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Séminaire de Probabilités XVI 1981

SEMIMARTINGALES IN PREDICTABLE RANDOM
OPEN SETS

ZHENG Wei An

INTRODUCTION

After L. Schwartz discussed in [1] the restriction of semimartingales
to a random open set, P.A. Meyer [2] gave a definition of semimartinga-
les in a random open set. This was discussed again by L. Schwartz [3]
from the point of view of formal measures. A number of fine results,
specially for the case of continuous semimartingales, have been proved
since the definitions were given ( see [1], [3], and the recent refe-
rence [7]1 ).

The purpose of this paper is to extend to semimartingales in a pre-
dictable random open set as much of the classical theory of semimartin-
gales as possible, following the lines of L. Schwartz and P.A. Meyer .
The restriction of predictability is rather strong, but no restriction
will be placed on the semimartingale itself. We follow systematically
an idea due to L. Schwartz, which consists in neglecting locally cons-
tant processes in the random open set A. .Then we can define pseudo-adap-
ted processes in A, local pseudo-martingales, pseudo-semimartingales,
etc. and prove for instance & decomposition result for pseudo-semimartin-
gales, into a local pseudo-martingale part and a pseudo-adapted process
of finite variation in A. This terminology is rather heavy, but if the
reader is willing to make a slight effort of abstraction, and to deal
with equivalence classes of processes in A modulo locally constant pro-
cesses ( these classes will be called pseudo-processes ), then the prefix
pseudo- will disappear from all other places, and all the definitions
of adaptetion, semimartingales, local martingales... for pseudo proces-
ses will appear as natural extensions of the classical ones.

The main application of this theory, and in fact the reason why it
was developed by L. Schwartz, concerns processes in a differentiable
manifold V : 'if X is a continuous process with values in V, and U is
open, then X-l(U) is a predictable random open set. Therefore the usual
localization procedures in V lead to localization on random open sets
in B xQ .

1. When the first version of this paper was written, we didn't know

of this work by Meyer and Stricker, where the pseudo-semimartingales are
introduced under the name of << semimartingale measures >>. This new
version has been modified to take it into account. I thank P.A. Meyer
for his help in preparing the final version.
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8 O . NOTATION AND ELEMENTARY RESULTS

Throughout this paper, we work on a fixed probability space ((;,E,P)
with a filtration (F,_) which satisfies the usual conditions. We denote
by T ( BT ) the set of all (Et) stopping times ( predictable times )

Let A be a random set, i.e. a measurable subset of R x(. . We say that
A is a random open set if, for (almost) every w, its section A(w) is

open in B, . This introduces a slight difficulty at O since [0,a[ and
]0,a[ are both open sets in B : rather than going into trivial discus-
sions, we shall assume that A doesn't contain O, leaving the easy exten-

sion to the reader. This will not prevent us from giving E+xﬁ as an
example of a random open set !

A real valued process in A is a measurable mapping X from A to B ( some-

times to the extended line B ). As usual, we do not distinguish from A
any set A', from X any process X', which are equal to A, X except on an
evanescent set. A process X in A will be identified to XIA , the process
in B xQ which is equal to X on A and to O on AC. ‘

The definition of a process X cadlag in A is obvious. We say that

X is locally constant in A if ( for a.e. w ) X (w) is constant in each
one of the connected components of A(w) - which are open intervals. We
say that two processes X,Y are equivalent in A ( notation : X ~ Y or

simply X ~ Y if no confusion can arise ) if X-Y is locally constant in
«
A . An equivalence class of processes in A is called a pseudo—process:)

For instance, if A=R+xﬂ , Pseudo-processes can be identified to proces-
ses X normalized to be O at the initial time, but already in foﬂ there
is no natural way of << normalizing >> pseudo-processes.

For any SeT , define

(0.1) Tg = inf{t>8 , (t,w)ed }

If. S belongs to FT, so does TS since A%[S,u)] is predictable and closed.
We have ( Q denoting as usual the set of rationals )

(0.2) A= Uy [rT]
+

We denote by T(A) ( PL(A)) the set of all Sel (EL) such that [S]ea .
Note that if SePT , the set {SeA}={S=Tg} belongs to Eq_ , and S{SeAf
belongs to PT(A). A pair of times (8,T) is called a neighbouring pair
in A ( or T—Es called a neighbour of S in A ) if we have : SeT(A),
TE€T(A), S<T , S<I<w on {S<w}, and if the closed stochastic interval
[S,T] is contained in A. We denote by EE(A) the set of neighbouring

3. Aspointed. ouk in seckion 3, o.convenient motation Sor Re equivalence class of X is dX. pairs in A.
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We have the following easy lemma :

(0.3) LEMMA. 1) For every SeEE(A), the stochastic interval [S,TS[ is
the union of an increasing sequence of stochastic intervals [S,Tn], where
each Tn is a neighbour of S in A .

2) There exists a sSequence (Sn,Tn) of neighbouring pairéiguch that
A=U [S ,T 1= U, 18,20 -

Proof. On (i'={S<oo} consider the filtration (F%):(Es+t)' Then it is
well known that T':TS—S is an (g%)-predictable time, and since A is
open it is a.s. >0 on {i' . Consider a sequence T£>O foretelling T' and
set Tn=S+Tﬁ on Q', Tn=a) on ()%, It is obvious that 1) is satisfied.

As for ii), we set Srzr{reAf for rational r, and apply 1) to Sr to
construct a sequence (Sr’Trn) of neighbouring pairs << filling >>

[Sr’TS [:[r,Tr[ . Then we reorder these pairs into a single sequence
r

(8,,T,) and apply (0.2).
The following result allows the construction of pseudo-processes
by << pasting together of local data >> . It doesn't require a filtra-

ble-

(0.4) LEMMA. Assume A is the union of a sequence A" of random open sets,
and that, for every n , a process " is given in An, right continuous in
An, and the following compatibility condition is satisfied

m o
for every (m,n) , X NN X

Then there exists in A a right continuous process X, unique up to equi-

valence, such that Xeav n ™ for every n .
A

Proof. First be begin with the deterministic case of the lemma :
A is an open set in E+ ( not containing O for simplicity ), union of
a sequence of open sets An, and the X* are ordinary right continuous
functions. Then we enumerate all open components Ju, vy [ of A, and
choose in each one a point Wy for instance, wkz(uk+vk)/2 for a boun-
ded component, Wy = uk+1 for the unbounded component if it exists.

Let I(A) be the smallest family of subsets of A, closed under
finite operations U,N,\ , which contains all bounded intervals Ju,v]
with [u,v]eA ( L(A) simply consists of finite disjoint unions of such
intervals ). Any function X7aetermines uniquely a finitely additive
measure p=py on I(A) such that pX(]u,v]):X(v)—X(u) y~and X~ 0 iff pe=0.
Conversely, given a finitely additive measure p on ;(A), we may construct
a function & such that p=pg in the following way : given ueA, we consi-
der the component ]Ju ,vk[ containing u and set

1. With a 1little more care, one can choose Sn’Tn predictable.
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L(w) = p(w ,u] ) if wpwy , -p(Ju,w ]) if ucwy

If we start from X, go to pu and then to X, it is clear that we get a
process equivalent to X, Eormallzed to vanish at each Wy e We say that
u is right continuous if X is right continuous in A.

Consider now two open sets A and A', two right continuous measures
p and p' on I(A), I(A') respectively, which induce the same measure on
I(ANAY), Theﬂ ther; is a unique measure A on ;(AUA') which extends p
and pt, and A is right continuous. We leave the trivial details to the
reader, but indicate explicitly one point : let [u,v] be an interval
contained in AUA', hence covered by the (open) components of A and A'.
By compactness, there is a finite chain u=t0<...<tk<xk+1=v with tl...tk
rational, such that each interval [ti,t;
nent of either A or A' , and then A(]tl tl+1]) is unambiguously defined,

] is contained in some compo-

due to the compatibility of p and p'. Since ]u,v]:Ui]ti,ti+l] we can
deduce the value of A(Ju,v]).

Returning now to the statement of the 1emma we apply the procedure
just described to construct by 1nductlon/measures Ay on I(B ), with
B _AlUAz...UA , such that A induces p_, on each I(A ) for k=14..,n.
By compactness, every set He;(A) belongs to some ;(Bn), and setting
A(H):An(H) ( which doesn't depend on n ) we have the desired measure
on I(A), which is easily seen to be right continuous. From it we cons-
tru;t the desired finction X as explained above.

Now we go to the general case. It is well known that the components
of a measurable random open get A can be enumerated as stochastic inter-
vals ]Uk,Vk[ , Where the functions Uk,Vk are measurable ( but they
aren't stopping times in general, even if A is predictable ). Let us say
that we? is << good >> if all the a.s. properties are true at w : A(w)
and A™(w) are open , A(w):Un An(w), X?(w) is right continuous in An(w),
the compatibility conditions are true... Since we work only up to evae-
nescent sets, we may restrict ourselves to good w's, and therefore the
only condition we need to check is the following : if the components of
4, AR are measurably enumerated, the above deterministic constructions
lead to a measurable process X in A . This is a little tedious, but
easy, and we leave it to the reader.

8§ 1 . LOCALIZATION OF PROPERTIES ON A

We are going first to give some generalities on ordinary processes
in R+XQ . In this case, neighbouring pairs are simply pairs of stopping
times (S,T) such that S<T , S<T<xo on S<w . Given any process X, we

T S
denote by X~ ’" the process (X tVS S)I{S<a>} = X"-X" : formally, this
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is the stochastic integrsl I S,T]°X ( we just demand here that S<T )
Consider now a property of stochastic processes, which we denote by

P. Let us say that P is localizable if the following statements are

true.

1) If X has property P , so does x5 T for any pair (8,;T), S<T .

2) If (8,T) and (U,V) are pairs with S<I<U<V , add X°sT, XUsVhave pro-
perty P, and if ]S,TJu]U,V]=]S,W] is a stochastic interval, then
XS’ has property ¢.

3) If (8,T) and (U,V) are two pairs with 8<T, U<V , S=U on {S<ow ,U<w },
and if XS’T, XU’V have property P, then_so d;es XSAU’TVV.

Examples of such properties are, of course, regularity properties of
sample functions ( continuity, cadlag property, finite variation...) ;
meny measurability properties ( predictability, optionality, adaptation -
understood in the .gtrong sense, namely ET-measurability at any stopping
time T ), and besides that the following properties, some of which ob-
viously are not at all << local >> .

X is a martingale, a square integrable martingale, a super or sub-
martingale, a process with integrable variation, a class (D) supermar-
tingale, a local martingale, a semimartingale...

We say that P is local if it is localizable, and satisfies

4) If there exists a sequence Tnfa) of stopping times, such that XO’Tn

has property P , then X has property ¥ .

Every localizable property P has a localization Ploc , defined as
follows : X has property Fioc iff there exists a sequence Tnfa) such
that X020 nas property P. We leave it to the reader to check that Pl oo
is a local property. For instance, the localization of << X is a mar-
tingale >> is << X-XO is a local martingale >> . This is a rather un-
usual fact, since the constant process XO may not be adapted, but it is
consistent with our point of view of neglecting altogether ( locally )

constant processes.

We now set a general principle : A being as always a predictable
random open set, X a process in A, X +the equivalence class ( pseudo-
process ) of X, we define :

(1.1.). DEFINITION. Let P be a local property. We say that X has the
property pseudo-P in A ( or that X has property © in A ) iff, for
every neighbouring pair (S,T) in A, the ordinary process XS’T has

property P .

If X has the pseudo-P property in A, the same is true in any smaller
open set. In particular, if X is the restriction to A of a process which
has property P in E+ , then it has property pseudo-P in A .
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The following theorem shows that the word << local >> is used here in
a sense consistent with its use in topology :

(1.2). THEOREM. Let P be a local property. Let A be the union of a se-
quence AR of predictable random open sets. If X has the property pseudo-P
in each An, then it has property pseudo-P in A .
Proof. We consider a neighbouring pair (S,T) in A 3 we want to show
that the ordinary process XS’T has property P .

Let # be the set of all stochastic intervals JU,V[, corrésponding
to neighbouring pairs (U,V) in A such that [U]<[S], and 39V has pro-
perty P . According to property 3) of localizable properties, ¥ is clo-
sed under finite unions. Therefore, there exists an increasing sequence
JU,,V [ of elements of ¥ , with union ]JU,V[ , such that ]U,V[ contains
every element of ¥ up to an evanescent set.

If we can prove that U=S, V:TS ( see (0.1)) , then the theorem is
true. Indeed, first fix m and for nzm set R =+ on{Um:a)}, R =+ on

{v >T}, =V, on {U <o,V ST} o Then R f+oo . On the other hand, set

T _T on {U <a>}, m_+a) otherwise. We know that xYnsVn has property

P , hence the same is true for (XUn’Vn) mifn (XUm’ my OsFn  ( statement
1) for localizable properties ). Since P is local, we may apply statement
4), to deduce that X M 0 has property P . Setting W =8 if 8<w ,U n=%
W t ® otherwise, this means that (XS’T)O’Wm has property P. Applying

again statement 4), we get that xS, T has property ® .

So let us prove that U=S, V—TS - First of all, let S be the time
S{SeA }o and consider a neighbouring paér és Tm) in AT ( lemma (0.3)).
Since X has property pseudo-P in AT XPmetm pgg property P, hence
18T, belongs to ¥ , and therefore is contained in JU,V[ up to an
evanescent set. Hence {U=S} contains a.s. {8 n=S}, and finally U=S .

Next, assume that V<T with positive probability. Then for some m
{VeA™} has positive probablllty, and accordlng to lemme (0.3), 2), we
may find some neighbouring pair (J,K) in A" such that P{J<V<K}>0. Then
for some n we would also have P{J<V <K}>O. Since XJ’K has property P,
so does X101 , where L=V, M=K if {J<Vn<K}, L=M=o otherwise. Applying
property 2) for the first time, we get that X 2*"n has property P, with
W =V, if L=, W =M if I<oco . Therefore ]Un,Wn[eN , which is absurd
since K exceeds V with strictly positive probability.

(1.3). COROLLARY. Let A be the union of a sequence A" of predictable open
sets. In each An, let X2 be a process which has property pseudo-P. If

the compatibility conditions of lemma (0.4) are satisfied, there exists
in A a process X such that X~ Xn for every n, it is unique up to equi-
valence and possesses the psedﬁo—P property in A.
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This amounts simply to a restatement of lemma (0.4) and theorem
(1.2) together.

§ 2. PSEUDO-SEMIMARTINGALES AND DECOMPOSITIONS

Corollary (1.3) lends itself to the proof of a number of results.
The following ones are examples, and it will be sufficient to prove one
of them, the proofs being quite similar.

(2.1). THEOREM. Let X be a process of pseudo-locally integrable varia-
tion in A. There exists a pseudo-predictable process Y, of pseudo-finite
variation in A, such that X-Y is a pseudo-local martingale in A, and

Y is unique up to equivalence. Y is called the compensator of X in A.
REMARK. As usual, locally integrable variation includes adaptation.

In expressions like << pseudo-local martingale >>, << pseudo-locally
integrable >>, the word << local, locally >> could be suppressed without
confusion, since pseudo-P must only refer to a local property. However,
we prefer not to do it here.

Proof. Represent A as the union of a sequence of open sets An:]Sn,Tn[,
where (Sn,Tn) are neighbouring pairs in A ( lemma (0.3)). The process

XR_x R 45 g process of locally integrable variation in the usual
sense, and therefore has a compensator Y*. The intersection APNAT is
an open stochastic interval, and the usual uniqueness of compensators
implies that Y"-Y" is constant in ANA™. Then we apply corollary (1.3).

(2.2). THEOREM. Let X be a pseudo-supermartingale in A. Then X has a
representation ( unique up to equivalence ) as a difference of a pseudo-
local martingalé“and a pseudo-increasing, pseudo-predictable process

in A.

(2.3). THEOREM. Let X be a pseudo-special semimartingale in A. Then X
has a decomposition ( unique up to equivalence ) into a sum of a pseudo-
local martingaléyﬁhd a pseudo-predictable process of pseudo-finite varia-
tioﬁ: This is called the canonical decomposition of X in A.

(2.4). THEOREM. Let X be a pseudo-semimartingale in A. Then X can be
represented ( without uniqueness ) as a sum of a pseudo-local martingale
in A and a process of pseudo-finite variation in A.

Proof. This theorem reduces to (2.3) after a first application of theo-
rem (1.3), which consists in defining a process which, up to a locally
constant process, represents the sum of the Jjumps of X whose size exceeds
1 in absolute value.

Other applications of theorem (1.3) concern the definition of
[X,X] for a pseudo-semimartingale, and then of <X,X> if compensation
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is legitimate (2.1). Similarly, pseudo-local martingales can be decom-
posed into their continuous and purely discontinuous parts, etc.

g8 3. THE MEASURE ASSOCIATED WITH A PSEUDO-SEMIMARTINGALE IN A

This section should be considered expository, since we had few re-
sults on this subject, and the principal result is borrowed from [7].
However, the reference [7] may not be easily available to the readers
of this seminar, and therefore it may be useful to give a somewhat
complete description of the subject.

Let L(A) be the smallest family of subsets of A, closed under
finitely_many operations U,N,\ , such that for any neighbouring pair
(8,T) in A the stochastic interval ]S,T] belongs to I(A). It is easily
seen that any element of I(A) can be explicitly written as a disjoint
union ]Sl,Tl]U...]Sn,Tn] , with n non random, S;,T; being stopping
times such that S,<T.<S. 4 , 8;<T; on {Si<a>}, T.<8;,1 on {Ti<a)}.
Given any right continuous process X in A, we assoclate with X the only
finitely additive mapping p from I(A) to random variables such that

w(18,T] =(XT—XS)I{S<a>f fngﬁny neighbouring pair

The knowledge of p doesn't determine uniquely X, but it characterizes
the corresponding pseudo-process, as may be easily seen by looking at
neighbouring pairs (slseA}’t{seA}> with s,t rationals. We already used
this << measure >> p in the deterministic case, in the proof of lemma
(0.4). In this section, we shall use for p the stochastic integral
notation p=4X , u(B):£ dX for BeL(A).

The main result of [7] on pseudo-semimartingales in A can now be
expressed as follows ( theorem 8, p. 591 ).

(3.1). THEOREM. Let X be a pseudo-semimartingale in A. There exist a
true semimartingale Y in R+ and a predictable process H in R+ , strictly
positive in A, such that :
for any neighbouring pair (S,T), the stochastic integral ( of a

predictable, not locally bounded process ) HI]S T]'Y is defined in
the usual sense, and equal to X ’T. ’

We shall write simply.: dX = H.dY .

A version of this theorem is also proved for optional random open
sets, which we didn't consider here.

We are not going to prove this in detail, but we use the same proof
to get a result on processes of finite variation. The proof for semi-
martingales just uses the Banach space El instead of Zl. Note that we

prove for H something a little better than strict positivity in A .
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(3.2). THEOREM. Let X be a process of pseudo-finite variation in A.
There exist a true process of finite variation Y in E+ , & predictable
process H in E+ , strictly positive in A, such that dX=H.dY in A .

If X is predictable, Y can be chosen predictable. If X is pseudo-locally
integrable, Y can be chosen integrable.

Proof. According to lemma (0.3), we may consider a sequence of neigh-
bouring pairs (8, ,T ) such that A:Un ]Sn,Tn[ . It is easily seen that,
if X is pseudo-locally integrable, we may choose these pairs such that
x°nTn pag integrable variation.
Set X2 = xowTa |y | ax
18,51, S
are finite valued, and there are st most countably many of them, there
exists a law Q equivalent to P such that they are all Q-integrable.
Otherwise stated, X belongs to the space XI(Q) of processes of inte-

| . Since these random variables

grable variation relative to Q. Choose a sequence of constants an>O
n = —_ Nl
such that I an”X ”Vl(Q) < . Set Cqy= ]Sl’Tl] s Cn_]Sn,Tn]\kU 1810y ]

and define processes_Y, X by

1

T.o= I ét anICn(s)ng , H=232_a’ .
It is clear that Y belongs to Xl(Q) ( predictable if the P are predic-
table ), that H is predictable and >0 in A - it can even be said that
for a.e. w, H (w) is bounded below on every compact set of A(w) - and
that H.4Y = X in each one of the C_, hence in A.

If X is pseudo-locally integrable, the change of law isn't necessa-

ry, and Y belongs to Yl(P).
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