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ABSTRACT

Existence, unicity, and stability of solutions of stochastic differen-

tial equations of the type Z = M + FZ.Y + GZ.HZ are established. M and Y

are semimartingales with continuous paths. The novelty here is that instan-

taneous feedback in the driving term is allowed.

1. INTRODUCTION

The theory of stochastic differential equations with semimartingale

differentials is now well developed (see [3], [4], or [7]). It is always

assumed, however, that one is given a coefficient F, a driving term Y, and

an exogenous term M to yield an equation: Z = M + FZ.Y. We consider here

instead equations of the type:

(E) Z = M + FZ.Y + GZ.HZ,

where H is a given operator on semimartingales. The solution is permitted

to feedback instantaneously into one of the differentials. In the deter-

ministic case this corresponds to certain types of singular equations.

We prove in Theorem 3.1 that a solution of (E) exists and is unique

under appropriate restrictions on G and H. We also show that equations

of the type (E) are stable in the semimartingale topology (Theorem 3.4).

The solutions here are strong solutions in’ the sense that they are

defined on the same space that M, Y, F, G, and H are defined on. The
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semimartingales are always assumed to have continuous paths. A different

approach to this genre of problems is considered in [ 5 ]~ .

2. PRELIMINARIES

We assume the reader is familiar with the semimartingale calculus and

its standard notations (cf [4], [7], or [8]). In particular, D.X denotes

DsdXs
.

(2.1) DEFINITION. For K > 0, an operator F is in Lip(K) if

(i) XT - YT implies (FX)T - (FY)T-
{ii) (FX-FY)* - K(X-Y)* as processes where Xt = sup ~ ’ 

s~t 
~

We will be concerned here only with continuous semimartingales. For a

given continuous semimartingale X, let X = M + A be its unique decomposition

into a local martingale M and a process A with paths of bounded variation on

compacts.

(2.2) DEFINITION. For a continuous semimartingale X = M + A and p,

1 ~ define:

P 
= I 

II X II §’ p = ~X*~~ L p

As a consequence of the Burkholder, Davis, and Gundy inequalities we have

(2.3) 
g p~ 

, i , p «.

for universal constants C. Del lacherie and Meyer [1, yp.304] have shown

(2.4) C1 ~ 4.

Emery has shown the following:
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(2.5) ~D.X~ r > ~D~ p~X~ q
See Meyer [9] for an exposition and ex-

tension of (2.5).

(2.6) DEFINITION. An operator H mapping continuous semimartingales into

continuous semimartingales will be said to be in ~c(K) if

||HX-HY|| ~ K||X-Y||

for any continuous semimartingales X and Y.

Emery [2] has developed a topology for semimartingales, I which was in-

spired by a study of the stability of solutions of stochastic differential

equations. (Métivier and Pellaumail [7] independently developed the same

topology.) Here is a characterisation: continuous semimartingales (Xn)

converge to X in the semimartingale topology if for any subsequence (nl) one

can extract a sub-subsequence (n") such that X n" converges locally in M 1
1) to X. (By "converges locally" we mean that there exist

stopping times T tending to ~ a.s. such that tends to 0.) >

3. THEOREMS AND PROOFS

Recall the equation:

(E) Z = M + FZ.Y + GZ.HZ.

We consider only the case where M and Y (and hence Z) have continuous paths.

If one is willing to specify the operator H, one can handle jumps with a

modification of the usual techniques, taking care to avoid impossible re-

quirements on the jumps (such as o1 = 2AZ, etc.).

(3.1) THEOREM. Let M, Y be continuous semimartingales. Let FE Lip(Kl)’
G E - and H E c (K3 ) with ~HX~ a for any continuous
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semimartingale X. If K2a  1/cl (cl  4), then there exists a unique non-

exploding solution of (E).

(3.2) COMMENTS. (i) One can trivially replace the condition ~" " ~ 
a

a, using the ~~’norm of Meyer [9] for semimartingales,

which is a generalization of the BMO norm for martingales. The 03C9 norm is

slightly weaker than the ~ norm, but for most examples the ~ norm is

simpler and suffices.

(ii) By considering the deterministic example Mt = t,FZ=o, GZ=2Z, and
HZ = Z, we get Z(t) = (1±/1-4t )/2, for t ~ 1/4; thus these equations are

closely related to singular ODE’s, and one sees that some sort of condition

like K2a  1/c~ is necessary.

We begin the proof of Theorem (3.1) with a lemma.

(3.3) LEMMA. Assume the hypotheses of Theorem (3.1 ). Suppose in addition

that:

(i) c1K1y + K303B3 + c1K2a  1

(ii) ~Y~~ ~ y

(m) ~GX~g~ ~ 03B3 for any continuous semimartingale X

(iv) ~M~ 1  ~.

1J

Then there exists a unique nonexploding solution of (E).

Proof: Set X ~ - M, and set

M + FXn.y + 

Since

Xn = + + 
,
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using the inequalities (2.5), we have

~Xn+1-Xn~ ~ {c1K1y+c1K2a+K303B3)~Xn-Xn-1~

= r~Xn-Xn-1~

where r  1. Since M and each Xn is we have that (Xn) is a Cauchy

sequence in ~~. Let X be the limit of Xn. One easily checks that X is

a solution of (E), and the uniqueness of 1 imi ts is used to show X

is a unique solution. p

Proof of Theorem (3.1): : To complete the proof of Theorem (3.1), it re-

mains only to remove the supplementary hypotheses (i) through (iv) of

Lemma (3.3).

Step 1: We remove hypothesis ( i v) : .. 
. Given a continuous

semimartingale M, there exists a sequence of stopping times (Tk) k>_ 1 increas-

ing to ~ a.s. such that MTk~l. Let X be the solution of 

Tk
Z = M + FZ~ Y + GZ’HZ.

Then k, Xk on [0,T k ] by the uniqueness of solutions; hence we
can define a solution X of (E) on X = Xk on each k ~ 1.

Step 2: We remove hypothesis (iii) that ~ y for any continuous

semimartingale X. We define a new operator Gl by:

GlJ - 

GJt if |GJt| ~ 03B3/2

t = (sign if I > Y/2 .

Let Z~ be the unique solution for (E) with G~ replacing G. Define
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Inductively assume TI,...,Tn ~ are defined. Define G" by:

T-n-l Tn-1GJ - GJ’ if |GJ-GJl |  Y/2

Sign (GJ-GJln-1 )03B3/2 if |GJ-GJTn-1 | > 03B3/2

Let Zn be the unique solution of:

Z n - (Z n-1 ) Tn ~ + M - + ) + ).

Define T" = j I ~ Y/2~. Letting T = sup T" = lim T , we
can define a unique solution Z on [o,T[. It remains to show T = ~ a.s.

But stopping M at a time R k so that ~MRk ~1 ~ m(k)  oo , we have
~ZRk^Tn~ ~ 1 1-r {y~FM~S1+ a~ GMp }~ where r = c K y + c K a  1. Thus

1 and hence lim Zt = Zt 
R(k) 

exists and is finite
~’ 

a.s. But on {T  oo}, GZ must have an oscillatory discontinuity or an ex-

plosion which cannot happen. Thus T = °o a.s.

Step 3: We remove hypothesis (ii) that 
~ 

~ y. Given a y > 0, since

Y is continuous there exists a sequence of stopping times (Tk) increasing

to ~ a.5. such that ! v, where Y - n = YTn - 

. . Define

Mn = MT - n - , and Hn by 
~ 

= (HJ)T - n - 

. Inductively suppose

is the (unique) solution on [O,Tn ~]. Then let Zn be the solution of:

+ M n + + 

We know Z n exists and clearly (Z ) n 
1 

= (Z’’’’)’ n 1 ; thus we can set Z = Z n
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on and we have a solution on [o,~[: This completes the proof of

Theorem (3.1). 0

We now wish to consider the question of the stability of equations of

this type. The natural framework is the semimartingale topology developed

by Emery [2] and independently by Metivie r and Pellaumail [7]. See also

[1]. Under appropriate hypotheses on and Hn, we want solu-

tions Zn of (E ) below to converge to a solution Z of (E).

(En) Zn = Mn + FnZn.Yn + GnZn.HnZn .

(3.4) THEOREM. Let (Mn) ~ , M, (Yn) ~1, Y be continuous semimartingales.

Let , F be in Lip(K1 ), (Gn) n>1 , G in (Hn) n>1 , H in c (K ) 3
with ~HnX~~, ||HX|| a fo r any continuous semimartingale X. Assume

K2a  1/cl. Assume Mn ~ M, Y, and HnZ ~ HZ in the semimartingale topol-

ology, whe re Z is a solution of (E). Assume further that FZ, and

GZ locally i n a 1 . Then Zn  Z i n the semimartingale topology, where

Zn is the solution of (En). 

Proof: By considering a subsequence if necessary and by stopping at a stop-

ping time, we may assume without loss of generality:

(i) M, Y" -~ Y, HZ i n  1

( i i ) FZ, GZ 

Let us make three temporary additional hypotheses:

(iii) 

(iv) 
§

(v) ~Fnzn~~ ~ C  ~ , all n~ 1,
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where y > 0, y > 0, are taken so that = r  1. (Recall

c,K2a  1.) One easily deduces under (i) through (v):

 + 

 1
where a(n) -~ 0 as n ~ - and r  1. .

To remove hypothesis (iv), , we note that we are assuming Gn0 = 0 and

Gn~Lip(K2). Set

T1 = infit: |Zt| 
~03B3/K 2}

Tn

= infit : |Zt-ZTn-1t | ~ 03B3/K2} .

Define by:

~ - j

then ~Gn(k)Z~~ ~ K2~ZTk-ZTk-1~~

Thus if solves, on [o,rk], the equation:

= 

+ l

+ 

we have that , using the inductive hypothesis that

Z~k ~~ in ~~. . Since the sequence (rk) was defined in terms of
Z, we have Tk increases to ~ a.s.
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To remove hypothesis (iii) that y, we proceed as in. Step 3

of the proof of Theorem (3.1). Let (Tk) be stopping times increasing to -

a.s. sach that Y(k) = YTk - YTk-1 and y. Define

Mn(k) = (Mn)Tk - (Mn)Tk-1, and Yn(k), Hn(k), analogously. Then let Z n(k)
solve:

+ 

and inductively locally in )f 1 gives that Zn(k) -+ Z(k)

locally 

Finally, the removal of hypothesis (v) follows exactly as in the

stability theory without instantaneous feedback. The reader can find the

details in Protter [10, pp. 343-4], so we do not bother to recopy them

here. 0

(3.5). COMMENTS. (i) It is clear from the proofs that these theorems

hold as well for systems of equations.

(ii) By using a localisation technique of Lenglart [6] (see Emery

[3, pp. 291-2] for details) one can obtain the same results for Fn,F,Gn,G,

Hn,H all Lipschitz with random, finite-valued Lipschitz constants.
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