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THERE EXISTS NO ULTIMATE SOLUTION TO SKOROKHOD’S
PROBLEM

Isaac Meilijson*

Abstract

Let (X,Y) be a mean zero martingale pair, i.e., X and Y possess mean

zero and E(YIX) = X a.s.. It has been proved in various ways that (1) there

exist stopping times T on Brownian motion {B(t); such that B(T) is

distributed like X and is uniformly integrable; and (2) for

any such t there exist stopping times i’ such that T  I’ a.s.,

(B(T), B(I’)) is distributed like (X,Y) and {B(tAT’); is uniformly

integrable. In other words (to explain the role of uniform integrability),

a martingale pair can be embedded in a piece of Brownian motion that is

itself a martingale.

We will show ~hat unless Y lives on one or two points, there can exist

no stopping time tl with (8(tAT’); uniforr.:-1y integrable and 8(T’)

distributed as Y, such that whenever .{ X,Y) is a martingale pair there exist

t with a.s. and B(r) distributed as X. 

* On-leave from Tel-Aviv University, 1980/1.
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1. INTRODUCTION

Let F be a distribution with mean zero and finite variance. It has been

shown (Skorokhod [12], Dubins [3], Root [9], Chacon and Walsh [2], Azema and

Yor [1] and others) that for some stopping time (st) r of finite expectation

on Brownian Motion starting at zero (BM) {B(t); t> 0~, B(r) is distributed

(~) F. This embeddability of F has been extended to more general Markov

processes (Rost [10], Meyer [7]).

Monroe [8] has shown that if F has mean zero (but not necessarily finite

variance), then B(t) ~F for some T that makes uniformly

integrable. Monroe proves this property of T to be equivalent to T being

minimal, ..e. B(T) has mean’zero and for no (except T itself) is

An interesting property of minimality is that if B(T) has mean

zero and finite variance, then T is minimal if and only if it has finite

mean. The mean of a minimal stopping time is always equal to the variance

of the variable it embeds.

A pair of distributions (F,G) admits a martingale (or, belongs to M),

if F and G have expectations zero and for some two’random variables X and

Y on some space, X ~ F, Y ~ G and E(V!X) = X a.s.. Equivalently, (see

Meyer C6], (F,G) E M if for all real x, ~p(x) >, ~G(x}, where

(1) 03C6L(Z)(x) = - E|Z-z|.
Equivalently, EX = EY = 0 and E03C8(X) ~ E03C8(Y) for all nonnegative non-

decreasing convex functions 03C8. For more on 03C6, see Chacon and Walsh [2].

Further details on convex inequalities can be found in Meilijson and

N~das [5] and in Rost DD, and their relation to extremal martingales

in Dubins and Gilat [4] and in Azema and.Yor [1].
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It is clear from the proofs of embeddability that if (F,G) eM then for

every minimal st r with B(t) ~F there exists a minimal st T’ with B(T’) ~G

and T ~ T’ a. s.. A minimal stTis said to be ultimate i f for every distribution

F with (F,C(B~~y)) t M there exists a st T’ with B(r’) ~F and T’  T a.s.

Let

(2) TA 
= inf {t > 0 ( B(t)e A~.

THEOREM. A stopping time t is ultimate if and only if for some a  0  b,

= 03C4{a,b} 

a.s.. .

2. PROOF OF THE THEOREM.

A distribution F has atomic.ends if for some a  b, (the "ends"),

(3) 0 = F(a-)  F(a) ~ F(b-)  F(b) = 1.

If strict inequality occurs throughout (3), we will l say that F has non exclusive

atomic ends. We will prove in lemma 2 that if T is an st and B(r)

is not supported by one or two points, then there exists an ultimate st r’ such

that ~(B(,r’)) has non exclusive atomic ends. Lemma 4 will show this to be an

impossibility.

LEMMA 1. For a distribution function G with mean zero for which there exist

real numbers a and b with ess inf(G)  a  0  b  ess sup(G), let

0  u  v  1 be defined by

(4) E(G 1(U) ! I U = U > v) = b,

where U ~ U[o,l], and let be the distribution of a random variable X with
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a U  u
(5) X = b U  v .G-1 (U) otherwise

= E(G-1(U) } 1{U~u}, 1{U~v}, max (u,min(U,v))).

Then (G/ a b ,G) e M and whenever F i s supported by [a,b] and (F,G) e M,

then M.

Proof. As mentioned in the introduction, the test for belonging to M is a

pointwise inequality of the functions 03C6: This function 03C6(see Chacon and Walsh

[~] i s concave and i s asymptoti c to -)x) ( as Ixl + -. I t agrees wi th - ~ x ~ outside

any interval supportinn the distribution. ’G agrees with 03C6G on
(a,b) 

.

[G 1(u), G ~(v)] and is linear on and on [G 1(v),b]. These two linear

pi eces tangents to tG’ and thus ’G i s the mi nimal concave functi on that

(a,b)

exceeds 03C6G and agrees with -|x| outside [a,b].
f]

LEMMA 2.

(i) For every a ~ 0 ~ is ultimate. 

(ii) If T is ultimate, so is 

(iii) If t is ultimate and B(t) is not supported by one or two points, then

there exists an ultimate T’ such that B(r) has non exclusive atomic

ends. ..
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Proof. (i) If a.b = 0, the result is clear.

If a.b > 0 then every F with E M is supported by [a,b] and every

minimal st T for which F satisfies T ~ a.s. (ii) Let T be ultimate. °

Denote G = L(B(1)). Then every F witn (F,G) EM that is supported by [a,b] must
be embeddable before time T and also before time In particular, this is

the case for F =~G(a~b). This implies that

(6) e M.

But, by lemma L (for, if its conditions are not met, the statement of (ii) is

trivial),

(7) ) .M.

Combine (6) and (7) to obtain that = 

G(a,b) and that
is ultimate.

(iii) The conditions of (iii) imply the conditions of lemma 1. Take a proper

pair (a,b) and apply (ii).

[]
LEMMA 3. Let a  x  0  y  b and let

(8) TC1) _ . T{y})).
Let Xa have values a and y and mean zero, let Xb have values x and b and mean
zero. Then
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(9) 

= a2P(Xa=a) 1-P(Xa=a) + b2P(Xb=b) 1-P(Xb=b) + abP(Xa=a)P(Xb=b) (1-P(Xa=a))(1-P(Xb=b)).

(10) = = a)

(H) = -x/(b-x) ~ = b).

Proof. Express T~ as the sum of two tems. Thefirst is the hitting time

mind~, If the second is the hitting time

min(ir ., Apply repeatedly the well known fact that if

u  0  v, then = -uv and  = v/(v-u).

[]

LEMMA 4. If F has non exclusive atomic ends, then there is no ultimate st to

embed F.

Proof. For X ~ F, a = ess inf(F), b = ess sup (F):

I I 

Let y = E(X i X > a), x = E(X [ X  b).

If T is ultimate and B ~ F, then (a  B  b} * (r  and on {a  B  b},

BM must have visited both x and y up to time T, since X. and X. must have bee":
embedded. Hence, T ~.T’ of lemma 3.
In view of (10) and (H),  (which equals a.s.
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(T  the st T - -r ’, defined on B ~ T~, must embed the conditional

distribution of X given that a  X  b. Following Monroe [8], if r is minimal

and B(r) is bounded, then the expectation of T is the variance of B(r), which

is finite. We thus obtain (upon substituting P~ for P(X = a) and P~ for

P(X = b)) that

(12) Var(X) = 0 - [ a  X  b) + E(r~~). 
’

But, on the other hand,

(13) Var(X) = E(X~) = 0 - ~ - I a  X  b) + + =

" ~ " I a  X  b) + + + 

Compare (12) and (U):

(14) 
E(T~~) = a~ + b~ + =

’ 

~ 

.

- 

But (M) conflicts with (9), since ~/(b-a) and -a/(b-a) are strictly bigger than

and respectively.

Hence, T is not ultimate.

[]
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