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On Countable Dense Random Sets

by

D. J. Aldous and M. T. Barlow

We shall discuss point processes whose realisations

consist typically of a countable dense set of points. In

particular, we discuss when such a process may be regarded

as Poisson.

The most primitive way to describe a point process on

is as a subset B of Sd x where the section

B~ represents the times of the "points" in realisation

w. In the locally finite case, there are the more familiar

descriptions using the counting process

Nt (c~) =~‘(B~ n!:0,t]) (as in !:BJ])

or using the random measure
~ (c~,D) - ~ (B~ nD) (as in CKl)

Our point processes will generally not be locally finite,
so we cannot use these familiar descriptions: we revert to

describing a process as a subset B.

We first describe an (obvious) construction of a

countable dense Poisson process. Let 0 be a countable

infinite set. Let (Ft) be a filtration (all filtrations

are assumed to satisfy the usual conditions).. Suppose
’ i) 1, e E 0} are optional times such that each

counting process N03B8t = s t) is a Poisson p rocess of

rate 1 with respect to (Ft)’ and suppose the process N8
are independent. Let ~ be the random measure on 0 x 

whose realisation ~(c~) has the set of atoms

He. : i~l, e E 0}. Then ( describes a uniform P oisson
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process on 0 ~ with respect to (Ft). But we can

also think of ~ as a marked point process on the line.

That is, each realisation is an a.s. countable dense set

{S03B8i(03C9) : i)1, e s 0} of points in and each point

is marked by some e. The corresponding unmarked process

can be described by

(1) B = t for some i,8} - { (w,t) :~ (w,OX{t} )=1~ .

Think of B as a a-finite Poisson process. We are

concerned with the converse procedure: given a set B,

when can we assign marks e to the points of B to construct

a uniform Poisson process ~ satisfying (1)? To allow

external randomisation dn assigning marks, we make the

following definitions:

(2) Definition. (Gt) is an extension of (Ft) if for

each t

(i) Gt:) Ft
(ii) Gt and ~~ are conditionally independent given Ft

(3) Definition B is a a-finite Poisson process with

respect to ( ~t) if

(i) B is (Ft)-optional
(ii) There exists a uniform Poisson process ~ on

G x [0,00) with respect to some extension (Gt)
of (Ft) such that (1) holds.
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Theorem 4 below gives a more intrinsic description of

a-finite Poisson processes. First we recall some notation.

An optional time T has conditional intensity a(W,s) if

T has compensator At = a(s)ds. We may assume a(w,s)

is previsible by [D.V. 19] . Replacing (Ft) by an

extension does not alter the conditional intensity of an

(Ft)-optional time T.

Recall also the notation

TD = T on D

= oo elsewhere.

Let À be Lebesgue measure on 

(4) THEOREM. Let (Ft) be a filtration. Let B be an

optional set whose sections BW are a.s. countable. The

following are equivalent

(a) B is a a-finite Poisson process

(b) There exists a family (Tn) such that

(5) Tn is optional; the graphs are disjoint;

B = U[Tn] a.s.;

(6) Tn has a conditional intensity, say a (o,s) ;
n

(7) a.e. (P x À)

(b’) Every family (Tn) satisfying (5) also satisfies

(6) and (7)
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(c) For every previsible set C

{c~ : C~ ~ B~ _ ~ } - {c~ : : J~ (C~) - o } a. s.

Remark Families satisfying (5) certainly exist, by the section

theorem and transfinite induction [D. VI. 33] . .

The next result comes out of the proof of Theorem 4.

(8) PROPOSITION. Let p be a probability measure on

[0,00) which is equivalent to Lebesgue measure .

(a) Let (Yi) be i.i.d. with law p , , and let

(Ft) be the smallest filtration making each

Yi optional - that is, the filtration

generated by the processes . Then

B = U[Yi] is a a-finite Poisson process with respect

to (ft).

(b) Conversely, let B be a a-finite Poisson

process with respect to some (ft). . Then

there exist times (Yi) such that B = U[Yi]
a.s., (Yi) are i.i.d. with law p , and (Y,)
are optional with respect to some extension of

( ~t) .

Before the proofs, here is an amusing example.

E~x~_~_-ample There exists a process Xt and filtrations

(Ft) , (Gt) such that X is optional with respect to each

of (ft) and (Gt) , but X is not optional with respect

to ft n Gt . .
To construct the example, let (Yi),B,(ft) be as in
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part (a) of Proposition 8, and let X = 1 . Let n be

the set of finite permutations Tr = ~r (2) ,", ) of

(1,2,... ). Since n is countable we can construct a

random element ~r* of n such that P(~* = Tr) > o for

each  En. . Take 7r* independent of Y = (Yl’ Y2’... ).
V2,... ) - (Y,~* (1) ~ Y,~* (2)’... ) . Let

(Ft) be the smallest filtration making each Vi optional.

Since Xt = ~1(Y - t) - t~ ’ , plainly X is both

(Ft)- and (Gt)-optional. But F~ n G~ is trivial: For

let D E G~ ’ . Then there exist measurable functions

f,g such that

1D = f(Y) = g(y) a.s.

So f(Y) - h(Y,~r*) a.s., ;~r) - g(y,~(1),Y,~(2),..)
But 7r* is independent of Y with support n, so

= h (Y,’~ ) a. s. , each 1r E n . .

So, putting G = {g = 1} ’ ,

D={(Y03C0(1), Y03C0(2),... ) ~ G} a.s., each 03C0 ~ 03A0.

Thus D is exchangeable, and so is trivial by the Hewitt-

Savage zero-one law.

We now start the proof of Theorem 4. The lemma below

shows that (b) and (b’) are equivalent.

(9) LEMMA. Let (Tn) be optional times whose graphs

[Tn] are disjoint. Let (Tm) ) be a similar family, and suppose
= Suppose Tn has conditional intensity a 

n . .



316

Then has a conditional intensity, am say, and

Eam = Ean a.e. (Px B) .

Proof Put = Then has a conditional

intensity, a say. It is easy to verify

an = am,n a.e.

âm ~ 03A3am , n is the conditional intensity of Tm , where

the sum is a.e. finite because

E E a (s) ds = E P(U  co) s  co) 5 1 . .J n=1 n_1 m~n

Hence 03A3an = 03A303A3am,n = 03A3âm  ~ a.e.

Lemmas 10 and 13 show that conditions (b’) and (c) are

equivalent.

(10) LEMMA. For B as in theorem 4, the following are

equivalent

(i) ° C n B~ _ ~} =’ : a( C~) - o} a.s., each

previsible C . .

(ii) Each family (Y) satisfying (5) also satisfies

(6).

Proof: (ii) implies (i) Let C be previsible. Put

T = inf {t : : n [o,t]) > o} . . Then T is optional, so

C’ = C n[0,T] is previsible. Now a(C~ ) - o a.s. We must

prove

( 11 ) C~ n - B~ _ ~ a. s.
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Let (Tn) satisfy (5) and (6). . Then

~ I 

ds

= 0 .

Since B= U[Tn] , , (11) follows.

(i) implies (ii). . Let T be optional, ET] C. B . Let A
be the compensator of T . From the proof of the Lebesgue

decomposition theorem, we can write A t = At + 

where there exists a progressive set D such that

(12) ) ~(D) ) = 0 a.s.? ; the measure dA((jo) ) is carried on

D~ a.s.

Let C = > 0} ; S then C is previsible and since

A~ ~ ~ = = A~ , ’

and

= 1 (s)ds = 0 ,
C satisfies (12). . However 

’

EÂ~ = ElC(s)dÂs

= P(T~ ) = 0 by (11) . .
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So A == 0 .

(13) LEMMA. For B as in Theorem 4, the following are

equivalent.

(i) {03C9 : C03C9 ~ B03C9  ~} ~ {03C9 : 03BB(C03C9) > o} a.s., each

previsible C.

(ii) Each family (Tn) satisfying (5) and (6)

also satisfies (7).

Proof.(ii) implies (i) Let C be previsible. Define optional

times :

T = inf {t : n CO,t]) > 0)

S = inf {t : tE B03C9 n C03C9}.

It is sufficient to prove 

(14) S_ T a.s.

Consider the previsible set C’ = C n (T,S]

Let (Tn) satisfy (5), (6). By definition of S , the sets

{03C9 : Tn E C’03C9 } are disjoint. So E C’ ) _ 1. But

03A3 P (Tn ~ C’03C9) = 03A3ElC’ dl[Tn,~)
= 03A3ElC’ (s)an(s)ds

(s) Za (s) ds .

But Za =00 a.e., and so X(C’ ) =0 a.s. But by
n w

definition of T we have X(C’ ) > 0 on {T  S}. This
w

proves 14.
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(i) ) implies (ii) Let (T ) satisfy (5), (6) . Fix N  ~ .

Consider the previsible set H = {(03C9,s): 03A3an s N-1} . We

must prove P x a(H) - o . Suppose not : then for some

c > 0 we have

P (S~0) >, E , where {c~ : ~ (H~) >~

Define optional times

Si = inf {t : a n [ O,t] ) > i~/N} i = 0 , ... , N .

Consider the previsible sets

i = 1,...,N

(S~, .

By construction, a (H~ ) - E/N on S~ o . So by ( i ) ,

Bw n Hi03C9 is a.s. non-empty on . So

E 
E 

= E 
E 

N e
n n w ’ n c

EH ) 
= En fill 

- E ds 

’

s (N-I) E

because Ean 5 N-I on H, and 03BB(H03C9) ~ E by construction.

This contradiction establishes the result.
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It remains to prove that (b) and (a) are equivalent.

Recall from [BJ] that optional times 0S1S2 ... form

a Poisson process of rate 1 with respect to ) iff Sn
has conditional intensity 1(S n-1 

 s~Sn) . 
If moreover

this condition holds for each family 03B8~03B8, and if

the graphs : i; 1, 03B8~03B8} are disjoint, then the

families {(S03B8i)i1 : 03B8~03B8} are independent.

The proof that (a) implies (b) is easy. The family

(Se) in (1) plainly satisfiesthe conditions of (b) with

respect to the extension 
’ 

(G ) . . Because (b) implies (b’),

we deduce that any (G)-optional family satisfying (5)

will also satisfy (6) and (7) with respect to (G ) . . Now,

as remarked before, there exists a family satisfying (5) with

respect to (~t) ; ; and since conditional intensities are

unchanged by extension, this family satisfies (6) and (7)

with respect to (F ) . .

The proof that (b) implies (a) is harder. There are

only two ideas. First, we show how to construct S1 with

[S1] ~ B such that S1 has exponential law (Lemma 19).

Then we can proceed inductively to construct a uniform

Poisson process (S~) . . Finally, we must show that

[S03B8i] exhausts B .

Here is a strai ghtforward technical lemma.

(14) LEMMA. Let (Qi) be optional times with conditional

intensities , Suppose Qi -~ °° a.s. and CQiJ
are disjoint. Let T= min(Q.) . . Then

T(T=Qi) 
has conditional intensity 

T has conditional intensity Eai 
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Here is an informal description of the external

randomisation. Suppose

(15) T is optional, with conditional intensity a,

p(w,s) is previsible, ospsl .

Then we can define Q such that:

if T = t then Q = t with probability p(w,t)

otherwise

It is intuitively obvious that Q has conditional

intensity p.a. Here is the formal construction and proof.

(16) LEMMA. Let T,a,p be as in (15), on a filtration

( Ft) . Let U be uniform on [0,1] , , independent

of F . . Define

Q = T if U _ p(T) 5 

otherwise.

Let Gt be the usual augmentation of Gt = 
Then (Gt) is an extension of (t) ,and Q is

(Gt)-optional with conditional intensity p.a.

Proff Q(Q~t) ~ 03C3(t, U) , ’ and hence U) , so

(Gt) is indeed an extension of (Ft). . Plainly Q is

(G)-optional. To prove the final assertion, let be

a (Gt)-optional time. It is sufficient to prove

(17) P (Q  S) = E S0 a(s)p(s)ds .
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We assert

(18) R = is 

For {Ru} = U {StT} , and {StT} is in F since

tu
t rational

G n {T>t} = Ft n {T>t}. To prove (17), note that

{Q~S} = {TR,Too,Up(T)}. . So

= 

= E p(T) by the independence of U

- E 

- E a(s) ds .

(17) now follows, as CT,~) , and a = 0 on this set.

(19) LEMMA. Let (Ft) be an extension of (i=t). Suppose

satisfies condition (b) with respect to (~t) .
Let be (Ft)-optional. Then there exists an

extension (Gt) of (Ft) and a (Gt)-optional time

S with conditional intensity 1(S 0 sS) 
such that

[ S] c UCTn] . . 
0
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Proof Define ~(x) = 1 x~ 1

= x 0xl

= 0 x0

Define inductively

Pl~~ = ~ a~(~s)) ~(s>S,)
J-l

~j ~ 1 - ~ ~(s>S )

Then p. is predictable , op.l , and

(20) ~ (1A ~aj) . 1~~)

By Lemma 16 we can construct extensions of

> and times Q. such that

ET~] ,

Q_ has conditional intensity p.a..

Then

j ~ P(Q_ -’  t) = 

j Z p . ~ (s) ds

= E[ ft Ea_(s)p_(s) ds
~0 " "

 t by (20) .
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By the Borel-Cantelli lemma, Qj -~ ~ a.s.

Set S = min (Q~) , and let (Gt) be the filtration

generated by (Gt, j ; 1) . By Lemma 14, S has conditional

intensity 03A3ajpj 1(s~S) , and by (20) this equals

1
(S0 s~S) .

For later use, note that, by Lemma 14, S(S.=Tn) has

conditional intensity pnan l(s~S) . In other words, using

(20) ,

(2l) Tn (Tn=S) has conditional intensity

N N_2

[(1^ai] - (1^  ai) ] 1 
(S 0 s~S) .

We can now prove (b) implies (a) . Let (T 1’n) satisfy

condition (b). By Lemma 19 we can construct extensions

G1t , G2t,... of Ft and (Git)-optional times Si such

that B and such that Si has conditional intensity
i 1

1 S1  sS1 . Let ~1 be the filtration generated by( i-1 
s- i

(Gl : i;l) . Then is a Poisson process of rate 1
1 ,

with respect to F
Now let T2,n = T1,n (T1,n ~ S1i for an y i)

We assert that (T2’n) satisfies (b) with respect to (~1) ,
for a certain set B’ . We need only check (7). Write

a for the conditional intensity of Tk’n . Write
k,n

- s,nRn i = T S1)’ 
i

R
n 

= T1,n (T1,n = S1i for some i) .
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Then

(22) Rn has conditional intensity a1 r n - a2 r n ’ ~ ’ .
But U[Rn] = U[Rn, i] = [S1i] , so by Lemma 9

(a1,n - a2,n) = i a.e.

Thus condition (7) extends from (T’) to 

Now we may apply Lemma 19 again to construct an

extension F2 and ~2-optional times (S2) with

[S2i] ~ U and such that is again a Poisson

process of rate 1.

Continuing, we obtain a uniform Poisson process

: on {1,2,... } x CO,~) . . By construction

[Ski] ~ B , but we must show there is a.s. equality. Thus

we must show that, for each n , ,

(23)  co) = ds + 0 as k   .

Define

Rkn 
= 

(Tk,n(Tk,n = Ski for some i)

As at (22), Rk n has conditional intensity ak ,n 
- 

n 
a k+2,n .

But from (21), Rk has conditional intensity 

(1^ ak,j).
So

(24) E(ak,N - ak+1,N ) ds = E (1^ak,j) - (1^ ak,j) ds
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a , say, as k -~ Suppose, inductively,

that (23) holds for nN . As the left side of

(24) tends to 0 , and the right side tends to E 
by the inductive hypothesis. Thus = 0 a.e, so (23)

holds for N. ..

Proof of Proposition 8. Put f(t) = F~ (t) where F is

the distribution function 

From [BJ] , if Y has conditional intensity 

then Y has law p : conversely, if Y has law  then

Y has conditional intensity with respect to

the smallest filtration making Y optional. Thus the

random variables (Yi) in part (a) of Proposition 8 satisfy

condition (b) of Theorem 4, so is indeed a a-finite

Poisson process.

Part (b) is similar to , but simpler than, the proof

that (b) implies (a) in Theorem 4. Let B be a a-finite

Poisson process, and let (T1’n) satisfy condition (b) of

Theorem 4. Lemma 19 showed how to construct an optional

time S with conditional intensity Essentially

the same argument shows we can construct Y1 with conditional

intensity f(s)1(s~Y1) , and hence with law p . Put

T2,n = T1,n(T1,n~Y1) , and continue. We obtain i.i.d. variables

(Yk) , with U[Yk] ~ B : arguing as at (23), we show that

there is a.s. equality.
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