) - ng(s,u,x) onoe-=
A Deg(s,u,y) + ng(s,u,x) o (y=x) - A Deg(s,u,x) - ng(s,u,x) onoe+
+ h(s,u,x,y,n,\,e)

= ng(s,u,x) o (y=x=An o e) + s, u,x,y,n,\)

with
.8 IRs,uxyn0, < IAL K Gly=xil + IAD)
for some constant K
The equation (4.2) can therefore be written
(4.5) @t(e,ul) = Ht(u,k,e) +J ng(s,u,Xg_) 0 Qs_(e,u,k) dZs

10,t]

where the process H(u,\,e) satisfies

utle u

k 1 u
- s oXgmsYg-0 e) dZsH

(4.6)  lIH_(u 2@l < A v, + HI
H t
t 10,¢) *

h(s,u,X

Using (4.5) we obtain from (4.6) for every stopping time o :

E(sup IIHt(u,)\,e)llz) <222 v;. + E(KT-.J A2 + ¢ x‘s’f“’ - x;‘uZ] dAS)
t<o 10,(

Using then theorem we see that there exists a sequence (on) of stopping

times and a sequence of constants (Kn) such that

4.7) sup (A_ vA)<n and
s s
50

(4.8) EC sup HHt(u,A,e)Hz) <K, A2 (use a standard stopping procedure
t<o
n

~

*
for processes v ,A and A ).
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This implies

(4.9) E( sup J IIHt(u,X,e)IIZ du) < j K, A2 du < '»Zn A2
t<o ’6 G

We next consider the L2(G)-valued process (@t(e,.,)\))t<T
As ng is bounded by some constant C,inequality (4.6) shows that
:he L2(G)-valued process Qt satisfies an inequality of the following type for

avery stopping time T < o,

{sup 10, Ce,., NI, 2 }< 2K A2+ 2 E(’K-I C%supll @_Ce,., M2, dA )
{t<k t 77T (6) n U0, s<t s L°(G) s

dA

& 42 2
<2 Kn A +2n¢C J sup H@S(e,.,A)HLz(G) s

[0,t[s<t

The already used "Gronwall inequality' of [10] shows immediately the

:xistence of a constant Cn as in the lemma.

te5. = End of the proof of the theorem

We make use of the following easily proved property : let f € L;1(€)
et FELXB;H) NCWG; H) and T € L2 ; LCH; H) N C(G ; L(H; H)) such

:hat for all e € Rd , all u € Rd and some decreasing sequence Ak v 0 :

Lim I fCutr e) = flu) - A T o el

k >0

L2¢G; H)

‘hen T is the derivative of f 1in the sense of distributions and therefore
in the ordinary sense in every point u € G. Let us consider for each w and n

1 P-negligeable set Qn and a sequence Ak such that Ak + 0 and

lim  sup 119 _Ce,., w A, 2 =0 for every w € Q
k+wt<%um t k"L (G) n
The above property shows that for every w € Qn and t < tn(w)

':(w) is the derivative of u ~ X:(w) at point u . Therefore Y:(m) is the
lerivative of u ~ X W) for all t<t () and w € (UQ) .
n

This proves the theorem. =
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