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Spatial Trajectories

R.V. Chacon, Y. Le Jan, and J.B. Walsh

Introduction

It was W. Feller who suggested thinking of the paths of a

stochastic process in terms of a speedometer and a road map. The

road map tells one where the path is going and the speedometer tells

him how fast. In certain questions of Markov processes, it is useful

to study these road maps alone, without looking at the speedometer.

When we talk of a path observed without reference to a speedometer,

we will call it a trajectory. More formally, a trajectory is an

equivalence class of paths, where two paths are equivalent if they

trace out the same points in the same order, or, to continue with

Feller’s metaphor, if they follow the same routes.

One technical question which comes up almost immediately is

whether or not the Borel field on the space of trajectories has good

measure-theoretic properties. This was answered (it does) in connection

with a study of time-changes of Markov processes (see [1] and [2])

but only under the assumption that the processes had no holding points.

This condition on the holding points turns out to be unnecessary,

although it does greatly simplify the mathematics.

We will show here that if the paths are right continuous and

have left limits, then the trajectory field is a separable subfield

of the a-field of a Blackwell space (which passes for good behavior

in this permissive age) and that the trajectories are determined by

a countable number of intrinsic stopping times.
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§1 Equivalence and Intrinsic times

Let P be the set of all right-continuous functions with left

limits, from R to a locally compact metric space E. . We say two

functions f and g in P are equivalent if there exist functions

F and G which are right continuous and increasing from R to R
such that

(i) f = g 0 F and g = f o G

(ii) F and G are inverses, i.e. F(t) = inf{s ~ 0: G(s) > t}

and G(t) = inf{s ~_ 0: F(s) > t} . .

We write f - g and say that f and g are equivalent via F and G .

Equivalence can be described in terms of time-changes: f and g

are time changes of each other. The equivalence classes of P generated

by this relation are called trajectories; two equivalent functions

determine the same trajectory.

The functions F and G above are not necessarily continuous and

in fact may not even be uniquely determined by f and g. . If, however,

f and g have no "flat spots", then F and G are continuous,

strictly increasing, and unique, which simplifies the situation

enormously. In a way, the rather formidable technical complications

encountered below in the proof of Theorem 2.1 are all due to the

possibility of flat spots.

There are several elementary properties of time changes which we

will need to deal with these flat spots and with possibly discontinuous

F and G. . Let f - g via F and G. . Then the reader can verify

straightforwardly that
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(1.1) F(G(t)-) ~ t  F(G(t));

(1.2) g is constant on the closed interval [F(t-),F(t)j;(*)

(1.3) if f(t-) ~ f(t) and if u = F(t-), then

(f (t-) ~f (t)) = (g(u-).g(u)) . ~

Let E be the a-field on P generated by the cylinder sets,

and let ~* be its universal completion, that is, if ~u is the

completion of E with respect to the measure P, then ~ = n~u,
where P ranges over all probability measures on E .

Following Courrège and Priouret [ 3], if t > 0 we define the

stopping operator 03B1t:D - a by f (snt) . .

Definition. A function - [0,~] is a stopping time if

*

(i) T is E -measurable

(ii) if T(f)  t, then T(atf) = T(f) . °

This definition agrees with the usual one [ 3 ]. Since we won’t be

dealing with measures in this article, we won’t be overly concerned

with (i); it is (ii) which expresses the usual condition that T is

determined by the past. We will be particularly interested in

intrinsic times, which are stopping times, which, like first hitting

times, are determined by the road map, not the speedometer.

Definition. A stopping time T is intrinsic if, whenever f - g

via F and G, then

(1.4) T(g)  F(T(f)) and T(f) S G(T(g)) . .

Example. There need not be equality in (1.4): let f(t) = t,

*Indeed G is equal to t and therefore g equal to f(t) on the half-
open interval [F(t-) , F(t)) . . If G jumps at F(t) , , F is constant
between t and G(F(t)) . . Thus g(F(t)) - f(G(F(t)) - f(t) . .
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g(t) . (t-1) (a - av0); then f and g are equivalent via

F(t) - t + 1 and G{t) _ (t-1)+ . . Let S be the first hit of zero,

which is intrinsic. Then S(f) - S(g) . 0, so S(g)  1 - F(S(f)) . .

Here are some elementary properties of intrinsic times.

Proposition 1.1. Let S and T be intrinsic times and let f N g

via F and G. . Then

(i) T(f)  ~ _~ T(g)  ~, and F(T(f)-) ~ T(g) ~ F(T(f));

(ii) f{T{f)) = g(T(g)) ;

(iii) T(g) does not fall into the interior of an interval of

constancy of g. . In particular, T(g) equals either

F(T(f)-) or F(T(f));

(iv) if S(g)  T(g), then S(f)  T(f), and there may be

equality;

(v) the class of intrinsic times is closed under finite suprema,

infima, and under monotone convergence;

(vi) T = 0 is intrinsic, but other constant times are not;

(vii) first jump and hitting times are intrinsic. More generally,

if A and B are Borel subsets of E x E and if A does

not intersect the diagonal, then D and T are intrinsic,

where

D(f) - inf{t > S(f): (f(t-),f(t)) E A}

T(f) = inf~t > S(f): (f(S(t)),f(t)) E B} . .

Proof. (i) Since T(f)  G(T(g)) and T(g)  F(T(f)), T(f) and

T(g) are finite together. These inequalities together with (1.1)
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imply that

F(T(f)-) ~ F(G(T(g))-) ~ T(g) ~ F(T(f)) . .

(ii) f(T(f)) = g(F(T(f))), while g is constant on

[F(T(f)-), F(T(f)) ], which contains T(g) by (i) . .

(iii) g is equivalent to itself, and if it is constant on [a,b],

this equivalence can be realized via the function G and its inverse,

where

t if t  a or t > b

G(t) = { b if a  t  b .

If T(g) > a, then b  G(T(g)-)  T(g), so T(g) can’t be in the

open interval (a,b) . . The second statement follows since g is

constant on [F(T(f)-), , F(T(f))] ] by (1.1).

(iv) S(f)  G(S(g))  G(T(g)-)  T(f) by (i). To see there can be

equality, consider the example above and let T be the first hit of

(O.co) . . Then S(f) = T(f) = 0, even though S(g) = 0 and T(g) = I .

(v) This is clear.

(vi) A strictly positive constant does not satisfy (iii).

(vii) The universal measurability of D and T is well-known. If

S(f)  t  b and if f(t-) ~ f(t), then S(g)  F(S(f))  F(t-)  F(b)

and, if u = F(t-), then f(t-) = g(u-) and f(t) = g(u) by (1.3).

Thus if (f(t-),f(t)) E A then (g(u-),g(u)) E A, so that

D(g)  u  F(b) . . Letting b + D(f), we see D(g)  F(D(f)), so

D is intrinsic. The proof for T is similar.
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§2 Trajectories 
"

Let T be the sub-a-field of E generated by the trajectories,

i.e. a set A E T iff AeE and if feA and g - f imply

g e A. . We call T the a-field of spatial events.

Let d be a distance on E and for each n ~ 1 def ine two

sequences of intrinsic times by induction (the fact that they are

intrinsic is a consequence of Prop. 1.1 (vii )):

Tn o(f) = 0

Tn = inf{t > > 1/n}

and

Dn l(f) = inf{t > 0: d(f(t-),f(t)) > 1/n}

Dn k+1(f) " Dnk(f): d(f(t-),f(t)) > 1/n} . .

For each n,k, set

1 if 3 a  D k(f) 3 f is

Qnk(f) = constant on 

0 otherwise.

This brings us to the central results of this paper.

Theorem 2.1. Let f,g . Then f - g iff

(i) for all n,k, and

(ii) Qnk(f) = Qnk(g) . .

Remarks. 10 It is implicit in (i) that Tnk(f)  °° =~  ~ , .
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2° If f is constant on for some t, one of the Dnk
will be infinite. Thus the Qnk also tell whether f is constant on

an infinite interval.

3° One could replace the tnk above by any set of intrinsic

times with the property that if f is not constant on a given

interval [a,b], then there exists j such that a  T~(f)  b .
4° The only thing at all surprising about Thm. 2.1 is that the

Qnk should be necessary. Here is an example to indicate why they

are.

Let

x if x  03C0/4
x if x  03C0/4

f(x) = {x 
if x  03C0/4 

, g(x) = {03C0/4 if 03C0/4 ~ x  n/4 + 1 .
x + 1 if x _> n/4- 

x if x ~ n/4 + 1

None of the Tnk(f) or tnk(g) can equal 7r/4, so that

for all n,k. In spite of this, f and g

are not equivalent, for g takes on the value Tf/4 while f does

not. This is reflected in the fact that = 0 while g, which

is constant for an interval preceeding its unique jump, has Q11(g) = 1 .

Corollary 2.2. The 03C3-field of spatial events is separable.

Proof. As a measurable space, (~,~) is isomorphic to an analytic

subspace of the unit interval ([4] ch. IV, §19). By Blackwell’s theorem

([4] Ch. III, §26) a separable sub-03C3-field S of T equals Tiff

it contains the atoms of T, i.e. the trajectories. Now if S is

the 03C3-field generated by the Qnk(f) and then 
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since these are E-measurable functions which are constant on

trajectories. Furthermore, S is generated by a countable family

of functions, so it is a separable a-field. Each trajectory is an

atom of S by Theorem 2.1. Thus S and T have the same atoms,

so S 8 T . .

Q.E.D.
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§3. The Proof of Theorem 2.1.

The 03C4nk and Dnk are intrinsic, so if f - g, (i) holds by

Prop. 1.1 (ii). Let D = Dmn for some m and n, and suppose

f - g via the functions F and G. . Since D is intrinsic,

D(f) E [G(D(g)-), G(D(g))] . . But f is constant on this interval

so we couldn’t have D(f) > G(D(g)-) or ... no jump at D(f) . . Thus

D(f) = G(D(g)-) . . Then if f is constant on some interval [a,D(f)),

g(t) = f(G(t)) must be constant on some interval [D(g)-E,D(g»,

and (ii) must hold.

The proof of the converse involves the verification of a large -

but finite - number of details. We will arrange this into a sequence

of statements with proofs. Thus suppose f and g satisfy (1) and

(2). To show that f - g, we must produce the pair F and G of

functions required by the definitions. Our first step in this direction

is to construct a sequence of functions {fn}, all equivalent to g,

which converge uniformly to f. .

Fix n, and define a continuous, strictly increasing function

F as follows:
n

(a) Fn(Lnk(f» = Lnk(f)  ~ ~

(b) Fn is linear between the ;

(c) if Tnk(f)  °o while Tn k+1(f) _ co, set

Fn(Lnk(f)+t) = Lnk(g) + t for t > 0 . °

Let Gn be the inverse function of F, , and define fn by

fn(t) = g(Fn(t» . . Then clearly
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1° via Fn,Gn.

2° k = ~~1~2~...

Furthermore, each t must fall into some interval

Tn k+1(f))~ so by 2° and the triangle inequality

3’ 

Thus the sequence fn converges uniformly to f. Let us look

at the convergence properties of Fn and Gn. We first note the

following, which is an easy consequence of the definition of the Tnk
and the triangle inequality.

4° Let f,h E ’D and let p ~ 3q be integers. If

h~~~  1~P and if T k+1(f) ~ °°~ there exists a j such that

5° For each t, the sequences {Fn(t)} and {Gn(t)} are bounded.

Proof. We will prove this for the Fn. The proof for Gn is

similar.

Consider first the case where f is constant on some interval

Then g and fn must be constant on intervals and

respectively by (ii) and Remark 2° above.

Fn was defined to be linear after the last finite Tnk(fn)’
which is less than b, so that

Next, consider the case in which f is not constant on 
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There must exist q,k such that t   

Tq  ~ ’ . By

3° and 4°, for all large enough n, say there exists j

such that, if p = 3q, A priori, j may

depend on n, but we claim there is j0 such that 03C4p j0 (f ) 
> t

for all n > n~ . . Indeed, if T .(f)  00 for only finitely many j,

choose jo to be the largest j for which this is finite. Since

this is also the largest j for which T .(f ) for all n, this

must work. On the other hand, if T PJ .(f)  oo for all j, there must

still be a jo such that T (fn) 
> t for all n. . Suppose not.

Then there exists a subsequence (n.) such that for all j

03C4pj(fnj)  t. . But let r > 3p and apply 4° again: for large enough

j, there is at least one Tri(f) in each interval

~ Tp Consequently, if t, then

t for at least j/2 values of i. . As j is arbitrary,

we have t for all i, which is impossible.

But now, if t  

T . (f ) 
for all large enough n,

Fn(t) ~ Fn(03C4p j 0 (fn)) 
= 

03C4p j0 (g)  ~,

proving 5°.

Since the Fn(t) are bounded we may assume, by taking a sub-

sequence if necessary, that

6° there exist increasing functions F and G such that

Fn(t) -> F(t) and Gn(t) --> G(t) for all t > 0 . .

For the remainder of the proof we will simplify notation by

arranging the jump times in a single sequence {Di} and
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writing

When F and G enter symmetrically, or nearly so, we will give the

proof for F alone.

For each i, let Ai be the maximal interval of constancy

of f of the form Ai = maximal interval of

constancy of g of the form Bi = [bi,ai) . (This defines ai and

bi.) Let A = i Ai and B = U Bi. The Ai and Bi may be empty

(corresponding to ai = di nad bi = 8i resp.) but by hypothesis (ii),
iff B~ = ~ .

7° For each i, if n is large enough, Di(fn) = di and

Fn(di) = 8i . Similarly G(8i) = di .
Proof. By uniform convergence fn(t) - fn(t-) converges

to Af(t) for each t. Consequently Di(fn) = Di(f) for large

enough n. As Di(fn) = Tnk(fn) for some k (again if n is large

enough) we get that F n (D.(f i n )) = 03B4i and 7° follows since

F(di) = = 6 . The proof for G is similar.

8° a) If s E R+ - A and t E R - B, then f(s) = g(F(s) )

and g(t) = f(G(t)) .

b) If s E Ai and t E Bi, then f(s) = f(di-) = g(di-) = g(t) .

Proof. f(s) = g(F(s)) if g is continuous at t (by 1° and 6°)

or if s = di (by 7°). Evidently it can fail only if F(s) = ai
for some i . Then Fn(s)  ai for large n, for if not the right

continuity of g would give g(F(s)) = lim g(Fn(s)) = f(s) . Thus -
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as Fn(di) = 6i for large n - we must have s  di, , and evidently

f(s) = f(di-) = g(8i-) . . But note that the same must hold for each

t’ E [t,di), , so that Ai, the maximal interval of constancy

of f . .

9° Bi and °

Proof. Let ai ~ t  di. Then F (t)  Fn(di) = a., , so F (t) ,

and hence F(t) , is bounded above by Si . Now we claim that

F(t) > bi. . Suppose not. Then, for some e > 0, bi - c

for all large n . . As F is continuous and F n (d i, .) = d., , the

range of t  di} contains the set

K = {get): : b - s  t  8i} . . Since fn converges uniformly to f,

we find that the closure of the range: {f{t), , t  also

contains K . . But, as [bi,di) is a maximal interval of constancy,

K is not a singleton, while {f(t), , t  di} _ {f(ai)} is one,

which is a contradiction. This proves 9°.

The equations 8° may not hold for sand t in A and B, and

we are forced to modify F and G there. We do this in two steps.

First define

F(t) if t ~ IR+ - A

F(t) = bi + 03B4i - bi di - ai (t-ai) if t ~ Ai

G(t) if t ~ + - B
G(t) = { ai + di - ai 03B4i - bi (t-bi) if t ~ Bi.
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10° F is increasing, maps Ai one to one and onto Bi, maps

R+ - A into R - B, ’ and f(t) = for all t. ° The

corresponding statements hold for G. .

Proof. F is increasing on each Ai by construction and on R+ - A

since it equals F there. It is not hard to verify that

s  ai => F(s)  b. and t > di => F(t) > si, which allows us to

conclude that F is increasing on R+ . . It also shows that if

t ~ Ai, F{t) ~ Bi . . Since F maps Ai one-to-one and onto Bi
by construction, we can conclude that F maps R - A into R - B

as well. Finally, f(t) = g(F(t) for all t E R+ - A by 8(a),

and for all tEA by 8(b).

Now F and G may not be right-continuous, so define

G(t) = G(t+) and F(t) = F(t+) . .

By 10° and the right-continuity of f and g

11° f(t) = g(F(t)) and g(t) = f{G(t)) for all t > 0 . .

The proof of the theorem will be complete once we show that F

and G are inverses. We begin by noting that, as Fn and Gn are

inverses for all n, 6° implies straightforwardly that F(t+) and G(t+)

are too, i.e.

12° F(t+) = inf{s: G(s+) > t} for all t > 0 . .

13° a) F(t) = F(t) if tEA and G(t) = G(t) if t E B . .

b) F(t) = F(t+) if t E R+ - A and G(t) = G(t+) if

°
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Proof. a) is trivial since F is already right continuous on A .

Since F - F on R - A, (b) is clear except possibly when

t ~ R - A is a limit from the right of points in A . But in this

case, it must be a limit from the right of the d., so

F(t) - lim F(d.-) - lim F(t+) . .

d.H

14" F(t) - inf{s: G(s) > t} for all t .

Proof. This holds for t ~ B by 13"(b) and the definitions of F

and G, hence it holds on all of B . Thus we can restrict our

attention to t in R - B . Consider

H(t) - inf{s: G(s) > t}

and

F(t+) * inf{s: G(s+) > 1} . .

By 12" and 13", F(t+) * F(t) for t ~ R - A, so we must show that

H(t) = F(t+) for all t ~ R - A . This will follow if we can show

that

a) t E R~ - A and t => G(s) ~ t

b) t ~ R - A and G(s+) > t *> > t . °

But if s ~ R- B, then G(s+) = G(s) and a) and b) both follow

trivially, so suppose s e B. for some i . . Then G(s) and G(s+)

are both in by go. . Thus G(s+) ~ t and t ~ R - A imply

. But G(s) ~ A. by 10" and 13" so G(s) ~ t as well,

verifying (a) . To verify (b), note that G(s+) > t and t ~ R - A



305

implies t  ai, hence G(s) > ai by 10° and 13° again. This

completes the proof of the theorem.
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