SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

ISAAC MEILIJSON

There exists no ultimate solution to Skorokhod's problem

Séminaire de probabilités (Strasbourg), tome 16 (1982), p. 392-399 http://www.numdam.org/item?id=SPS 1982 16 392 0>

© Springer-Verlag, Berlin Heidelberg New York, 1982, tous droits réservés.

L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

THERE EXISTS NO ULTIMATE SOLUTION TO SKOROKHOD'S PROBLEM

Isaac Meilijson* Vrije Universiteit. Amsterdam

Abstract

Let (X,Y) be a mean zero martingale pair, i.e., X and Y possess mean zero and E(Y|X) = X a.s.. It has been proved in various ways that (1) there exist stopping times τ on Brownian motion $\{B(t); t \geq 0\}$ such that $B(\tau)$ is distributed like X and $\{B(t\Lambda\tau); t \geq 0\}$ is uniformly integrable; and (2) for any such τ there exist stopping times τ' such that $\tau \leq \tau'$ a.s., $\{B(\tau), B(\tau')\}$ is distributed like $\{X,Y\}$ and $\{B(t\Lambda\tau'); t \geq 0\}$ is uniformly integrable. In other words (to explain the role of uniform integrability), a martingale pair can be embedded in a piece of Brownian motion that is itself a martingale.

We will show that unless Y lives on one or two points, there can exist no stopping time τ' with $\{B(t\Lambda\tau'); t\geq 0\}$ uniformly integrable and $B(\tau')$ distributed as Y, such that whenever (X,Y) is a martingale pair there exist τ with $\tau\leq \tau'$ a.s. and $B(\tau)$ distributed as X.

* On leave from Tel-Aviv University, 1980/1.

INTRODUCTION

Let F be a distribution with mean zero and finite variance. It has been shown (Skorokhod [12], Dubins [3], Root [9], Chacon and Walsh [2], Azema and Yor [1] and others) that for some stopping time (st) τ of finite expectation on Brownian Motion starting at zero (BM) {B(t); t> 0}, B(τ) is distributed (\sim) F. This embeddability of F has been extended to more general Markov processes (Rost [10], Meyer [7]).

Monroe [8] has shown that if F has mean zero (but not necessarily finite variance), then $B(\tau) \sim F$ for some τ that makes $\{B(t\Lambda\tau); t\geq 0\}$ uniformly integrable. Monroe proves this property of τ to be equivalent to τ being minimal, ..e. $B(\tau)$ has mean zero and for no $\tau' \leq \tau$ (except τ itself) is $B(\tau') \sim F$. An interesting property of minimality is that if $B(\tau)$ has mean zero and finite variance, then τ is minimal if and only if it has finite mean. The mean of a minimal stopping time is always equal to the variance of the variable it embeds.

A pair of distributions (F,G) admits a martingale (or, belongs to M), if F and G have expectations zero and for some two random variables X and Y on some space, $X \sim F$, $Y \sim G$ and E(Y|X) = X a.s.. Equivalently, (see Meyer [6], (F,G) ε M if for all real X, $\phi_F(X) \geq \phi_G(X)$, where

(1)
$$\phi_{L(Z)}(x) = -E|Z-x|.$$

Equivalently, EX = EY = 0 and $E\psi(X) \leq E\psi(Y)$ for all nonnegative non-decreasing convex functions ψ . For more on ϕ , see Chacon and Walsh [2]. Further details on convex inequalities can be found in Meilijson and Nadas [5] and in Rost [1], and their relation to extremal martingales in Dubins and Gilat [4] and in Azema and Yor [1].

It is clear from the proofs of embeddability that if (F,G) ϵ M then for every minimal st τ with B(τ) \sim F there exists a minimal st τ ' with B(τ ') \sim G and $\tau \leq \tau$ ' a.s.. A minimal st τ 1s said to be <u>ultimate</u> if for every distribution F with (F,L(B(τ))) ϵ M there exists a st τ ' with B(τ ') \sim F and τ ' $\leq \tau$ a.s.

(2)
$$\tau_{\Delta} = \inf \{t \ge 0 \mid B(t) \in A\}.$$

THEOREM. A stopping time τ is ultimate if and only if for some $a \le 0 \le b$, $\tau = \tau_{\{a,b\}}$ a.s..

2. PROOF OF THE THEOREM.

Let

A distribution F has atomic_ends if for some a < b, (the "ends"),

(3)
$$0 = F(a-) < F(a) < F(b-) < F(b) = 1.$$

If strict inequality occurs throughout (3), we will say that F has <u>non exclusive</u> atomic ends. We will prove in lemma 2 that if τ is an ultimate st and B(τ) is not supported by one or two points, then there exists an ultimate st τ' such that $\zeta(B(\tau'))$ has non exclusive atomic ends. Lemma 4 will show this to be an impossibility.

LEMMA 1. For a distribution function G with mean zero for which there exist real numbers a and b with ess $\inf(G) < a < 0 < b < ess \sup(G)$, let 0 < u < v < 1 be defined by

(4)
$$E(G^{-1}(U) \mid U \leq \bar{u}) = a, E(G^{-1}(U) \cap U \geq v) = b,$$

where U \sim U[0,1], and let $G_{(a,b)}$ be the distribution of a random variable X with

(5)
$$X = \begin{cases} a & U \leq u \\ b & U \geq v \\ G^{-1}(U) & \text{otherwise} \end{cases}$$

$$= E(G^{-1}(U)) + \frac{1}{\{U < u\}}, \frac{1}{\{U < v\}}, \max(u, \min(U, v))).$$

Then $(G_{(a,b)},G)$ ϵ M and whenever F is supported by [a,b] and (F,G) ϵ M, then $(F,G_{(a,b)})$ ϵ M.

<u>Proof.</u> As mentioned in the introduction, the test for belonging to M is a pointwise inequality of the functions ϕ . This function ϕ (see Chacon and Walsh [2] is concave and is asymptotic to -|x| as $|x| + \infty$. It agrees with -|x| outside any interval supporting the distribution. $\phi_{G(a,b)}$ agrees with ϕ_{G} on $[G^{-1}(u), G^{-1}(v)]$ and is linear on $[a,G^{-1}(u)]$ and on $[G^{-1}(v),b]$. These two linear pieces are tangents to ϕ_{G} , and thus $\phi_{G(a,b)}$ is the minimal concave function that exceeds ϕ_{G} and agrees with -|x| outside [a,b].

[]

LEMMA 2.

- (i) For every $a \le 0 \le b, \tau_{\{a,b\}}$ is ultimate.
- (ii) If τ is ultimate, so is $min(\tau, \tau_{\{a,b\}})$.
- (iii) If τ is ultimate and B(τ) is not supported by one or two points, then there exists an ultimate τ' such that B(τ) has non exclusive atomic ends.

<u>Proof.</u> (i) If a.b = 0, the result is clear. If a.b > 0 then every F with $(F, (B(\tau_{a,b}))) \in M$ is supported by [a,b] and every minimal st τ for which $B(\tau) \sim F$ satisfies $\tau \leq \tau_{a,b}$ a.s. (ii) Let τ be ultimate. Denote $G = (B(\tau))$. Then every F with $(F,G) \in M$ that is supported by [a,b] must

be embeddable before time τ and also before time $\tau_{a,b}$. In particular, this is

the case for F = G(a,b). This implies that

(6)
$$(G_{(a,b)}, L(B(\min(\tau,\tau_{\{a,b\}}))) \in M.$$

But, by lemma 1, (for, if its conditions are not met, the statement of (ii) is trivial),

(7)
$$((B(\min(\tau,\tau_{a,b}))), G_{(a,b)}) \in M.$$

Combine (6) and (7) to obtain that $\angle(B(\min(\tau,\tau_{\{a,b\}}))) = G_{(a,b)}$ and that $\min(\tau,\tau_{\{a,b\}})$ is ultimate.

(iii) The conditions of (iii) imply the conditions of lemma 1. Take a proper pair (a,b) and apply (ii).

LEMMA 3. Let a < x < 0 < y < b and let

(8)
$$\tau^{(1)} = \min(\tau_{\{a,b\}}, \max(\tau_{\{x\}}, \tau_{\{y\}})).$$

Let $\mathbf{X}_{\mathbf{a}}$ have values a and \mathbf{y} and mean zero, let $\mathbf{X}_{\mathbf{b}}$ have values \mathbf{x} and \mathbf{b} and mean zero. Then

(9)
$$E(\tau^{(1)}) = xy - ay - xb =$$

$$= \frac{a^2 P(X_a = a)}{1 - P(X_a = a)} + \frac{b^2 P(X_b = b)}{1 - P(X_b = b)} + \frac{ab P(X_a = a) P(X_b = b)}{(1 - P(X_a = a))(1 - P(X_b = b))}$$

(10)
$$P(\tau^{(1)} = \tau_{\{a\}}) = y/(v-a) = P(X_a = a)$$

(11)
$$P(\tau^{(1)} = \tau_{\{b\}}) = -x/(b-x) = P(X_b = b).$$

Proof. Express $\tau^{(1)}$ as the sum of two terms. The first is the hitting time $\min(\tau_{\{x\}}, \tau_{\{y\}})$. If $\tau_{\{x\}} < \tau_{\{y\}}$ ($\tau_{\{y\}} < \tau_{\{x\}}$), the second is the hitting time $\min(\tau_{\{y\}}, \tau_{\{a\}})$ ($\min(\tau_{\{x\}}, \tau_{\{b\}})$). Apply repeatedly the well known fact that if u < 0 < v, then $E(\tau_{\{u,v\}}) = -uv$ and $P(\tau_{\{u\}} < \tau_{\{v\}}) = v/(v-u)$.

[]

LEMMA 4. If F has non exclusive atomic ends, then there is no ultimate st to embed F.

<u>Proof.</u> For $X \sim F$, a = ess inf(F), b = ess sup (F):

Let
$$X_a = E(X \mid 1_{\{X=a\}}), X_b = E(X \mid 1_{\{X=b\}}).$$

Let $y = E(X \mid X > a)$, $x = E(X \mid X < b)$.

If τ is ultimate and $B_{\tau} \sim F$, then $\{a < B_{\tau} < b\} = \{\tau < \tau_{\{a,b\}}\}$ and on $\{a < B_{\tau} < b\}$, BM must have visited both x and y up to time τ , since X_a and X_b must have been embedded. Hence, $\tau \geq \tau^{(1)}$ of lemma 3.

In view of (10) and (11), on $\{\tau^{(1)} < \pi_{\{a,b\}}\}\$ (which equals a.s.

 $\{\tau < \tau_{\{a,b\}}\}\$, the st $\tau - \tau^{(1)}$, defined on B ° $\tau^{(1)}$, must embed the conditional distribution of X given that a < X < b. Following Monroe [8], if τ is minimal and B(τ) is bounded, then the expectation of τ is the variance of B(τ), which is finite. We thus obtain (upon substituting P_a for P(X = a) and P_b for P(X = b)) that

(12)
$$Var(X) = (1 - P_a - P_b)Var(X \mid a < X < b) + E(\tau^{(1)}).$$

But, on the other hand,

(13)
$$Var(X) = E(X^{2}) = (1 - P_{a} - P_{b})E(X^{2} \mid a < X < b) + a^{2}P_{a} + b^{2}P_{b} =$$

$$= (1 - P_{a} - P_{b})Var(X \mid a < X < b) + \frac{(aP_{a} + bP_{b})^{2}}{1 - P_{a} - P_{b}} + a^{2}P_{a} + b^{2}P_{b}.$$

Compare (12) and (13):

(14)
$$E(\tau^{(1)}) = a^{2}P_{a} + b^{2}P_{b} + \frac{(aP_{a}+bP_{b})^{2}}{1-P_{a}-P_{b}} =$$

$$= \frac{a^{2}P_{a}}{1-P_{a}} + \frac{b^{2}P_{b}}{1-P_{b}} + \frac{abP_{a}P_{b}}{(1-P_{a})(1-P_{b})}$$

$$- \frac{P_{a}P_{b}(b-a)^{2}(\frac{b}{b-a} - P_{a})(\frac{-a}{b-a} - P_{b})}{(1-P_{a})(1-P_{b})(1-P_{a}-P_{b})}$$

But (14) conflicts with (9), since $\frac{b}{(b-a)}$ and $\frac{-a}{(b-a)}$ are strictly bigger than P_a and P_b respectively.

Hence, τ is not ultimate.

References

- [1] Azema, J. and Yor, M. (i) Une solution simple au problème de Skorokhod. (ii) Le problème de Skorokhod: compléments a l'exposé précédent. Séminaire de Probabilités XIII, LN 721, Springer (1979).
- [2] Chacon, R.V. and Walsh, J.B. One dimensional potential embedding. Séminaire de Probabilités X, LN 511, Springer (1976).
- [3] Dubins, L.E. On a theorem of Skorokhod. Ann.Math.Statist. 39, 2094-2097 (1968).
- [4] Dubins, L.E. and Gilat, D. On the distribution of maxima of martingales. Proc. of the A.M.S. 68, No. 3, 337-338 (1978).
- [5] Meilijson, I. and Nädas, A. On convex majorization with an application to the length of critical paths. J. Appl. Prob. 16, No. 3, 671-677 (1979).
- [6] Meyer, P.A. Probabilités et Potentiel. Hermann (1966).
- [7] Meyer, P.A. Le schéma de remplissage en temps continu. Séminaire de Probabilités VI, LN 258, Springer (1972).
- [8] Monroe, I. On embedding right continuous martingales in Brownian motion. Ann.Math.Statist. 43, No. 4, 1293-1311 (1972).
- [9] Root, D.H. On the existence of certain stopp!ng times on Brownian motion. Ann.Math.Statist. 40, 715-718 (1969).
- [10] Rost, H. The stopping distributions of a Markov process. Inv. Math. 14, 1-16 (1971).
- [11] Rost, H. Skorokhod stopping times ôf minimal variance. Séminaire de Probabilités X, LN 511, Springer (1976).
- [12] Skorokhod, A. Studies-in the theory of random processes.

 Addison-Wesley, Reading (1965).