DAVID J. ALDOUS MARTIN T. BARLOW On countable dense random sets

Séminaire de probabilités (Strasbourg), tome 15 (1981), p. 311-327 <http://www.numdam.org/item?id=SPS_1981__15__311_0>

© Springer-Verlag, Berlin Heidelberg New York, 1981, tous droits réservés.

L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On Countable Dense Random Sets by

D. J. Aldous and M. T. Barlow

We shall discuss point processes whose realisations consist typically of a countable dense set of points. In particular, we discuss when such a process may be regarded as Poisson.

The most primitive way to describe a point process on $[0,\infty)$ is as a subset B of $\Omega \times [0,\infty)$, where the section B_{ω} represents the times of the "points" in realisation ω . In the locally finite case, there are the more familiar descriptions using the counting process

$$N_{t} (\omega) = \# (B_{\omega} \cap [0,t])$$
 (as in [BJ])
or using the random measure
 $\xi(\omega,D) = \# (B_{\omega} \cap D)$ (as in [K])

Our point processes will generally not be locally finite, so we cannot use these familiar descriptions: we revert to describing a process as a subset B.

We first describe an (obvious) construction of a countable dense Poisson process. Let θ be a countable infinite set. Let (F_t) be a filtration (all filtrations are assumed to satisfy the usual conditions). Suppose $\{S_i^{\theta} : i \ge 1, \theta \in \theta\}$ are optional times such that each counting process $N_t^{\theta} = \sum_{i=1}^{r_1} (S_i^{\theta} \le t)$ is a Poisson process of rate 1 with respect to (F_t) , and suppose the process N^{θ} are independent. Let ξ be the random measure on $\theta \ge [0,\infty)$ whose realisation $\xi(\omega)$ has the set of atoms $\{(\theta, S_i^{\theta}(\omega)) : i \ge 1, \theta \in \theta\}$. Then ξ describes a uniform Poisson process on $\Theta \times [0,\infty)$, with respect to (F_t) . But we can also think of ξ as a marked point process on the line. That is, each realisation is an a.s. countable dense set $\{s_i^{\theta}(\omega) : i \ge 1, \theta \in \Theta\}$ of points in $[0,\infty)$, and each point is marked by some θ . The corresponding unmarked process can be described by

(1) B = {
$$(\omega,t):S_i^{\theta}(\omega) = t$$
 for some i,θ } = { $(\omega,t):\xi(\omega,\theta \times \{t\})=1$ }.

Think of B as a σ -finite Poisson process. We are concerned with the converse procedure: given a set B, when can we assign marks θ to the points of B to construct a uniform Poisson process ξ satisfying (1)? To allow external randomisation in assigning marks, we make the following definitions:

- (2) <u>Definition</u>. (G_t) is an <u>extension</u> of (F_t) if for each t
 - (i) $G_t \Rightarrow F_t$ (ii) G_+ and F_{∞} are conditionally independent given F_+
- (3) <u>Definition</u> B is a <u> σ -finite Poisson process</u> with respect to (F_+) if
 - (i) B is (F_{\perp}) -optional
 - (ii) There exists a uniform Poisson process ξ on $0 \times [0,\infty)$ with respect to some extension (G_t) of (F_t) such that (1) holds.

Theorem 4 below gives a more intrinsic description of σ -finite Poisson processes. First we recall some notation. An optional time T has <u>conditional intensity</u> $a(\omega,s)$ if T has compensator $A_t = \int_0^t a(s) ds$. We may assume $a(\omega,s)$ is previsible by [D.V. 19]. Replacing (F_t) by an extension does not alter the conditional intensity of an (F_t) -optional time T.

Recall also the notation

$$T_D = T$$
 on D
= ∞ elsewhere

Let λ be Lebesgue measure on [0, ∞).

(4) THEOREM. Let (F_t) be a filtration. Let B be an optional set whose sections B_{ω} are a.s. countable. The following are equivalent

(a) B is a σ -finite Poisson process

(b) There exists a family (T^n) such that

- (5) Tⁿ is optional; the graphs [Tⁿ] are disjoint; B = U[Tⁿ] a.s.;
- (6) T^n has a conditional intensity, say $a_n(\omega,s)$;

(7) $\sum_{n=1}^{\infty} (\omega, s) = \infty$ a.e. $(P \times \lambda)$

(b') Every family (Tⁿ) satisfying (5) also satisfies
 (6) and (7)

(c) For every previsible set C

$$\{\omega : C_{\omega} \cap B_{\omega} = \emptyset\} = \{\omega : \lambda(C_{\omega}) = 0\}$$
 a.s.

<u>Remark</u> Families satisfying (5) certainly exist, by the section theorem and transfinite induction [D. VI. 33].

The next result comes out of the proof of Theorem 4.

- (8) PROPOSITION. Let μ be a probability measure on $[0,\infty)$ which is equivalent to Lebesgue measure.
 - (a) Let (Y_i) be i.i.d. with law μ , and let (F_t) be the smallest filtration making each Y_i optional - that is, the filtration generated by the processes $1_{[Y_i,\infty)}$. Then $B = U[Y_i]$ is a σ -finite Poisson process with respect to (F_t) .
 - (b) Conversely, let B be a σ -finite Poisson process with respect to some (F_t) . Then there exist times (Y_i) such that $B = U[Y_i]$ a.s., (Y_i) are i.i.d. with law μ , and (Y_i) are optional with respect to some extension of (F_+) .

Before the proofs, here is an amusing example.

<u>Example</u> There exists a process X_t and filtrations (F_t) , (G_t) such that X is optional with respect to each of (F_t) and (G_t) , but X is not optional with respect to $F_t \cap G_t$.

To construct the example, let $(Y_i), B, (F_t)$ be as in

part (a) of Proposition 8, and let $X = I_B$. Let Π be the set of finite permutations $\pi = (\pi(1), \pi(2), ...)$ of (1,2,...). Since Π is countable we can construct a random element π^* of Π such that $P(\pi^* = \pi) > 0$ for each $\pi \in \Pi$. Take π^* independent of $\underline{Y} = (\underline{Y}_1, \underline{Y}_2, ...)$. Define $\underline{Y} = (\underline{V}_1, \underline{V}_2, ...) = (\underline{Y}_{\pi^*}(1), \underline{Y}_{\pi^*}(2), ...)$ Let (F_t) be the smallest filtration making each \underline{V}_i optional. Since $X_t = \Sigma I_i(\underline{Y}_i = t) = \Sigma I_i(\underline{V}_i = t)$, plainly X is both (F_t) - and (\underline{G}_t) -optional. But $F_\infty \cap \underline{G}_\infty$ is trivial! For let $D \in F_\infty \cap \underline{G}_\infty$. Then there exist measurable functions f,g such that

 $l_{D} = f(\underline{Y}) = g(\underline{V})$ a.s.

So $f(\underline{y}) = h(\underline{y}, \pi^*)$ a.s., where $h(\underline{y}_1 \underline{y}_2, \dots, \pi) = g(\underline{y}_{\pi(1)}, \underline{y}_{\pi(2)}, \dots)$ But π^* is independent of \underline{y} with support Π , so

$$f(\underline{Y}) = h(\underline{Y}, \pi)$$
 a.s., each $\pi \in \mathbb{I}$.

So, putting $G = \{g = 1\}$,

$$D = \{ (Y_{\pi(1)}, Y_{\pi(2)}, \cdots) \in G \} \text{ a.s., each } \pi \in \Pi .$$

Thus D is exchangeable, and so is trivial by the Hewitt-Savage zero-one law.

We now start the proof of Theorem 4. The lemma below shows that (b) and (b') are equivalent.

(9) LEMMA. Let (T^n) be optional times whose graphs $[T^n]$ are disjoint. Let (\hat{T}^m) be a similar family, and suppose $U[T^n] = U[\hat{T}^m]$. Suppose T^n has conditional intensity a_n .

Then \hat{T}^{m} has a conditional intensity, \hat{a}_{m} say, and $\Sigma \hat{a}_{m} = \Sigma a_{n}$ a.e. $(P \times \lambda)$.

<u>Proof</u> Put $U_{m,n} = T^{n}(T^{n}=\hat{T}^{m})$. Then $U_{m,n}$ has a conditional intensity, $a_{m,n}$ say. It is easy to verify

$$a_n = \sum_{m=m,n} a.e.$$

 $\hat{a}_m \equiv \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} n^m$, is the conditional intensity of \hat{T}^m , where the sum is a.e. finite because

$$\mathbf{E} \int_{n=1}^{N} \mathbf{a}_{m,n}(\mathbf{s}) \, d\mathbf{s} = \sum_{n=1}^{N} \mathbf{P}(\mathbf{U}_{m,n} < \infty) \le \mathbf{P}(\mathbf{T}^{m} < \infty) \le 1.$$

Hence $\Sigma a_n = \Sigma \Sigma a_{m,n} = \Sigma \hat{a}_m < \infty$ a.e.

Lemmas 10 and 13 show that conditions (b') and (c) are equivalent.

(10) LEMMA. For B as in theorem 4, the following are equivalent

(i) {ω: C_ω ∩ B_ω = φ} ⇒ {ω : λ(C_ω) = 0} a.s., each previsible C.
(ii) Each family (Yⁿ) satisfying (5) also satisfies (6).

<u>Proof: (ii) implies (i)</u> Let C be previsible. Put $T = \inf \{t : \lambda(C_{\omega} \cap [0,t]) > 0\}$. Then T is optional, so $C' = C \cap [0,T]$ is previsible. Now $\lambda(C'_{\omega}) = 0$ a.s. We must prove

(11) $C_{(\mu)}^{\dagger} \cap B_{(\mu)} = \phi$ a.s.

Let (T^n) satisfy (5) and (6). Then

$$P(\mathbf{T}^{\mathbf{n}} \in \mathbf{C}_{\omega}') = \mathbf{E} \int \mathbf{l}_{\mathbf{C}}, \ d\mathbf{l}_{[\mathbf{T}^{\mathbf{n}}, \infty)}$$
$$= \mathbf{E} \int \mathbf{l}_{\mathbf{C}}'(\mathbf{s}) \ \mathbf{a}_{\mathbf{n}}'(\mathbf{s}) \ d\mathbf{s}$$
$$= 0 .$$

Since $B = U[T^n]$, (11) follows.

(i) implies (ii). Let T be optional, $[T] \in B$. Let A_t be the compensator of T. From the proof of the Lebesgue decomposition theorem, we can write $A_t = \hat{A}_t + \int_0^t a(s) ds$, where there exists a progressive set D such that

(12) $\lambda(D_{\omega}) = 0$ a.s.; the measure $d\hat{A}(\omega)$ is carried on D_{ω} a.s.

Let $C = \{ {}^{p}(l_{D}) > 0 \}$; then C is previsible and since

$$\hat{A}_{t} \geq \int_{0}^{t} \mathbf{l}_{C}(s) d\hat{A}_{s} \geq \int_{0}^{t} \mathbf{p}(\mathbf{l}_{D})(s) d\hat{A}_{s} = \int_{0}^{t} \mathbf{l}_{D}(s) d\hat{A}_{s} = \hat{A}_{t},$$

and

$$\int_{0}^{t} p(l_{D})(s) ds = \int_{0}^{t} l_{D}(s) ds = 0 ,$$

C satisfies (12). However

$$E\hat{A}_{\infty} = E \int I_{C}(s) d\hat{A}_{s}$$
$$= E \int I_{C}(s) dA_{s}$$
$$= P(T \in C_{\omega}) = 0 \quad by (11).$$

So $\hat{A} \equiv 0$.

- (13) LEMMA. For B as in Theorem 4, the following are equivalent.
 - (i) { ω : C_{ω} \cap B_{ω} $\notin \phi$ } \supset { ω : λ (C_{ω}) > 0} a.s., each previsible C.
 - (ii) Each family (Tⁿ) satisfying (5) and (6)
 also satisfies (7).

<u>Proof. (ii) implies (i)</u> Let C be previsible. Define optional times :

 $T = \inf \{t : \lambda(C_{\omega} \cap [0,t]) > 0\}$ $S = \inf \{t : t \in B_{\omega} \cap C_{\omega}\}.$

It is sufficient to prove

(14) $S \le T a.s.$

Consider the previsible set $C' = C \cap (T,S]$ Let (T^n) satisfy (5), (6). By definition of S, the sets $\{\omega : T^n \in C'_{\omega}\}$ are disjoint. So $\sum_{n} P(T^n \in C'_{\omega}) \leq 1$. But

$$\Sigma P(\mathbf{T}^{\mathbf{n}} \in \mathbf{C'}_{\omega}) = \Sigma \mathbf{E} \int \mathbf{l}_{\mathbf{C'}} d\mathbf{l}_{[\mathbf{T}^{\mathbf{n}}, \infty)}$$
$$= \Sigma \mathbf{E} \int \mathbf{l}_{\mathbf{C'}} (\mathbf{s}) \mathbf{a}_{\mathbf{n}} (\mathbf{s}) d\mathbf{s}$$
$$= \Sigma \mathbf{E} \int \mathbf{l}_{\mathbf{C'}} (\mathbf{s}) \Sigma \mathbf{a}_{\mathbf{n}} (\mathbf{s}) d\mathbf{s} .$$

But $\Sigma a_n = \infty$ a.e., and so $\lambda(C'_{\omega}) = 0$ a.s. But by definition of T we have $\lambda(C'_{\omega}) > 0$ on $\{T < S\}$. This proves 14.

(i) implies (ii) Let (T_n) satisfy (5), (6). Fix $N < \infty$. Consider the previsible set $H = \{(\omega, s): \Sigma a_n \le N-1\}$. We must prove $P \times \lambda(H) = 0$. Suppose not : then for some $\varepsilon > 0$ we have

$$P(\Omega_0) \ge \varepsilon$$
, where $\Omega_0 = \{\omega : \lambda(H_\omega) > \varepsilon\}$

Define optional times

$$S_i = \inf \{t : \lambda(H_{\omega} \cap [0,t]) > i\epsilon/N\}$$
 $i = 0, \dots, N$.

Consider the previsible sets

$$H^{i} = H \cap (S_{i-1}, S_{i}]$$
 $i = 1, ..., N$
 $\bar{H} = H \cap (S_{0}, S_{n}]$.

By construction, $\lambda(H_{\omega}^{i}) = \epsilon/N$ on Ω_{0} . So by (i), B_{ω} $\cap H_{\omega}^{i}$ is a.s. non-empty on Ω_{0} . So

$$E \sum_{n} 1 (T_{n} \in \overline{H}_{\omega}) = E \sum_{in} \Sigma 1 (T_{n} \in H_{\omega}^{i}) > N P(\Omega_{0}) > N \varepsilon$$

But $E \sum_{n} 1_{(T_n \in \overline{H}_{\omega})} = E_n^{\Sigma} \int 1_{\overline{H}} dI_{[T_n,\infty)}$

=
$$E \int I_{\overline{H}}(s) \cdot \Sigma a_n(s) ds$$

< (N-1) ε

because $\Sigma a_n \leq N-1$ on H , and $\lambda(\overline{H}_{\omega}) \leq \varepsilon$ by construction. This contradiction establishes the result. It remains to prove that (b) and (a) are equivalent. Recall from [BJ] that optional times $0 < S_1 < S_2 < \ldots$ form a Poisson process of rate 1 with respect to (F_t) iff S_n has conditional intensity $1_{\substack{(S_{n-1} < s \leq S_n) \\ has condition holds for each family <math>(S_i^{\theta})_{i \geq 1}, \theta \in \Theta$, and if the graphs $\{[S_i^{\theta}] : i \geq 1, \theta \in \Theta\}$ are disjoint, then the families $\{(S_i^{\theta})_{i \geq 1} : \theta \in \Theta\}$ are independent.

The proof that (a) implies (b) is easy. The family (S_i^{θ}) in (1) plainly satisfies the conditions of (b) with respect to the extension (G_t) . Because (b) implies (b'), we deduce that any (G_t) -optional family satisfying (5) will also satisfy (6) and (7) with respect to (G_t) . Now, as remarked before, there exists a family satisfying (5) with respect to (F_t) ; and since conditional intensities are unchanged by extension, this family satisfies (6) and (7) with respect to (F_t) .

The proof that (b) implies (a) is harder. There are only two ideas. First, we show how to construct S_1 with $[S_1] \in B$ such that S_1 has exponential law (Lemma 19). Then we can proceed inductively to construct a uniform Poisson process (S_i^{θ}) . Finally, we must show that $iU_{\theta} [S_i^{\theta}]$ exhausts B.

Here is a straightforward technical lemma.

(14) LEMMA. Let (Q_i) be optional times with conditional intensities a_i . Suppose $Q_i \rightarrow \infty$ a.s. and $[Q_i]$ are disjoint. Let $T = \min(Q_i)$. Then $T_{(T=Q_i)}$ has conditional intensity $a_i l_{(s \le T)}$ T has conditional intensity $\Sigma a_i l_{(s \le T)}$. Here is an informal description of the external randomisation. Suppose

(15) T is optional, with conditional intensity a, $p(\omega,s)$ is previsible, $0 \le p \le 1$. Then we can define Q such that:

if T = t then Q = t with probability $p(\omega,t)$ = ∞ otherwise

It is intuitively obvious that Q has conditional intensity p.a. Here is the formal construction and proof.

(16) LEMMA. Let T,a,p be as in (15), on a filtration (\hat{F}_t) . Let U be uniform on [0,1], independent of \hat{F}_{∞} . Define

Q = T if $U \le p(T) \equiv p(\omega, T(\omega))$ = ∞ otherwise.

Let G_t be the usual augmentation of $G_t^0 = \sigma(\hat{f}_t, Q_{(Q \le t)})$. Then (G_t) is an extension of (\hat{f}_t) , and Q is (G_t) -optional with conditional intensity p.a.

<u>Proof</u> $Q_{(Q \le t)} \in \sigma(\hat{F}_t, U)$, and hence $G_t^0 \subset \sigma(\hat{F}_t, U)$, so (G_t) is indeed an extension of (\hat{F}_t) . Plainly Q is (G_t) -optional. To prove the final assertion, let $S < \infty$ be a (G_t) -optional time. It is sufficient to prove

(17)
$$P(Q \leq S) = E \int_0^S a(s)p(s) ds$$

```
We assert

(18) R = S_{(S \leq T)} is (F_t)-optional.

For \{R \leq u\} = U \{S \leq t \leq T\}, and \{S \leq t \leq T\} is in F_t since

t \leq u

t = t trational

G_t \cap \{T > t\} = F_t \cap \{T > t\}. To prove (17), note that

\{Q \leq S\} = \{T \leq S, Q \leq \omega\} = \{T \leq R, Q \leq \omega\} = \{T \leq R, T \leq \omega, U \leq p(T)\}. So

P(Q \leq S) = P(T \leq R, T \leq \omega, U \leq p(T))

= E(1_{(T \leq R, T \leq \omega)} P(U \leq p(T) | F_{\omega}))

= E(1_{(T \leq R, T \leq \omega)} P(T) by the independence of U

= E \int_{(T \leq R, T \leq \omega)} P(S) d_{[T, \omega)}
```

=
$$E \int l_{(s \leq R)} p(s) a(s) ds$$
.

(17) now follows, as $[S,R] \subset [T,\infty)$, and a = 0 on this set.

(19) LEMMA. Let (\hat{F}_t) be an extension of (F_t) . Suppose (T^n) satisfies condition (b) with respect to (\hat{F}_t) . Let $S_0 < \infty$ be (\hat{F}_t) -optional. Then there exists an extension (G_t) of (\hat{F}_t) and a (G_t) -optional time S with conditional intensity $1_{(S_0 < s \le S)}$ such that $[S] \in U[T^n]$. Proof Define $\phi(\mathbf{x}) = 1$ $\mathbf{x} \ge 1$ = \mathbf{x} $0 \le \mathbf{x} \le 1$ = 0 $\mathbf{x} \le 0$

Define inductively

$$p_{1}(\omega, s) = \phi(\frac{1}{a_{1}(\omega, s)}) \quad 1_{(s > S_{0})}$$

$$p_{j} = \phi(\frac{1 - \sum_{i=1}^{j-1} a_{i} p_{i}}{a_{j}}) \quad 1_{(s > S_{0})}$$

Then \textbf{p}_j is predictable, $0 \leq \textbf{p}_j \leq 1$, and

(20)
$$\sum_{j=1}^{N} a_{j}p_{j} = (1 \land \sum_{j=1}^{N} a_{j}) \cdot 1_{(s>S_{0})}$$

By Lemma 16 we can construct extensions (G_t^j) of (F_t) and (G_t^j) -optional times Q_j such that

Then

$$\sum_{j} P(Q_{j} < t) = \sum_{j} E \int_{0}^{t} P_{j}(s) a_{j}(s) ds$$
$$= E \int_{0}^{t} \sum_{j} a_{j}(s) P_{j}(s) ds$$
$$\leq t \qquad by (20).$$

By the Borel-Cantelli lemma, $Q_i \rightarrow \infty$ a.s.

Set S = min (Q_j) , and let (G_t) be the filtration generated by $(G_t^j, j \ge 1)$. By Lemma 14, S has conditional intensity $\sum_{j=1}^{2} p_j = 1_{(S \le S)}$, and by (20) this equals $\frac{1}{S_0 \le S \le S}$.

For later use, note that, by Lemma 14, $S_{(S=T^n)}$ has conditional intensity $p_n a_n l_{(S \le S)}$. In other words, using (20),

(21)
$$T^{n}(T^{n}=S)$$
 has conditional intensity

$$N = 1 + \frac{N}{1} \left[\left(1 \wedge \Sigma a_{1} \right) - \left(1 \wedge \Sigma a_{1} \right) \right] \left[S_{0} < s \le S \right]$$

We can now prove (b) implies (a). Let $(T^{1,n})$ satisfy condition (b). By Lemma 19 we can construct extensions G_t^1 , G_t^2 ,... of F_t and (G_t^1) -optional times S_1^1 such that $[S_1^1] \in B$ and such that S_1^1 has conditional intensity $l(S_{i-1}^1 < s \le S_i^1)$. Let F^1 be the filtration generated by $(G^1 : i \ge 1)$. Then $(S_i^1)_{i\ge 1}$ is a Poisson process of rate 1 with respect to F^1 .

Now let $T^{2,n} = T^{1,n} (T^{1,n} \neq S_i^1 \text{ for any i})$.

We assert that $(T^{2,n})$ satisfies (b) with respect to (F_t^1) , for a certain set B'. We need only check (7). Write $a_{k,n}$ for the conditional intensity of $T^{k,n}$. Write

$$R_{n,i} = T^{1,n}(T^{1,n} = S_{i}^{1})$$

$$R_{n} = T^{1,n}(T^{1,n} = S_{i}^{1} \text{ for some } i) \cdot$$

Then

(22) R_n has conditional intensity $a_{1,n} - a_{2,n} \ge 0$. But $U[R_n] = U_i[R_{n,i}] = U_i[S_i^1]$, so by Lemma 9

$$\sum_{n=1}^{\infty} (a_{1,n} - a_{2,n}) = \sum_{i=1}^{\infty} (S_{i-1}^{1} < s \le S_{i}^{1}) = 1 \quad a.e.$$

Thus condition (7) extends from $(T^{1,n})$ to $(T^{2,n})$.

Now we may apply Lemma 19 again to construct an extension F^2 and F^2 -optional times (S_i^2) with $[S_i^2] \subset \bigcup_n [T^2,^n]$ and such that $(S_i^2)_{i \ge 1}$ is again a Poisson process of rate 1.

Continuing, we obtain a uniform Poisson process $(S_i^k : i,k \ge 1)$ on $\{1,2,\ldots\} \times [0,\infty)$. By construction ${}_i^U_k [S_i^k] \subseteq B$, but we must show there is a.s. equality. Thus we must show that, for each n,

(23)
$$P(T^{k,n} < \infty) = E \int a_{k,n}(s) ds \neq 0 as k \neq \infty$$

Define

$$R_n^k = T_{(T^{k,n})}^{k,n} = S_i^k$$
 for some i)

As at (22), R_n^k has conditional intensity $a_{k,n} - a_{k+1,n}$. But from (21), R_n^k has conditional intensity $(1 \land \Sigma a_{k,j}) - (1 \land \Sigma a_{k,j}) - (1 \land \Sigma a_{k,j})$. So

(24)
$$E \int (a_{k,N} - a_{k+1,N}) ds = E \int (1 \wedge \sum_{1}^{N} a_{k,j}) - (1 \wedge \sum_{1}^{N} a_{k,j}) ds$$

Now $a_{k,m} + a_{\infty,n}$, say, as $k \to \infty$. Suppose, inductively, that (23) holds for n < N. As $k \to \infty$ the left side of (24) tends to 0, and the right side tends to $E \int (1 \land a_{\infty,N}) ds$ by the inductive hypothesis. Thus $a_{\infty,N} = 0$ a.e, so (23) holds for N.

<u>Proof of Proposition 8</u>. Put $f(t) = \frac{F'(t)}{1-F(t)}$, where F is the distribution function of μ . From [BJ], if Y has conditional intensity $f(s)1_{(s \le Y)}$ then Y has law μ : conversely, if Y has law μ then Y has conditional intensity $f(s)1_{(s \le Y)}$ with respect to the smallest filtration making Y optional. Thus the random variables (Y_i) in part (a) of Proposition 8 satisfy condition (b) of Theorem 4, so $U[Y_i]$ is indeed a σ -finite Poisson process.

Part (b) is similar to , but simpler than, the proof that (b) implies (a) in Theorem 4. Let B be a σ -finite Poisson process, and let $(T^{1,n})$ satisfy condition (b) of Theorem 4. Lemma 19 showed how to construct an optional time S with conditional intensity $1_{(s \le S)}$. Essentially the same argument shows we can construct Y_1 with conditional intensity $f(s)1_{(s \le Y_1)}$, and hence with law μ . Put $T^{2,n} = T^{1,n}_{(T^1,n \ne Y_1)}$, and continue. We obtain i.i.d. variables (Y_k) , with $U[Y_k] \in B$: arguing as at (23), we show that there is a.s. equality. <u>Acknowledgements</u>. This work arose from conversations with T.C. Brown and A.D. Barbour at the 1980 Durham Conference on Stochastic Integration.

References

Brémaud, P., Jacod, J. : Processus ponctuels et martingales: résultats récents sur la modelisation et le filtrage. Adv. Appl. Prob. <u>9</u>, 362-416 (1977)

Dellacherie, C. : Capacités et processus stochastiques. Springer 1972

Kallenberg, O. : Random measures. Academic Press 1976

Department of Statistics Statistical Laboratory University of California, Berkeley 16 Mill Lane Berkeley, California 94720 Cambridge CB2 1SB U.S.A.