
SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

BERNARD MAISONNEUVE
On Lévy’s downcrossing theorem and various extensions
Séminaire de probabilités (Strasbourg), tome 15 (1981), p. 191-205
<http://www.numdam.org/item?id=SPS_1981__15__191_0>

© Springer-Verlag, Berlin Heidelberg New York, 1981, tous droits réservés.

L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail.
mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou im-
pression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SPS_1981__15__191_0
http://portail.mathdoc.fr/SemProba/
http://portail.mathdoc.fr/SemProba/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


ON LEVY’S DOWNCROSSING THEOREM

AND VARIOUS EXTENSIONS*

B. MAISONNEUVE

Our aim is to show that the results of [7] can be extended

to regenerative systems as taken in a weak sense which will be

made precise. Such a generality is motivated by Levy’s down-

crossing theorem, which does not fit to the framework of [7]
due to a lack of homogeneity of the processes involved. The

first six sections are devoted to this result.

1. FIRST NOTATIONS.

Let X = denote the canonical one dimen-

sional brownian motion started at the origin: Q is the set of

all continuous functions from IR+ to IR; (Xt)t>0 is the process
’ 

of the coordinates; is the process of the shifts; the

progression the P-completion of the natural progression

(F0t) of the process (X ) ; finally 0] = 1.

Now let us introduce some basic notations for our problem:

for each t > 0 we put

* This work was supported by AFOSR Grant N° 80-0252 while the author

was visiting Northwestern University, Evanston.
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(1.1) Ct = sup Xs ’st

(1.2) ~. Yt = Ct - Xt ’

(1.3) Mt = 

(1.4) M= {t: Mt=1}= {t: Yt=0},. .

2. . LEVY’S DOWNCROSSING THEOREM.

For e > 0, t ~ 0 let dt(t) denote the number of down-
crossings of the process Y over the interval (O,E] by time t.

Levy’s downcrossing theorem asserts that

(2.1) te.IR.1 =1 ." ~ 

(2.2) HISTORICAL REMARK. The result (2.1) was only conjectured

by P. Levy. The first proof can be found in ITO, McKEAN [4], ,
including some gaps that were filled by CHUNG and DURRETT [1]. .
Another complete proof was given simultaneously by GETOOR ~2~
in a much more general context. Finally a short proof was

discovered by Williams [8], , [9], , but his proof remains much more
complicated than that of the similar result of Levy’s involving
the length of the excursions, namely that there exists 03BB ~ (0,oo)
such that

(2.3) P ~ lim e dt (e ) - t E. IR+ ] = 1 ,’
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where ~t~e) denotes the number of contiguous intervals of

length >£ contained in [0,t]. . The term "contiguous" means

maximal in the complement of M. Our proof (adapted from [7])

will follow Levy’s very simple method for proving (2.3) and will

apply to much more general situations.

(2.4) MATHEMATICAL REMARK. (2.1) shows that the processes

(Ct) and (Xt) are (Yt)-adapted up to null sets. (2.3) even

shows that (Ct) is adapted to the smallest complete progression

which makes M progressive. This can be viewed in many other ways.

3. A REGENERATIVE SYSTEM.

Let us introduce new shifts (t):

(3.1) Xt = .

With these shifts the strong Markov property of the process

X can be stated as follows: for each stopping time T and each

f E bF

(3.2) P [ fonT i FT 1 = P(f) on ~T ~ ,

Furthermore it is immediate to check that the following

M-homo eneit holds for the processes (Yt) and (Mt): for each

s,t ~ 0

(3.3) = on M} ,
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(3.4) on ~~ ’ °

We shall sum up these properties by saying that the collection

is a regenerative system (see §8 for a more

formal definition).

4. EXCURSIONS OF THE PROCESS Y.

Let 03A90 be the set of all functions from IR to IR. which
remain in 0 after their first hitting of 0. we define the

process of the coordinates (X ) and the a-field ~ generated by
the X b s 20142014 > 0. For w e Q, t 20142014 > 0 let be the element of 03A90
such that for each s > 0

(4.1) ~(i~O = . / 
Yt+s W> if t+S  infiU>t : U « MW> 1

~ 0 otherwise.

Let G be the random set of the left-end-points in (0,oo) of the

M-contiguous intervals. Both the ~-valued process (it) and the

random set G are M-homogeneous and it follows immediately that

for each A the increasing process

(~2) N~ = I ~10 ,

s~n(o,t]
is an M-additive (non adapted) functional, that is,

(4.3) =N~+ on{t~-M} .
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The random collection t e G} is called the collection of

the excursions of Y; is the number of excursions of type A

which occur by time t.

5. TIME CHANGED EXCURSIONS.

The process (Ct) increases exactly on M and is M-additive

with respect to the shifts ~t. Therefore its right continuous

inverse defined by

(5 .1) St = inf {s : Cs > t} , t n 0 ,

satisfies the following additivity property: for all s,t > 0

(5.2) St + Sso~St on {St  

in fact St E M on {St  ~l and CS - t on {St  due to the

continuity of (Ct).
(4.3) and (5.2) further imply that for each A the

process 03BDAt - NASt satisfies

(5.3) on ~} .

But St  ~ a.s. since +00 a.s.. Hence (St) is

a subordinator, due to (5.2) and to (3.2) applied with T = St;
and whenever the process (03BDAt) is a.s. finite, it has independent

and homogeneous increments, due to (5.3) and (3.2); it is even

a Poisson process, since it increases by unit jumps. In the
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1 A A b 
.. 

d 
.... Fasame manner, let A..,...,A n be n pairwise disjoint sets in g

such that the processes (03BDAti) are a.s. finite; then the n-dimen-

sional process (03BDAt1,...,03BDAtn) has independent and homogeneous

increments and its components (B~1),...,(v"n) are Poisson pro-
cesses which pairwise have no common time of jump; therefore,

due to a classical result of Levy, these processes are independent

We have just extended to the present situation Ito’s excursion

theory ~3] and this will allow us to proceed as in [.7] .

6. PROOF OF LEVY’S DOWNCROSSING THEOREM.

For e ~ let A, = {sup X0s > e}. For 

~ ~. 
~ 

s rational
the process £’),which is a.s. finite, is a Poisson process

by previous considerations. the pro-

cesses = l,...,n-l are further independent. But

A BA A A

and therefore the process e ~ is a process with independent

(non-homogeneous) increments for each fixed t. The strong law

of large numbers applies to this process as e -~ 0 and yields

~
(6.1) lim ,B , - 1 a.s..

E-~0 

But we shall see that the denomi.nator in (6.1) equals t/e;

hence (6.1) becomes
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(6.2) t a , s .

e~O 

Due to the monotonicity in t of ~03BDAt~ and t, the null set in

(6.2) can be chosen independently of t; ; therefore one has

P e~c=C. , ’ t ~TR.~=’ 1
e~O "t ~ ’

and since 03BDACt = N", we get

(6.3) P > t = I . .

Lévy’s downcrossing theorem follows from the fact that

jd~(e) - N~ ~ 1 for each t. .

It remains to prove that P [ 03BDAt~ J = t/e. . Put T~ = inf{s: : 

From the equality Y- == e a . s . and from the martingale property
e

of X, one immediately checks that P [~ C~ *] =* e. , On the other

hand, C~ 
e 

is the time of the first jump of the process (~c), ,
which is Poisson; therefore

P(~) = t/P(C- ) 
= t/e . °

7. . OTHER LIMIT RESULTS FOR THE PROCESS (C~).

(7.1) THEOREM . Let a~. (0,oo] and let , 0e~a} be a decreasing

right continuous family of elements of ~ . Set
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(7.2) TA - inf{t E G: inf{t: N~e > 0)

and suppose that

(7.3) P ~ 0  TA  ~, 1 .
e e-~0 e

Then, with the notation (4.2), one has

(7.4) P [ lim P [ CTA~ ] NAt~ = Ct, t ~ IR+ ] = 1 .

The proof is similar to the proof of Levy’s downcrossing
theorem. For more details we refer to the proof of theorem 2

of [7] and to the appendix.

(7.6) REMARK. Theorem (7.1) unifies the results (2.1) and (2.3):

for (2.1) choose A~ = {sup Xs~ > ~}, for (2.3) choose

A£ = p } , 
s rational 

.

8. EXTENSIONS TO REGENERATIVE SYSTEMS.

Let us consider a regenerative system 

in the sense of [5] , except that the homogeneity properties are

only required on M. More precisely is a stochastic

basis with usual conditions, (Yt) is a progressive process (with

state space (E,E)), is a measurable process with values in

(S~,F), M is a right closed progressive random set. We further

assume the following properties:
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(8.1) M-homogeneity : for s,t > 0

on M} ,

on (t~M) , ,

where Mt = M}’

(8.2) Regeneration: For each stopping time T and each f ~ bF

P [ for~T ~ I FT ~~ = on iT E. M} ,

(8.3) REMARK. This weak notion of regenerative system was

already introduced in [6], in order to time change a Markov

process by using the inverse of a non-continuous additive func-

tional.

Throughout this section let us assume that the random set

M is perfect, unbounded, with an empty interior a.s. and that

(C ) is a local time of M, that is (Ct) is a continuous adapted

M-additive functional which increases exactly on M (the closure

of M).
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Then all considerations of Sections 4,5,7 extend to the

present framework, with the following differences: in the defi-

nition (4.1) of itw we set

if t+s > inf{u > t : ,

where 6 is a distinguished point in E which is a.s. ignored by

the process Y and such that {6} ~, F~; in the definition (4.2)

of NA, we assume that A is a subset of the space 03A90 of all
mappings from IR+ to E with life time and that A further belongs
to the a-field generated by the coordinates of n .

Finally under the assumptions (7.2) and (7.3) we can state

the following constructive result, which is the analog of

theorem 2’ of [7]: :

(8.4) THEOREM. There exists a local time C~ such that

P [ lim NAt~ = C;, t &#x26; m. ] = 1 , 

where we set p (e) - P [TA = 
e a

9. APPENDIX.

This appendix is devoted to fixing the proof of theorem

2 of ~71, which is incomplete. We shall do this in the frame-

work of theorem (7.1) of the present paper. For A ~ F~, set
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0(A) = and for e E (0,a] set q(e) == . Let p (resp. . p)

be the right (resp. left) continuous inverse of q: :

p(u) - sup{~ ~ (0,03B1]: I q(e) > u}, , u ~ 0 , ,

p(u) = sup{e E : q(E) > u}, , u ~ 0 . ,

Let us fix t ~ 0 and define the processes Z, Z by setting

Z = ~u = u > 0 . .

It was claimed in [7] that the restriction to the set

T = q((0,a]) of the process Z is left continuous. Here is a

proof of this fact. Let D be the set of all points u in T

which are not isolated from the left and which are such that

p(u) ~ p(u). . For each U E D one has q (p (u) ) - q (p (u) ) . .

Therefore the set

B = ~ (Ap(u)BAp(u))

is null for the measure Q and the variable vanishes a.s. .

This implies that

, u E D ] = 1
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and the a.s. left continuity of the process (2) T now follows
from the left continuity of Z u ~ p(un) ~ p(un) ~ p(u) ~ 03BDp(un)t ~03BDp(u)t) .

The proof ends like in [7]. Basically one applies the strong

law of large numbers to the process (Z ) -: this process has

independent increments and for v, Zv - Zu is
Poisson distributed with parameter t(v-u), since q(p(u)) = u

for each u E T. Since we have not been able to find a reference

for the version of the strong law of large numbers which is

needed here, we state and prove it as a

(9.1) LEMMA. Let T be a left (resp. right) closed unbounded

subset of IR+ and let be a left (resp. right) continuous

integrable process with independent increment defined on 

Assume that there exists a convolution semi-group 

of probability measures on IR such that Z - Z has the distri-

bution p V-u for all T, u  v. Then one has 
,

(9.2) lim P-a.s.
t

(9.3) REMARK. The result is well known if T = IR+: See Doob

p. 364. The proof given below follows the martingale

method indicated by Doob [10] p. 365.

PROOF. We can restrict ourselves to the case where 0 E T,

ZO = 0. Consider, on some auxiliary space (W,G,Q) a right contin-
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uous process (Y ) s s * E IR+ such that Yo = 0 and such that Y - Yu
has the distribution for all IR+, u  v. One checks

easily that for k, ~, ~ IN with Q

Y~,/2n 
= Q ( Yu , u ? ~ I 2nj, . k 

U -

which implies that for s,t  IR+, with s  t

- Q | Yu, u _ > t .
Since the process has the same distribution as the process

(both

are markovian relative to the same semi-group), one has also

for s,t E T, with s  t

- P Zs | Zu, u ~ t ] .

Fix s > 0 in T and let t ~ ~ in T. By the backward martingale

convergence theorem, Zt t converges a.s. The limit has to be

constant by the 0.1 law and equal to P ss ) = f 

by uniform integrability.

* with independent increments
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