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On some limit theorems for solutions of stochastic differential equations

Shigetoku Kawabata and Toshio Yamada

Department of Applied Science

Kyushu University, Fukuoka 812, Japan

Introduction.

We consider the following It~ type stochastic differential equations;

dx(t) = o(t,x(t))dB(t) + b(t,x(t))dt

+ bn(t,xn(t))dt, n = 1,2,...

What we will do in the present paper is to propose some sufficient

conditions which guarantee stability properties for solutions of the

above equations when the coefficients 0 and b tend to a and b
n n

respectively.

This problem has been discussed by Stroock and Varadhan in chapter 11

of their book ([6]), by the method of the martingale problem. In the

case where the martingale problem for a and b has a unique solution,

they showed that the stability properties are guaranteed in the law

sense when G n and b tend to a and b respectively in a suitable

sense.

In this paper we will treat the problem in the case where the path-

wise uniqueness holds for a and b, and show that under some convergence

conditions for a and bn, the stability properties hold in the path-

wise sense.
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In the formulation of our conditions, the operator ~ which was

introduced by Okabe and Shimizu with the idea of applying it to path-

wise uniqueness problem will play an important role. ([5]).

Preliminaries.

We consider the following stochastic differential equations;

(1) xi(t) = xl(0) + E + b1(s,x(s»ds (l~i.j ~ d)
j=l’0J 0

(2) x (t) = x . (0) + L + (s))ds (Ki,jd)
~ ~ j=l 0 0 ~~ ~ ~0 ~ " "

n = 1,2,...

We suppose in this paper that the coefficients in the above equations

satisfy the following conditions (A), (B) and (C).

(A) Q1 (s,x) , (s,x) , and (1  i, j  d), n = 1, 2, ...

are Borel measurable functions defined on [0,°o) x Rd.

(B) There exists a positive constant K > 0, such that

(3) ~~ 1~2 + ~~ (~2 ~ K (1 + (~ (*)

and

(4) (I ~ n (S~x) () 2 + II ~~ 2 ~ K(1 + ~~ x~l 2 ) (*)

hold, where o(s,x) = 0 (s,x) = (Q1 .(s,x)), b(s,x) = (b~(s,x))
J n n,]

and bn(s,x) = (bin(s,x)).

(*) stands for E (a7) where A = (a7) is mXn-matrix,

and II for E E (p > 1)
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(C) Define Dr = {x E x~ ~ r}. Then for any r > 0 and T > 0,

the relation lim sup 
X 

{II Qn(t,x) - + (I bn(t,x) -
= 0 holds. 

By a probability space with an increasing family of Borel fields

which is denoted by (03A9,, P:Ft) we mean a probability space 

with a system of sub Borel fields of F such that F s ~ J’t
if s  t.

Definition 1

By a solution of the equation (1), we mean a probability space

with an increasing family of Borel fields (03A9, F, P: and a family

of stochastic processes 3( = (x(t) = B(t) = (B1(t),
... Bd(t))} defined on it such that

(i) with probability one, x(t) and B(t) are continuous in t and

B(0) = 0,

(ii) they are adapted to Jt,
(iii) B(t) is a system of Jt -martingale such that

Bj(s»/:J] ] = 6..-(t-s), (1  i, j  d)s 1J - -

(iv) X(t) satisfies

xi(t) = xi(0) + 03A3t03C3ij(s,s(s))dBj(s) + tbi(s,x(s))ds, (1~i~d)

j=1 0 0 - _

where the integral by dB is understood in the sense of integral.

One defines a solution of the equation (2) in the similar way as

in the definition 1.
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Now, we introduce the operator £ which is defined by

(5) (V)(t,x,y) = ~V ~t +  ax, bi(t,x) + ~v ~yi bin(t,y)

+ 1 2{~2V ~xi1~xj( 03C3ik(t,x)03C3jk(t,x))+ 2 ~2V ~xi~yj(03C3ik(t,x)03C3jn,k(t,y))

+ ~2V ~yi~yj(03C3in,k(t,y)03C3jn,k(t,y))},

where V(t,x,y) is defined on [0,°o) x Rd x Rd.

§2 Some limit theorems.

Theorem 1. Let p be a positive integer p > 1. Let

(S~, ~, P: ~t) be a probability space with an increasing family of

Borel fields. Suppose we are given the following;

(i) a solution of the equation (1) ~(t) = {x(t),B(t)} defined on

(S~, ~, P: ~t) , such that

(6) E[ () x(0) ~~ 2PJ  + ~~

(ii) a solution of the equation (2) ,~n(t) - ~xn(t), B(t)} for each

n = 1,2,..., defined on the same (Q, J,p: t) such that

(7) sup E[ II x 
n 
(0) ]  + 00.

n

Let T > 0 and r > 0 be two positive constants. Suppose that

there exists a sequence of functions VT , r’ V ,r , m = 1,2,..., defined
on [O,T] x D x D , continuously differentiatle in t and twice con-

tinuously differentiable in (x,y), such that

(VI) 0 for Dr x Dr’
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(V2) VT converges uniformly to the function as

m tends to infinity.

(V3) there exist two constants and such that

(8) II 

for (t,x,y) e [0,T] X Dr x Dr

(V4) there exists a non-decreasing sequence of integers n = 1,2,...

such that lim mn = ~ and

(9) lim E[ 
" 

 0

where T(n) - inf{t : max (~x(t)~, ~xn(t)~ ~ r)}.

Then, the relation

(10) lim xn(0) - x(0) I~ ] = 0
n-~o

implies

(11) lim ] = 0 for all t e [0,T],
n-~

where and x ttttr n n r 
~-"~

Proof.

By Ita’s formula we have

VmnT,r(t^03C4(n)r,xr(t),xrn(t)) = VmnT,r(o,xr(0),xrn(0))
+ a martingale of zero mean

y r m

+ 0 VnT,r)(s,xr(s),xrn(s))ds.
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Hence, we get

(12) 
~ ~

= E[VmnT,r(0,xr(0),xrn(0))]+ E[t^03C4(n)r0(VmnT,r)(s,xr(s),xrn(s))ds].
Now, we will show that 

.

m

(13) [V~ (0,x’’(0), x"(0))] = 0 holds.

n-o 

By the condition (V2), we can choose for any positive e > 0 the integer

N(e) so that

m 

’

(14) VT,r(t,x,y) - ~ ~VnT,r(t,x,y) ~ VT,r(t,x,y) + ~

for and (t,x,y) 6 [0,T] x Dr x Dr.

Combine the relation (14) with the condition (V3). Then we can see

m

that VnT,r(s,xr(0), xrn(0))  C2(T,r)~xr(0) - xrn(0)~ + e. Therefore

the condition (10) implies that

(15) 0 TimE[V~ (0~(0)~(0))]  e.

"n-~o ~~ n - 

,

Since e is an arbitrary positive number, we can conclude that the relation

(13) holds.

By (V3), (V4), (12) and (13), we have

0 ~ E[ ~ x"(t) - x’’(t) ~ ]

= lim E[ (~V " )(s,x(s),x (s))ds]  0.
Jo ~ " -

This relation implies immediately (11). Q.E.D.
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Theorem 2. Suppose we are given a solution of the. equation

(1) ‘,~(t) - {x(t),B(t)} and a sequence of solutions of the equation

(2) = ~xn(t),B(t)} n=1,2,... so that they are defined on a same

probability space with an increasing family of Borel fields 

and they satisfy (6) and (7), for p = 1.

Suppose further that for any T > 0 and r > 0, there exists a

sequence of functions VT > r(t,x,y), V i ,r (t,x,y), , m=1 , 2 , ... such that

they satisfy the conditions (V1), (V2), (V3) and (V4).

Then the relation

lim E[ (I xn(~) - ] = 0
n+m 

~

implies

(16) lim x(t)I) ] - 0 for all t E [0,00). ~
n 

n

For the proof of the Theorem 2, we shall prepare several lemmas.

Lemma 1. Let p be a positive integer p > 1.

Under the condition (B), the following inequalities hold;

(17) ] ~ K(p,T) (1 + ]) for t E [0, T]

(18) E[ II x (t) (I 2p ] _ + E[ II X n (0) ]) for t E [0, T]

where K(p,T) is a positive constant which depends on p, T and K

in the condition (B).

The assertions in Lemma 1 are well known (See e.g. ([3])), so

we omit the proof.

The following lemma can be derived easily from Lemma 1.
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Lemma 2. Under the condition (B), the relations (6) and (7)

imply that the system of random variables

~~ ~~ ~~ 

n = 1,2,... t E [O,T]}

is uniformly integrable with respect to dtOdP).

Lemma 3. Under the condition (B), (6), and (7), there exists

a positive constant L(T)  such that

(19) E[ sup (I x(t) () 2 ]  L(T)~

and

(20) E[ sup ~ xn (t) II2 ]  L(T)~ ~

hold.

Proof. We will show (19).

It is easy to choose a positive constant C(d) depending on d

such that

~) x(t) ~~ 2 ~ C(d) ~~ x(0) ~) 2

+ C(d) E + 

i,k 0 " i 0

Using the Doob’s inequality, we get from the above

(21) E[ sup ~~ ]  C(d)E[ II ]

+ 2C(d) E(T0(03C3ik(s,x(s))2ds)]
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+ C (d) Z 
j o

= C(d)El)( x(0)))~ l + J~ + J~, Say.

BY the Condition (B), we have for J~

J2 ~ 2C(d)d2T0K(1 + E[~ xs> ~2 i>ds .

Hence by lemma 1

22> Ji  + K2,T> i + E(~ x0> ~2 »lds  + m

holds.

0n the other hand, we will evaluate J2. IUe have

(23) j  c(d).d.T.E[ T0(bi(s, x(s))2ds](23) J2 2 C(d).d.T.E[T
0 
(b1(s,x(s» ds]

 C(d).d.T. + E((( x(s)~2 ))ds

 C(d).d.T. + K(2,T)(I + E((( x(0)~2 ))ds

 + ~.

By (21), (22) and (23), it is easy to choose a constant L(T)

such that (19) holds. By the similar way one can show (20) with the

same constant L(T) as in (19). Q.E.D.

IUe are now in a position to prove the Theorem 2.

Proof of the Theorem 2. Put

Q = lw : sup (( x(t)((  r)
~ 



421

and

~n r = {w : sup II Xn(t) II  r}.
’ ~

Then, by lemma 3 we have

(24) P({w : sup II x(t) 112-> r2})r -

L(T)

r r

and

(25)  L(T) .
n , r - r 2

On the other hand, by lemma 1, we know that the system of random

functions

(26) {II x(t) II , il Xn(t) II n =1’ 2’ ... , t E [O,T] }

is uniformly integrable.

Now, we have that

E( II x (t) - x (t) II ]  E( II x (t) - x (t) II , ~ ]
n - n n,r r

+ E( II X(t) II , I + E[ il Xn(t) - x(t) fl , 

= E[ li II ] + E( il x (t) - x( t) II , ~~ ]
n n n,r

+ E[ II x(t) II , 03A9cr].

Let ~ > 0 be an arbitrary positive number. Use (24), (25) and
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the fact that the system of random variables (26) is uniformly integrable.

Then, there exist a positive number r > 0 and an integer N > 0

such that

E[~xrn(t) - xr(t)~ ]  ~ 3 for n > N,

E[~ x n (t) - x (t) II : 03A9cn,r]  ~ 3 , n = 1 ’ 2, ...

and

, 
 3 , n = 1, 2, ...

where we have used the Theorem 1.

Hence we can conclude that E[ II x (t) - x(t)~ ] = 0 holds

for all t. Q.E.D..

In the following theorem we suppose that the coefficients of the

equations (1) and (2) satisfy the following condition (A’) in place of

the condition (A).

Condition (A’). Qn ,(s,x), and 
J n,J n

 d, n=1,2,...) are continuous in (s,x).

Theorem 3. Let T be a positive number. Suppose that we are

given a solution of the equation (1) stet) = (x(t),B(t)) and a

sequence of solutions of (2) ~n(t) - (xn(t),B(t)) n=1,2,... so that

they are defined on a same probability space with an increasing family

of Borel fields (03A9,,P:t) and they satisfy (6) and (7) for some

interger p > 2.
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Suppose further that for any r > 0 there exists a sequence of

V T,r (t,x,y) and m=1,2,... such that they satisfy the
conditions (V1) , (V2), (V3) and (V4).

Then, the relation

lim xn(0) - ] = 0
"

implies

(27) lim E[ sup ~ x (t) - ] = 0. t«
n~ 

~

For the proof of the Theorem 3, we prepare the following lemma.

Lemma 4. Under the conditions in Theorem 3, the relations

(28) = 0
n 

n n

and

(29) =0
n~

hold for t E [O,T].

Proof. We will show the relation (28) by the method of the

reduction to absurdity.

Suppose that there exist a sub sequence {n} of {n} and a

positive number y > 0 such that

(30) lim E{~ 03C3nq(t,xnq (t)) - 

Since we know by the Theorem 2 that lim E[~ x (t) - 0 holds,

we can choose a sequence {n} such that x (t) converges to
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x(t) a.s.

We have

(t,x (t)) - Q(t,xCt)) ~~

~ ~ a (t,x (t)) - a(t,x nk(t))~
+ U(t,x (t)) - Q(t x(t)) - 

Jnk1 + Jnk2 , 
say.

By the condition (C) Jnk1 tends to zero as n, goes to infinity.

On the other hand by the condition (A’) Jnk2 also tends to zero when

goes to infinity. Hence we have that ‘) a nk (t,x nk(t) - 
tends to zero a.s. as nk goes to infinity.

Therefore using the lemma 2, we must conclude that 
_

lim (t,x (t)) - ] = 0.

But this relation is contradictory to (30).

By the similar way one can prove the relation (29), so we omit

the proof of this part. Q.E.D.

Proof of the Theorem 3. There exists a constant C(p,d) which

depends on p and d such that

(31) ~ C(p,d){~ xn(0) - x(0)~p

+ 03A3|t0{03C3in,k(s,xn(s)) - 03C3ik(s,x(s))}dBk(s)|p

+ {bin(s,x(s)) - bi(s,x(s))}ds|p}
1 

0 
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= xn(0) - x(C) ~~p + L1 (t) + say.

* 

By the Burkholder type inequality and Holder’s inequality, we

have for Ll(t) that

E[ sup L1(t)] ~ 03A3 E[(T0|03C3in,k(s,xn (s)) - 03C3ik(s,x(s))|2ds)p 2].

~ 03A3 Tp-2 2E[T0|03C3in,k(s,xn(s)) - 03C3ik(s,x(s))|pds]," 

i,k ~ n, n k

where we have used the fact that p > 2. Hence there exists a constant

C2(p,d) such that

(32) E[ sup L1(t)] ~ C2(p,d)E[T0~03C3n(s,xn(s)) - 03C3(s,x(s))~pds]
" " 0 ~

On the other hand we will evaluate L2(t). We have

E[ sup L2(t)] ~ 03A3 E[(T|bin(s,x(s)) - bi(s,x(s))|ds)p]
~

~ 03A3 E[T(p-1)(T0|bin(s,xn(s) -bi(s,x(s))~pds)].

Therefore one can choose a constant C3{p,d) such that

(33) E[sup L2(t)] ~ C3(p,d)E{T0~(s,xn,(s)) - b(sx(s))~p ds]

Then by (31), (32) and (33) we have

E[ sup II x (t) -  x (0) - 

+ C(p,d)C2(p,d)E[T0~03C3n(s,x(s)) - 03C3(s,x(s))~p ds]

* See for example, pp 54-55 in ([4]).
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+ C(p,d)C3(p,d)E[T0~bn(s,xn(s)) - b(s,x(s))~p ds].

Thus, by lemma 4, the relation lim x (0) - x(0)Ilp ] = 0 implies

’ 

(27) lim E[ sup ~ x (t) - x(t)~p] = 0. Q.E.D.
~

§3 Examples.

Example 1.

Consider the following one dimensional stochastic differential

equations;

(1’) x(t) = x(0) + t003C3(s,x(s))dB(s) + t0b(s,x(s))ds

and

(2’) xn(t) = xn(0) + t003C3n(s,x(s))dB(s) + t0bn(s,x(s))ds n = 1,2,...

Assume that the coefficients in (1’) and (2’) satisfy the conditions

(A’), (B) and (C). Suppose further that the coefficient satisfy the

following conditions (A.I) and (A.2).

(A.1) For any T > 0 and r > 0 there exists a non negative increasing

function defined on [0,oo) such that

 p dx - yl) for (t,x,y) E [O,T] x Dr x D

Q n {t,Y) ~ ~ YI) for (t,x,y) E [O,T] x D x D
n = 1,2,...

and

. 

(34) f +0 = + m~
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(A.2) There exists a positive constant K1 > Q such that

~b(t~x) - b(t,y)) ‘ Y) for (t,x,y~ ~ [O,TJ x R~ x R1

and

Ibn(t,x) - Y~ for (t,x,y) e [0,T] x R1 x R1
_ 

n = 1,2,...

Suppose that we are given a solution of the equation (1’)

~(t) - (x(t),B(t)) and a sequence of solutions of the equation

(2’) ~ n(t) - (xn(t),B(t)) n=1,2,.., such that they are defined on

a same probability space with an increasing family of Borel fields

(S~, y, P: ~t) and they satisfy (6) and (7) for some integer p > 2.

Then, the relation lim x (0) - x(0)~p] = 0 implies

lim E[ sup ~ xn(t) - x(t)~p ] = 0. 
0-t_T 

Remark.

Under the conditions (A’), (B), (A.1) and (A.2), , it is well known

that for a given probability space with an increasing family of Borel

fields (03A9,,P:t) and a given t-Brownian motion B(t), there

exist a solution of the equation (1’) ~(t) - {x(t),B(t)} and a

sequence of solutions of the equation (2) ,’~n(t) - {xn(t),B(t)} both

defined on the given probability space. (cf. [1] and [7]).

Proof. Let two constants T > 0 and r > 0 be fixed.

Choose the sequence {am}m=1,2,...~ (0,1) so that am ~ 0 as

m ~ ~ and

- m, f°r m > 1.
am 
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Define a sequence of continuous functions {03C6"m(u)}m=1,2,... such that

0, 0  u  a

03C6"m (u) = between 0 a:d (u), a  u  a 
1

0, am-1  u

and

= 1.

f!x! v
Set 03C6m (x) = |x|0 dvv003C6"m(u)du. Then we have

(35) Iul - a  03C6m(u) ~ |u|.

Set e -kt  m (x - y) and e -ktl x - 
where k is a positive constant so that k > K1.

Then it is seen clearly that the functions and , m=1,2,...

satisfy the conditions (V1) and (V2). Using (35), we can show that the

condition (V3) is satisfied by them.

Put e = sup 0 T I + b(t,x)IJ.
n 

r 
n n

Then, we know by the condition (C) that lim e ~0.
n

Choose a non decreasing sequence of integers {mn}n=1 2 " , 

so that

lim m = 00 and

(36) max 1 03C12T,r(u) ~ 1.

m

Now, we will show that the functions {VTnr}m=1 2 " , 

satisfy the

condition (V4).
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First, we have

(37) E[t^03C4(n)r0 
(VmnT,r)(s,xrn(s),xr(s))ds]

= e _ ks{-k~ 

+ 03C6’mn (xr(s) - xrn(s))(b(s,xr(s)) - bn(s,xrn(s)))

+ 1 2 03C6"m (xr(s) - xrn(s))(03C32(s,xr(s)) - 203C3(s,xr(s))03C3n (s,xrn(s))

+ 03C32n(s,xr(s)))}ds]

= E[t^03C4(n)r0 
e-ks{-k03C6mn(xr(s) - xrn(s)) 

+ I1(s) + I2(s)}ds], say.

By the condition (A.2) we have for I1

(38) E[t^03C4(n)r0 
e-ks|I1(s)|ds]

~ E[t^03C4(n)r0 e-ks|03C6’mn||b(s,xr(s)) - bn(s,xrn(s))|ds]

~ E[t^03C4(n)r0|b(s,xrn(s)) - bn(s,xrn(s))|ds]

+ E[
t^03C4(n)r0|b(s,xrn(s)) - b(s,xr(s))|ds]

~ ~nT + K1E[t^03C4(n)r0 |xrn(s) - xr(s)|ds]

On the other hand, using the condition (A.1) and (36), we have

for 12
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tnT (n)
(39) E[ 

r 

e _ ksll (s)Ids]

 1 E[ J 
r 

~" (xr(s) - (s~xr(s)) - Q(s,xr(s))}Zds]
- 2 

0 mn n n n

tnT (n)
_~ E[ f 

r 

~’~ (xr(s) - xr(s)){Q (s~xr(s)) - 
- 

0 mn n n n n

tnT (n)
+ E[ f 

r 

~" (xr(s) - 
0 mn n n

T 2~2 -2 r 
_ 

r

~ E[ n Max 03C1-2T, r(|x1 (s) - x1n(s)|)ds]
n n

+ E[ T0 2 m
n 

03C1-2T,r(|xr (s) - xrn(s)|)03C12T
, r(|xr (s) - xrn(s)|ds]

 4T .
_ m

n

By (37), (38) and (39), we observe that

(40) E[
t^03C4(n)r0(VmnT,r)(s,xr(s),xrn(s))ds]

~ ~nT + K1E[t^03C4(n)r 0 |xr(s) - xrn(s)|ds]

- kE[t^03C4(n)
r0 

03C6mn (xr(s) - xrn(s))ds] + 4T mn
0 mn 

tnT (n)
~ ~nT + (K1 - k)E[0 

r|xr(s) - xrn(s)|ds] 

+ amkT

+ 4T m , where we have used (35).
m
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Since we have chosen k so that k > K , we get from (40) that

(V.4) lim E[t^03C4(n)r (VmnT.r)(s,xr(s),xrn(s))ds] ~ 0 for t ~ [0,T].
n 0 2014 ~ "

Hence we can apply the Theorem 3 to this example. Q.E.D.

Example 2.

Consider the following one dimensional stochastic differential

equations;

t t
(1") x(t) = x(0) + a(x(s))dB(s) + b(x(s))ds,
and

t t .

(2") xn(t) = xn(0) + t003C3n(xn(s))dB(s) + t0bn(xn(s))ds, n = 1,2,....

Assume that the coefficients in (1") and (2") satisfy the conditions

(A), (B) and (C). Suppose further that the coefficients satisfy the

following conditions (B.1), (B.2) and (B.3).

(B.1) There exists a positive constant M such that

sup Ib(x)1 I  M

x

sup Ib n (x) I  M

x,n

(B.2) There exists a non negative increasing function p(u) defined

on [0,oo) such that

la(x) - Q(y)~  p(lx - x,y E R1
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IQ (x)-0 (y))  P(Ix - yl), x,y E R1 n = 1,2,...

and

0+ du p2(u)+u 2 
= + ~.

(B.3) There exists a positive constant 6 > 0 so that

d  Q (x)  M x E R 1

and

6  a (x)  M x E R~, n = 1,2,...
- n -

Suppose that we are given a solution of the equation (1")

~.(t) = {x(t),B(t)} and a sequence of solutions of the equation

(2") ~n(t) - {xn(t),B(t)} n=1,2,... such that

(i) they are defined on a same probability space with an increasing

family of Borel fields 

(ii) x(0) - xn(0) = a, a.s. n = 1,2,....

Then lim x(t)|] = 0 holds for t E [0,~). **

Remark. Under the conditions (A), (B), (B.1), (B.2) and (B.3),

it is known that for a given probability space with an increasing family

of Borel fields (03A9,,P:t) and a given J -Brownian motion B(t)

there exist a solution of the equation (1") and a sequence of solutions

of the equation (2") such that they are defined on the given probability

space. (cf. (5) and (7)).

Let P(t,x,dy) and P n (t,x,dy) be the transition probability
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measure of the process x(t) and x (t) respectively. It is well
n 

’ 
.

known that under the conditions in example 2, there exist P(t,x,y)

and Pn(t,x,y) such that

P(t,x,dy) - P(t,x,y)dy

and

Pn(t,x,y)dy hold. (6)).

For the proof of the claim of example 2, we shall prepare the

following lemma.

Lemma 5. For any fixed a E Rl the system of functions

t E n=1,2,...}

is uniformly integrable with respect to ([O,T] X R1, dtdy).

Proof. By the Theorem 9.2.6 in ([6]), we have for each q > 1

(41) (R1|Pn(s,a,y)|qdy)1/q ~ C(s ̂ 1)-03BD

where (i) V = 3-(q-1) 2q and (ii) C is a constant which depends 6,

M, q and p(u).

Put q = 1+E, 0  ~  2 3. Then we have from (41) that

R 
1|P(s,a,y)( 1+~dyds ~ C(1+~) T0(s ^ 1)- 3 2~ ds.

Since - 3E > -1 we get from the above that
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T0R1|Pn(s,a,y)|1+~dyds  C1+~T0(s ^ 1)-3 2~ds  + ~ .

where the right hand side of the inequality does not depend on n.

This implies immediately that the system {P(t,a,y),P (t,a,y)}
is uniformly integrable. Q.E.D.

We are now in a position to prove the claim in Example 2.

Set

x+1

Cm(x) = mx mb(y)dy, m = 1,2,...

and .

x~ 
’

C n,m (x) = m j x m b n (y)dy, m = 1,2,....

Clearly the functions Cm(x) and C n,m (x) are bounded and continuous.

Define

fm(x) = -2x 0 Cm(y) 03C32(y) dy.

Then fm(x) is continuously differentiable function.

We will show the following inequalities.

1 y f(u)
(42) C-1 0(r)|x -y| ~ |xe du| ~ C(r)|x - yl, for x,y E D

where C(r) is a positive constant which depends on r.

To this end, we note that .

(43) |Cm(x)| = m|x+1 mx b(y)dy| ~ M, for x E R
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and

(44) |fm(x)| ~ 2 sup|x0 Cm(y) 2 dy|  2 03B42 sup| Cm(y)dy|  2M 2 r

x Joa"(y) ’6~ x Jo~ "6"

for x 6 D , where we have used (B.I) and (B.3).

,, Since He 
m m 

),y_~~~x,we have from
’’x

(43) and (44) that

(45) e-2rM 03B42|x - y| ~ | xvefm(u)du| ~ e2rM 03B42|x-y|.
2rMy

Put C(r) = e ~ . Then (45) implies (42).

JL
~ 2 22

Let p(u) = (p (u) + u ) . Then by the condition (B.2), we have

f 201420142014 du = + oo.
- ’0+ P(u)

Choose the sequence {a } 
~ - c (0.1) so that a ~0 and

am-1am1 03C12(u) du = m , m = 1,2,....

Define a sequence of continuous functions {~"(u)} m == 1,2,...

such that

0, 0 ~ u ~ am

03C6"m(u) = between 0 and 2/mp2 (u), a
m 

 u  a
m-1

0, am-1 ~ u

and

j = 1.
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fH ry

Set 03C6m(x) = |x|0 dvy003C6"mdu.

Define VmT,r(t,x,y) = 03C6m(C(r)xyefm(u) du) for (t x y) 6 [0,T] x Dr x Dr.

We will show that the sequence of functions VmT,r(t,x,y) m ’ = 1,2,...

satisfy the condition (V.4).

To this end, we put

e = sup {~0 (x) - O(x)~ ( + ~b~(x) - b(x)~}.~ 
X6D ~/

Choose a non decreasing sequence of integers ~~=19 ... so that

(i) lim m = + oo

n~o 
"

and

(iL) e~ max ~201420142014 ~ 1~ 

a m ua m -1 - p (u)
We have

~ m
(46) (VnT,r)(t,x,y) = ~V ~x(b(x) - Cmn(x))

+ ~VmnT,r ~y(bn(Y) - Cn,mn(x))
+ ~VmnT,r ~y{Cn,mn (y) - Cmn (y)03C32n(y) 03C32(y)}

+ 1 203C6"mn(C(r) xyefmn(u) du)C2(r){e fmn(x) 03C3(x)-efmn(y) 03C3mn(y)}2
= Imn1 + Imn2 + Imn3 + Imn4 , say.

m

We will treat the term 1~. Note that
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fm (x) fm (y) fm (~)
- e 

n 

~  IX - 

Cm (~) fm (~)
~ 21x - YII 1 

J 
21x ’ YI 2 C(r)~ x~Y E Dr.

Then we have

f 
m 

(x) f 
m 

(y) 
.

(47) ~ e 
n 

Q(x) _ e 
n 

6n(Y) I
fm (x) fm (x) fm (y)

 e n IQ(x) - Q(y)) + - e n I

fm (y)
+ e n I~(y) - Qn(y)I [

~ Y!) + 2 2 C(r) Ix - yI + C(r) IQ(y) - I .

s

Hence there exists a positive number such that

fm (x) fm (Y)

(48) |e 
n 

Q (x) _ e 
n 

Qn (y)|2 _  (r)(|x - y|2 + yl) + ~2n) .

Thus we have from (48)

m

(4g) I4n

~ 1 2 C2(r)2 mn Max f 

n dula 
m -1 

f 

n du)
X (r)(2(|x - YI) + E2)

~ 1 2 C2 (r) 1 m Max 
f (u) f (u}

X e n dul) + ~2}~Y n
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~ 3 2C2(r)C(r) mn .

m

Now, we are going to evaluate the term I ~. Since there exists

a positive constant C,.(r) so that

(50) |~VT,r ~x(t,x,y)| ~ C2(r) and

|~VmnT,r ~y (t,x,y)| ~ C2(r), n = 1,2,... (x,y) e Dr x Dr,

we have for I.. that

(51) 

~(y) - 
+C,(r)!c,(y)201420142014220142014201420142014! 

I (y) - Cm(y)| I + 
’ 
n 6

 C(y)! + C2(r)2M2 03B42 e
Thus, by (46), (49) and (51) we have

______ f ~ ~

(52) lim E[ (VnT,r)(s,xr(s),xrn(s))ds]

~ lim E[t^03C4(n)r0 ~VmnT,r ~x(xr(s),xrn(x))(b(xr(s)) - Cmn(xr(s)))ds]
+ E[t^(n)r0 ~VmnT,r ~y(xr(s),xrn(s))(bn(xrn(s)) - Cn,mn(xrn(s)))ds]
+ lim (T.2 3C(r)C(r) m + TC2(r)2M2 2 ~n)

"n " 

6 °
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tnT (n)
+ C (r)lim E[ 

r 

(C (xr(s}) - C 
2 

n~ C n,mn n mn n

Notincing that

x+~
(53) |Cn, m

(x) - Cm (x)| ~ mn|(bn(y) - b(y))dy| ~ ~n
’n n x

we get from (52)

(54) lim E[t^03C4(n)r0)(VmnT,r)(xr(s),xrn(s)ds]
n-~ 0 

’ n

tnT (n)
 C2(r)lim E[0

r 

|b(xr(s)) - Cm (xr(s))|ds]
n-~ 0 n

+ C2(r)lim E[t^03C4(n)0 |bn (xrn(s)) - Cn,mn(xrn(s))|ds]
2 

n~ C 
n n n,mn n

 C2(r)lim J Cm (y) I P (s, a,y) dY
Rl 0 n

+ C2(r)lim 

R1
T0|bn(y) - Cn,mn(y)|Pn(s,a,y)dy.

Use the fact that

|bn (y) - Cn,mn (y)| ~ |bn (y) - b(y)| + |b(y) - Cmn (y)|

+ |Cmn(y) - Cn,mn(y)|  2~n + |b(y) - Cmn(y)|.
Then we get from (54)

(55) lim E[t^03C4(n)r0(VmnT,r)(xr(s),xrn(s))ds]
0 

’ r n

~ C2(r)lim T0|b(y) - Cm(y)|P(s,a,y)dy
n-~° Rl 0 n
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_ 
f T

+ C " 

n~°° Rl 0 n

+ 
’

Note that

(i) ~ b (y) - c (y)! ~ 2rs
n

and

(ii) Cm (y) converges to b(y) a.e..

n

Then, using the lemma 5 we obtain from (55) that

lim E[t^03C4(n)r0(VmnT,r)(xr(s),xrn(s))ds]  0 holds-

Clearly the functions VT ,r and VT ,r m=1,2,... satisfy the

conditions (V.1), (V.2) and (V.3). Hence we can apply the Theorem 1

and 2 to this example. Q.E.D.
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