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SEMIMARTINGALES IN PREDICTABLE RANDOM

OPEN SETS

ZHENG Wei An

Séminaire de Probabilités XVI 1981

INTRODUCTION 
’

After L. Schwartz discussed in [1] the restriction of semimartingales
to a random open set, P.A. Meyer [2] gave a definition of semimartinga-
les in a random open set. This was discussed again by L. Schwartz [3]
from the point of view of formal measures. A number of fine results,
specially for the case of continuous semimartingales, have been proved
since the definitions were given ( see [3], and the recent refe-
rence [7]~ ).

The purpose of this paper is to extend to semimartingales in a pre-
dictable random open set as much of the classical theory of semimartin-

gales as possible, following the lines of L. Schwartz and P.A. Meyer .
The restriction of predictability is rather strong, but no restriction
will be placed on the semimartingale itself. We follow systematically
an idea due to L. Schwartz, which consists in neglecting locally cons-
tant processes in the random open set A. ,Then we can define pseudo-adap-
ted processes in A, local pseudo-martingales, pseudo-semimartingales,
etc. and prove for instance a decomposition result for pseudo-semimartin-

gales,into a local pseudo-martingale part and a pseudo-adapted process
of finite variation in A. This terminology is rather heavy, but if the
reader is willing to make a slight effort of abstraction, and to deal
with equivalence classes of processes in A modulo locally constant pro-
cesses ( these classes will be called pseudo-processes ), then the prefix
pseudo- will disappear from all other places, and all the definitions
of adaptation, semimartingales, local martingales... for pseudo proces-
ses will appear as natural extensions of the classical ones.

The main application of this theory, and in fact the reason why it
was developed by L. Schwartz, concerns processes in a differentiable
manifold V : ’if X is a continuous process with values in V, and U is

open, then is a predictable random open set. Therefore the usual
localization procedures in V lead to localization on random open sets
in m+xO .
1. When the first version of this paper was written, we didn’t know
of this work by Meyer and Stricker, where the pseudo-semimartingales are
introduced under the name of « semimartingale measures ». This new
version has been modified to take it into account. I thank P.A. Meyer
for his help in preparing the final version.
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8 0 . NOTATION AND ELEMENTARY RESULTS

Throughout this paper, we work on a fixed probability space (fi,F,P)
with a filtration (F~) which satisfies the usual conditions. We denote
by T ( ~ ) the set of all (Ft) stopping times ( predictable times )

Let A be a random set, i.e. a measurable subset of We say that

A is a random open set if, for (almost) every w, its section A(cw) is

open in ~+ . This introduces a slight difficulty at 0 since [0,a[ and

~O,a~ are both open sets in ~+ : : rather than going into trivial discus-

sions, we shall assume that A doesn’t contain 0, leaving the easy exten-
sion to the reader. This will not prevent us from giving R+xrl as an
example of a random open set J

A will_denote a random open_set, predictable

unless the contrary is specified.

A real valued process in A is a measurable mapping X from A to R ( some-
times to the extended line ? ). As usual, we do not distinguish from A

any set A’, from X any process X’, which are equal to A, X except on an
evanescent set. A process X in A will be identified to XIA , the process
in which is equal to X on A and to 0 on AC. 

,

The definition of a process X cadlag in A is obvious. We say that

X is locally constant in A if ( for a.e. w ) X (w) is constant in each

one of the connected components of A(w) - which are open intervals. We

say that two processes X,Y are equivalent in A ( notation : X NA Y or

simply X ~ Y if no confusion can arise ) if X-Y is locally constant in
A . An equivalence class of processes in A is called a pseudo-process.
For instance, if pseudo-processes can be identified to proces-
ses X normalized to be 0 at the initial time, but already in R*xfl there

is no natural way of « normalizing » pseudo-processes.
For any Se T , t define

(0.1) TS = (t,w)eA {

If. S belongs to so does TS since is predictable and closed.

We have ( Q denoting as usual the set of rationals )

(0.2) A = 
+ 

We denote by T(A) ( PT(A)) the set of all SeT such that [S]cA .
Note that if SPT , the set belongs to FS- , , and S{SeAt
belongs to PT(A). A pair of times (S,T) is called a neighbouring pair
in A ( or T is called a neighbour of S in A ) if we have : SeT(A),

SToo on { Soo { , and if the closed stochastic interval
[S,T] is contained in A. We denote by N?(A) the set of neighbouring
~. out 3, o~ X is dx. 

pairs in A.
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We have the following easy lemma :

(0.3) LEMMA. 1) For every SePT(A), the stochastic interval [S,T8[ is
the union of an increasing sequence of stochastic intervals where

each Tn is a neighbour of S in A . ° *>
2) There exists a sequence (Sn,Tn) of neighbouring pairs such that

Un 
Proof. consider the filtration (Ft)=(FS+t). Then it is

well known that T’=TS-S is an (F’t)-predictable time, and since A is
open it is a.s. >0 on Consider a sequence foretelling T’ and
set Tn=S+Tn on on It is obvious that 1) is satisfied.

As for ii), we set for rational r, and apply 1) to Sr to
construct a sequence (Sr,Trn) of neighbouring pairs « filling »

[Sr,TSr [=[r,Tr[ . Then we reorder these pairs into a single sequence

(Sn,Tn) and apply (0.2).
The following result allows the construction of pseudo-processes

by « pasting together of local data » . It doesn’t require a filtra-

tion, so we state explicitly that A, An anen’t assumed to be predicta-
ble. 

_ ______________

(P.4) LEMMA. Assume A is the union of a sequence An of random open sets,
and that, for every n , a process Xn is given in An, right continuous in
An, and the following compatibility condition is satisfied

for every (m,n) , Xn

Then there exists in A a right continuous process X, unique up to equi-
valence, such that Xn for every n .

Proof. First be begin with the deterministic case of the lemma :
A is an open set in ~+ ( not containing 0 for simplicity ), union of
a sequence of open sets An, and the Xn are ordinary right continuous
functions. Then we enumerate all open components of A, and
choose in each one a point wk : for instance, wk=(uk+vk)/2 for a boun-
ded component, wk = Ui+1 for the unbounded component if it exists.

Let I(A) be the smallest family of subsets of A, closed under
finite operations LJ,n,B , which contains all bounded intervals ]u,v]
with [u,v]CA ( I(A) simply consists of finite disjoint unions of such

- 

intervals ). Any function X/determines uniquely a finitely additive
measure on  (A) such that ,..and LAO iff 
Conversely, given a finitely additive measure y on I(A), ’ we may construct
a function X such that in the following way : given ueA, we consi-
der the component ]uk,vk[ containing u and set
1. With a little more care, one can choose S ,T predictable.
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X(u) = if if 

If we start from X, go to ~ and then to X, it is clear that we get a

process equivalent to X, normalized to vanish at each wk . We say that
~, is right continuous if X is right continuous in A.

Consider now two open sets A and A’, two right continuous measures

~, and ~’ on I(A), I(A’) respectively, which induce the same measure on
I(AfIA’). Then there is a unique measure À on I(AUA’) which extends p,
and p,’, and A. is right continuous. We leave the trivial details to the

reader, but indicate explicitly one point : let [u,v] be an interval
contained in AUA’, hence covered by the (open) components of A and A’.

By compactness, there is a finite chain with tl...tk
rational, such that each interval is contained in some compo-

nent of either A or A’ , and then is unambiguously defined,
due to the compatibility of ~ and )i’. Since we can

deduce the value of 

Returning now to the statement of the lemma, we apply the procedure
just described to construct by induction/measures A. on I(Bn), with
B n =AlUA2...UA n such that 7~n on each I(A ) for k=l,..,n.
By compactness, every set HeI(A) belongs to some I(B ), and setting
h(H)=An(H) ( which doesn’t depend on n ) we have the desired measure
on I(A), which is easily seen to be right continuous. From it we cons-
truct the desired function X as explained above.

Now we go to the general case. It is well known that the components
of a measurable random open set A can be enumerated as stochastic inter-

vals where the functions Uk,Vk are measurable ( but they
aren’t stopping times in general, even if A is predictable ). Let us say
that weO is « good » if all the a. s. properties are true at w : A(cw)
and An(w) are open , A(w)=U Xn(w) is right continuous in 
the compatibility conditions are true... Since we work only up to eva-
nescent sets, we may restrict ourselves to good w’s, and therefore the

only condition we need to check is the following : if the components of

A, An are measurably enumerated, the above deterministic constructions
lead to a measurable process X in A . This is a little tedious, but

easy, and we leave it to the reader.

§ 1 . LOCALIZATION OF PROPERTIES ON A

We are going first to give some generalities on ordinary processes
in In this case, neighbouring pairs are simply pairs of stopping
times (S,T) such that. ST , SToo on Soo. Given any process X, we
denote by XS,T the process (XTtS-XS )I{S~} = XT-XS : f ormall 

’ 

this
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is the stochastic integral ( we just demand here that ST )
Consider now a property of stochastic processes, which we denote by

P. Let us say that P is localizable if the following statements are
true.

1) Tf X has property P , , so does for any pair (S;T), 
2) If (S,T) and (U,V) are pairs with and XU,Vhave pro-

perty P, and if is a stochastic interval, then
X ’ has property P.

3) If (S,T) and (U,V) are two pairs with ST, UV , S=U on j,
and if X’ U V have property P, then so does .

Examples of such properties are, of course, regularity properties of
sample functions ( continuity, cadlag property, finite variation...) ;
many measurability properties ( predictability, optionality, adaptation
understood in the ..strong sense, namely Fm-measurability at any stopping
time T ), and besides that the following properties, some of which ob-
viously are not at all « local » .

X is a martingale, a square integrable martingale, a super or sub-

martingale, a process with integrable variation, a class (D) supermar-
tingale, a local martingale, a semimartingale...

We say that P is local if it is localizable, and satisfies

4) If there exists a sequence T n too of stopping times, such that XC’Tn
has property P , then X has property P .

Every localizable property P has a localization defined as

follows : X has property Ploc iff there exists a sequence Tntoo such

that XO,Tn has property P. We leave it to the reader to check that 
is a local property. For instance, the localization of « X is a mar-

tingale » is « X-X~ is a local martingale » . This is a rather un-
usual fact, since the constant process XO may not be adapted, but it is
consistent with our point of view of neglecting altogether ( locally )
constant processes.

We now set a general principle : A being as always a predictable
random open set, X a process in A, X the equivalence class ( pseudo-
process ) of X, we define :
(1.1.). DEFINITION. Let P be a local property. We say that X has the
property pseudo-P in A ( or that X has property P in A ) iff, for
every neighbouring pair (S,T) in A, the ordinary process has

property P .

If X has the pseudo-P property in A, the same is true in any smaller
open set. In particular, if X is the restriction to A of a process which

has property P in E , then it has property pseudo-P in A .
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The following theorem shows that the word « local » is used here in
a sense consistent with its use in topology :

(1.2). THEOREM. Let P be a local property. Let A be the union of a se-

quence An of predictable random open sets. If X has the property pseudo-P
in each An, then it has property pseudo-P in A .
Proof. We consider a neighbouring pair (S,T) in A ; we want to show
that the ordinary process X ’ has property P .

Let  be the set of all stochastic intervals ]U,V[, corresponding
to neighbouring pairs (U,V) in A such that ~U~~~S~, and X ’ has pro-
perty P . According to property 3) of localizable properties, ? is clo-
sed under finite unions. Therefore, there exists an increasing sequence

]Un,Vn[ of elements of ~ , with union ~~1,~~ , such that contains

every element of ~ up to an evanescent set.

If we can prove that U=S, V=TS ( see (0.1)) , then the theorem is
true. Indeed, first fix m and for n>m set R =+oo i, Rn=+co on

R =Vn on . Then On the other hand, set

T =T on }U oo j, T =+co otherwise. We know that has property
P , hence the same is true for ( statement

1) for localizable properties ). Since P is local, we may apply statement
4), to deduce that has property P. Setting if Soo ,U =oo ,
Wm ~ ® Otherwise, this means that has property P. Applying

again statement 4), we get that XS’T has property P .
So let us prove that U=S, V=TS . First of all, let Sm be the time

and consider a neighbouring pair (Sm,Tm) in Am ( lemma (0.3)).
Since X has property pseudo-P in Am, has property P, hence

belongs to ~ , and therefore is contained in up to an
evanescent set. Hence contains a.s. and finally U=S .

Next, assume that with positive probability. Then for some m
has positive probability, and according to lemma (0.3), 2), we

may find some neighbouring pair (J,K) in Am such that Then
for some n we would also have K}>0. Since has property P,
so does where L=V~ , M=K L=M=oo otherwise. Applying
property 2) for the first time, we get that XUn’Wn has property P, with
Wn=Vn if Z=oo , if Therefore which is absurd
since K exceeds V with strictly positive probability.

(1.3). COROILARY. Let A be the union of a sequence An of predictable open
sets. In each An, let Xn be a process which has property pseudo-P. If
the compatibility conditions of lemma (0.4) are satisfied, there exists
in A a process X such that for every n , it is unique up to equi-
valence and pos.sesses the pseudo-03C1 property in A.
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This amounts simply to a restatement of lemma (0.4) and theorem
(1.2) together.

g 2. PSEUDO-SEMIMARTINGALES AND DECOMPOSITIONS

Corollary (1.3) lends itself to the proof of a number of results.
The following ones are examples, and it will be sufficient to prove one
of them, the proofs being quite similar.

(2.1). THEOREM. Let X be a process of pseudo-locally integrable varia-
tion in A. There exists a pseudo-predictable process Y, of pseudo-finite
variation in A, such that X-Y is a pseudo-local martingale in A, and
Y is unique up to equivalence. Y is called the compensator of X in A.
REMARK. As usual, locally integrable variation includes adaptation.
In expressions like « pseudo-local martingale », « pseudo-locally
integrable », the word « local, locally » could be suppressed without
confusion, since pseudo-P must only refer to a local property. However,
we prefer not to do it here.

Proof. Represent A as the union of a sequence of open sets An=]Sn,Tn[’
where (S Tn ,T ) n are neighbouring pairs in A ( lemma (0.3)). The process
Xn=X S n’ T n is a process of locally integrable variation in the usual
sense, and therefore has a compensator Yn. The intersection AnflAm is
an open stochastic interval, and the usual uniqueness of compensators
implies that Yn-Ym is constant in AnflAm. Then we apply corollary (1.3).
(2.2). THEOREM. Let X be a pseudo-supermartingale in A. Then X has a
representation( unique up to equivalence ) as a difference of a pseudo-
local martingale and a pseudo-increasing, pseudo-predictable process
in A.

(2.3). THEOREM. Let X be a pseudo-special semimartingale in A. Then X
has a decomposition ( unique up to equivalence ) into a sum of a pseudo-
local martingaland a pseudo-predictable process of pseudo-finite varia-
tion. This is called the canonical decomposition of X in A.
(2.4). THEOREM. Let X be a pseudo-semimartingale in A. Then X can be
represented ( without uniqueness ) as a sum of a pseudo-local martingale
in A and a process of pseudo-finite variation in A.
Proof. This theorem reduces to (2.3) after a first application of theo-
rem (1.3), which consists in defining a process which, up to a locally
constant process, represents the sum of the jumps of X whose size exceeds
1 in absolute value.

Other applications of theorem (1.3) concern the definition of
[X,X] for a pseudo-semimartingale, and then of X,X> if compensation
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is legitimate (~.1). Similarly, pseudo-local martingales can be decom-

posed into their continuous and purely discontinuous parts, etc.

g 3. THE MEASURE ASSOCIATED WITH A PSEUDO-SEMIMARTINGALE IN A

This section should be considered exposi.tory, since we had few re-
sults on this subject, and the principal result is borrowed from [7].
However, the reference [7] may not be easily available to the readers
of this seminar, and therefore it may be useful to give a somewhat

complete description of the subject.
Let I(A) be the smallest family of subsets of A, closed under

finitely many operations U,n,B, such that for any neighbouring pair
(S,T) in A the stochastic interval JS,TJ belongs to I(A). It is easily
seen that any element of I(A) can be explicitly written as a disjoint
union with n non random, Si,Ti being stopping
times such that on on 

Given any right continuous process X in A, we associate with X the only
finitely additive mapping ~ from I(A) to random variables such that

(JS,TJ) } 
for any neighbouring pairi b J (S,T)

The knowledge of  doesn’t determine uniquely X, but it characterizes
the corresponding pseudo-process, as may be easily seen by looking at

neighbouring pairs with s,t rationals. We already used

this « measure >> ~, in the deterministic case, in the proof of lemma

(0.4). In this section, we shall use for  the stochastic integral
notation 1J.=dX , dX for BeI(A).

B 
=

The main result of.[7] on pseudo-semimartingales in A can now be
expressed as follows ( theorem 8, p. 591 ).

(3.1). THEOREM. Let X be a pseudo-semimartingale in A. There exist a
true semimartingale Y in R+ and a predictable process H in ~.+ , , strictly

positive in A, such that :
for any neighbouring pair (S,T), the stochastic integral ( of a

predictable, not locally bounded process ) HI]S, T].Y is defined in
the usual sense, and equal to XS,T.

We shall write simply.: dX = H.dY .

A version of this theorem is also proved for optional random open

sets, which we didn’t consider here.

We are not going to prove this in detail, but we use the same proof
to get a result on processes of finite variation. The proof for semi-

martingales just uses the Banach space H1 instead of Xl. Note that we
prove forH something a little better than strict positivity in A .
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(3..2). THEOREM. Let X be a process of pseudo-finite variation in A.

There exist a true process of finite variation Y in 3R , a predictable

process H in , strictly positive in A, such that dX=H.dY in A .
If X is predictable, Y can be chosen predictable. If X is pseudo-locally

integrable, Y can be chosen integrable. 
’

Proof. According to lemma (0.3), we may consider a sequence of neigh-
bouring pairs such that ]S,T [ . It is easily seen that,
if X is pseudo-locally integrable, we may choose these pairs such that
XSn,Tn has integrable variation.

Set Xn = Vn=]Sn,Tn] |dXS|. - Since these random variables

are finite valued, and there are at most countably many of them, there
exists a law Q equivalent to P such that they are all Q-integrable.
Otherwise stated, Xn belongs to the space V (Q) of processes of inte-
grable variation relative to Q. Choose a sequence of constants a >0
such that 1: n Set C1= 
and define processes Y, K by

Yt = L nO It = L n 
It is clear that Y belongs to ( predictable if the Xn are predic-
table ), that H is predictable and >0 in A - it can even be said that
for a.e. w, H (w) is bounded below on every compact set of A(w) - and
that H.dY = dX in each one of the Cn, hence in A.

If X is pseudo-locally integrable, the change of law isn’t necessa-

ry, and Y belongs to 
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