BERNARD MAISONNEUVE
On Lévy’s downcrossing theorem and various extensions

Séminaire de probabilités (Strasbourg), tome 15 (1981), p. 191-205
<http://www.numdam.org/item?id=SPS_1981__15_ 191_0>

© Springer-Verlag, Berlin Heidelberg New York, 1981, tous droits réservés.

L’acces aux archives du séminaire de probabilités (Strasbourg) (http:/portail.
mathdoc.fr/'SemProba/) implique 1’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou im-
pression de ce fichier doit contenir la présente mention de copyright.

‘NuMDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=SPS_1981__15__191_0
http://portail.mathdoc.fr/SemProba/
http://portail.mathdoc.fr/SemProba/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

ON LEVY'S DOWNCROSSING THEOREM
AND VARIOUS EXTENSIONS*

B. MAISONNEUVE

Our aim is to show that the results of [7] can be extended
to regenerative systems as taken in a weak sense which will be
made precise. Such a generality is motivated by Levy's down-
crossing theorem, which does not fit to the framework of [7]
due to a lack of homogeneity of the processes involved. The

first six sections are devoted to this result.

1. FIRST NOTATIONS.
Let X = (Q,g,gt,xt,et,P) denote the canonical one dimen-
sional brownian motion started at the origin: Q is the set of

all continuous functions from IR+ to IR; (X is the process

t)tzo
of the coordinates; (et)t>0 is the process of the shifts; the
progression (__P_‘t)t>0 is the P-completion of the natural progression
(%) of the process (X,); finally P[X, = 0] = 1.

Now let us introduce some basic notations for our problem:

for each t > 0 we put

% This work was supported by AFOSR Grant N° 80-0252 while the author

was visiting Northwestern University, Evanston.



(1.1) C_=sup X_ ,
t et ®
1.2) 1 Y =cC -X |,

(1.3) M =1

(1.4) 0}

=
]
-~
cr
=
T
]
—
—
(]
-~
ct
<
]

2. LEVY'S DOWNCROSSING THEOREM.
For ¢ > 0, t > 0 let dt(e) denote the number of down-
crossings of the process Y over the interval (0,e] by time t.

Lévy's downcrossing theorem asserts that

(2.1) P[ tig edy(e) =C., te R, ] =1.

(2.2) HISTORICAL REMARK. The result (2.1) was only conjectured
by P. Levy. The first proof can be found in ITO, McKEAN (4],
including some gaps that were filled by CHUNG and DURRETT [1].
Another complete proof was given simultaneously by GETOOR [2]

in a much more general context. Finally a short proof was
discovered by Williams [8], [9], but his proof remains much more
complicated than that of the similar result of Lévy's involving
the length of the excursions, namely that there exists ) € (0, )

such that

(2.3) P[ gig. €8, () =C,, temR, ] =1,
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where Gt(e) denotes the number of contiguous intervals of

length >€ contained in (0,t]. The term "contiguous' means
maximal in the complement of M. Our proof (adapted from [7])
will follow Lévy's very simple method for proving (2.3) and will

apply to much more general situations.

(2.4) MATHEMATICAL REMARK. (2.1) shows that the processes
(Ct) and (Xt) are (Yt)-adapted up to null sets. (2.3) even
shows that (C,) is adapted to the smallest complete progression

which makes M progressive. This can be viewed in many other ways.

3. A REGENERATIVE SYSTEM.

Let us introduce new shifts (nt):
(3.1) n, =90, -X_ =X - X

With these shifts the strong Markov property of the process
X can be stated as follows: for each stopping time T and each

f € bF

(3.2) P [ fony | Ep ] = B(£) on {T « =} ,
Furthermore it is immediate to check that the following

M-homogeneity holds for the processes (Yt) and (Mt): for each

s,t >0

(3.3) Y = Y on, on {t € M} ,
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(3.4) M = MSOn on {t € M}

tt+s t

We shall sum up these properties by saying that the collection

(Q,g,gt,Y M,P) is a regenerative system (see §8 for a more

£ Mo
formal definition).

4. EXCURSIONS OF THE PROCESS Y.

Let QO be the set of all functions from IR+ to IR+ which

remain in 0 after their first hitting of 0. On QO we define the

process of the coordinates (Xg) and the o-field EO generated by
0 0

the Xs’ s >0. For we @, t >0 let itw be the element of @

such that for each s > 0

Y if t+s < inf{u>t: u € M(w)},

t+s(w)
(4.1) Xg(itm) =

0 otherwise.

Let G be the random set of the left-end-points in (0,») of the
M-contiguous intervals. Both the Q-valued process (it) and the
random set G are M-homogeneous and it follows immediately that

for each A € EO the increasing process

(4.2) NE = ] Toi_

SEGN(O, t]

is an M-additive (non adapted) functional, that is,

(4.3) Nﬁ;s = Nﬁ + N?ont on {t € M}
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The random collection {it' t ¢ G} is called the collection of
the excursions of Y; Nﬁ is the number of excursions of type A

which occur by time t.

5. TIME CHANGED EXCURSIONS.
The process (Ct) increases exactly on M and is M-additive

with respect to the shifts n Therefore its right continuous

.
inverse (St)’ defined by

v
o

(5.1) St = inf{s: CS >t} , t

satisfies the following additivity property: for all s,t > 0

(5.2) St+s = St + Ssonst on {St < o}
in fact S_. € Mon {S_ < «} and C = t on {S, < =}, due to the
t t St t
continuity of (Ct).
(4.3) and (5.2) further imply that for each A € EO the
process vA = NA satisfies
t St
A _ A A
(5.3) Virs = Ve + vsonst on {St< ©}
But St < = a.s. since limr_)mCr =+ a.s.. Hence (St) is

a subordinator, due to (5.2) and to (3.2) applied with T = St;
and whenever the process (vﬁ) is a.s. finite, it has independent
and homogeneous increments, due to (5.3) and (3.2); it is even

a Poisson process, since it increases by unit jumps. In the
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same manner, let Al’ . ..,An be n pairwise disjoint sets in I=-‘o

such that the processes (\):i) are a.s. finite; then the n-dimen-
sional process (vil, - ,vﬁn) has independent and homogeneous
increments and its components (v‘él) oo ,(vi‘n) are Poisson pro-
cesses which pairwise have no common time of jump; therefore,

due to a classical result of Lévy, these processes are independent
We have just extended to the present situation Ito's excursion

theory [3] and this will allow us to proceed as in [7].

6. PROOF OF LEVY'S DOWNCROSSING THEOREM.
For € € (0,=] let A = {sup xg >e}, For 0 <e<e <o
ANA - s rational
the process (vte € ),which is a.s. finite, is a Poisson process

by previous considerations. If 0 < €1 € +ve < L@ the pro-

cesses (vtE;\Aei_'_l), i=1,...,n-1 are further independent. But
\)AC\AE. = \)AE.- \)AE‘

t1 141 t1 t 141

28 is a process with independent

and therefore the process € - v
(non-homogeneous) increments for each fixed t. The strong law

of large numbers applies to this process as € » 0 and yields
vie

(6.1) lim =1 a.s, .

e+0 P [\)28]

But we shallsee that the denominator in (6.1) equals t/e;

hence (6.1) becomes
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(6.2) lim svﬁc =t a.s.
e-+0

Due to the monotonicity in t of evﬁe and t, the null set in

(6.2) can be chosen independently of t; therefore one has

. A
P [ limevae = C_, t e IR 1=1
>0 Ct t +
and since vé = Nﬁ, we get
t
(6.3) P [ lin eNbe=C., t GR,] =1.

Lévy's downcrossing theorem follows from the fact that
ldt(e) - N%el < 1 for each t.
It remains to prove that P [ vﬁe ] =t/e. Put T_ = inf{s: Y >e}
From the equality YTe = ¢ a.s. and from the martingale property
of X, one immediately checks that P [’CTE ] = €. On the other
hand, CT is the time of the first jump of the process (vee),

€
which is Poisson; therefore

A.\ _ =
P(vtﬁ) = t/P(CTe) = t/e .
7. OTHER LIMIT RESULTS FOR THE PROCESS (Ct)'

(7.1) THEOREM. Let o € (0,~] and let {A_, O<e<a} be a decreasing

right continuous family of elements of EO. Set
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(7.2) T, =inf{t e G: i_€ A} = inf{t: Nie > 0)
and suppose that

(7.3) P[O<T, <« e&(0,a]; lim T, = 0]=1

Ae €+0 €

Then, with the notation (4.2), one has

teR, ] =1

. - A
(7.4) P[lim P C N%e =C,_,
e+0 [ TA ] t t

€
The proof is similar to the proof of Lévy's downcrossing
theorem. For more details we refer to the proof of theorem 2

of [7] and to the appendix.

(7.6) REMARK. Theorem (7.1) unifies the results (2.1) and (2.3):

for (2.1) choose A_ = {sup 0, €}, for (2.3) choose
€
s rational

A, = (x2> 0},

8. EXTENSIONS TO REGENERATIVE SYSTEMS.

Let us consider a regenerative system (Q,g,F Y M,P)

=t t’nt’
in the sense of [5], except that the homogeneity properties are

only required on M. More precisely (2,F,F_,P) is a stochastic

basis with usual conditions, (Yt) is a progressive process (with
state space (E,E)), (nt) is a measurable process with values in
(Q,F), M is a right closed progressive random set. We further

assume the following properties:
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(8.1) M-homogeneity: for s,t > 0

Ysont = Yt+s on {t e M} ,

on {t € M} ,

It
=

C
Ms)nt t+s

where Mt = I{t c M}
(8.2) Regeneration: For each stopping time T and each f € bE
P [ fong | Ep | = P[£f] on {T & M} ,

{8.3) REMARK. This weak notion of regenerative system was
already introduced in [6], in order to time change a Markov
process by using the inverse of a non-continuous additive func-

tional.

Throughout this section let us assume that the random set
M is perfect, unbounded, with an empty interior a.s. and that
(Ct) is a local time of M, that is (Ct) is a continuous adapted
M-additive functional which increases exactly on M (the closure

of M).
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Then all considerations of Sections 4,5,7 extend to the
present framework, with the following differences: in the defi-

nition (4.1) of itw we set
X0 w) = & if t+s > inf{u > t: u € M(w)} ,

where § is a distinguished point in E which is a.s. ignored by
the process Y and such that {§} € E; in the definition (4.2)
of Nﬁ, we assume that A is a subset of the space 90 of all
mappings from IR 4+ to E with life time and that A further belongs
to the o-field go generated by the coordinates of no.

Finally under the assumptions (7.2) and (7.3) we can state
the following constructive result, which is the analog of

theorem 2° of [7]:
(8.4) THEOREM. There exists a local time Ct,: such that

A .
P lim p(e) Ne = C_, t € R =1,
[ 3o wle = c. € e, ]

where we set p(e) =P [T, =1T, ].
€ A(l
9. APPENDIX.
This apvendix is devoted to fixing the proof of theorem
2 of [7], which is incomplete. We shall do this in the frame-

work of theorem (7.1) of the present paper. For A € go. set
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0(A) = P[v?] and for € € (0,a] set q(e) = Q(A.). Let p (resp. Pp)

be the right (resp. left) continuous inverse of q:

p(u) = sup{e € (0,a]: q(e) > u}l , u

v
S

p(u) = sup{e € (0,a]: q(e) > u} , u

v
o

Let us fix t > 0 and define the processes Z, Z by setting
- P 7 -  p)
Z,= V¢ , Z,= V¢ , u >0.

It was claimed in [7] that the restriction to the set

T = q((0,a]) of the process Z is left continuous. Here is a

proof of this fact. Let D be the set of all points u in T
which are not isolated from the left and which are such that
p(u) # p(u). For each u € D one has q(p(u)) = q(p(u)).

Therefore the set

B=UJ (a

o Pe@Miw)

is null for the measure 0O and the variable vE vanishes a.s.

This implies that

P(z,=Z,ueD] =1
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and the a.s. left continuity of the process (Zu)ueT now follows

from the left continuity of Z (u tus= ﬁ(un)L p(u) > vg(un)fvg(u)).
The proof ends like in [7]. Basically one applies the strong

law of large numbers to the process (Zu)ueT: this process has

independent increments and for u,v € T, u < v, Zv - Zu is

Poisson distributed with parameter t(v-u), since q(p(u)) = u

for each u € T. Since we have not been able to find a reference

for the version of the strong law of large numbers which is

needed here, we state and prove it as a

(9.1) LEMMA. Let T be a left (resp. right) closed unbounded

subset of IR+ and let (Zt) be a left (resp. right) continuous

teT
integrable process with independent increment defined on (Q,F,P).
Assume that there exists a convolution semi-group (“s)se(O )

of probability measures on IR such that Z, -7, has the distri-

bution LN for all u,v &€ T, u < v. Then one has

Z
(9.2) lim —& = f xul(dx) P-a.s.
t>o t

(9.3) REMARK. The result is well known if T = DR+: See Doob
[10] p. 364. The proof given below follows the martingale

method indicated by Doob [10] p. 365.

PROOF. We can restrict ourselves to the case where 0 € T,

Z0 = 0. Consider, on some auxiliary space (W,G,Q) a right contin-
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*
uous process (Ys)s61R+ such that YO = 0 and such that Yv - Yu
has the distribution LN for all u,v & IR+, u < v. One checks

easily that for k,2 € IN with k < ¢

Y, /om Yy /o0 .
= Q[ Yy , u> /2 ] ,
) .k u
which implies that for s,t ¢ IR+, with s < t
Y -
t . Q[ R Y,u>t ]

Since the process (Zt) has the same distribution as the process

teT
(Yt)tET (both

are markovian relative to the same semi-group), one has also

for s,t € T, with s < t

Fix s > 0 in T and let t » « in T. By the backward martingale

convergence theorem,

converges a.s. The limit has to be

t
constant by the 0.1 law and equal to P[ Ss ] = f xul(dx)

by uniform integrability.

%x with independent increments
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