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Some extensions of Ito’s formula

Hiroshi Kunita

Department of Applied Science, Kyushu Univ.

Hakozaki, Fukuoka 812, Japan

In recent studies of stochastic differential equations on manifold,

stochastic calculus to differential geometric objects are often considered.

In this note we shall discuss three types of formulas for stochastic

calculus which may be considered as extensions of Ito’s formula. The

first formulas (Theorem 1.1 and 1.2) are concerned with the composition

of stochastic flows of diffeomorphisms defined by stochastic differential

equation. A similar formula is obtained by Bismut [1].

The second formula (Theorem 2.4) is for the stochastic parallel

displacement of tensor fields introduced by K. Ito [3]. The third one

(Theorem 3.3) is concerned with the stochastic transformation of tensor

fields induced by flows of diffeomorphisms defined by stochastic differ-

ential equation. The theorem is due to S. Watanabe [9]. A special

case of the formula is also discussed in Kunita [7].

1. Ito’s formula for the composition of processes.

Let be a complete probability space equipped with a

right continuous increasing family 0 of sub 0-fields of F.

Theorem 1.1. Let Ft (x), t ~ 0, x ~ Rd be a stochastic process

continuous in (t,x) a.s., satisfying

(i) For each t > 0, F (’) is a C -map from Rd into R1 a.s.

(ii) For each x, F (x) is a continuous semimartingale represented as
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(1.1) F (x) = F (x) + t t 0 
~=1 0 

s 
(- ) 

s

where NS, ..., Nm are continuous semimartingales, s > 0, x e Rds s s -

are stochastic processes continuous in such that

(a) For each s > 0, f 8 (x) are C1-rmaps f rom Rd into Rl.
(b) For each x, are adapted processes.s

Let now Mt = (M1, " ,, M ) be continuous semimartingales. Then we have

(1.2) F (M ) = F (M ) + It + E )dMit t 0 0 
~=1 0 

s s s 
i=1 0 axi s s

d m 

It ~fjs ~x(Ms)dNj, M i 
l)

+ E E M >

+ 

0 
S 
)dM , M s

Proof. Fix a time t and let dn = f0=t0tl ... tn=t} be

a partition of [0, tj. Then

n-1

Ft(Mt) - FO(MO) = E (Ft (Mt ) - Ft (Mt ))k=0 k+1 k k k

n-l
+ E (Ft (Mt ) - Ft (Mt ))k=0 k+1 tk+1 k+1 k

= I(n)1 + I(n)2.

It holds

1) is a continuous process. of bounded variation such that

NjtMit - Nj,Mi>t is a local martingale, where Ñjt(Mit) is the local
martingale part of See Kunita-Watanabe j8],
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I(n)1 =  tk+1 tkfjs
(x) dNjs|

x=Mt 
=  

tk+1 tkfjs(Mtk
dNjs.

k

Let bn, n = 1,2,... be a sequence of partions such that Then

1 
~ 

1 
~=1 0 

s( s s

The second member is computed as follow,

d n-l
I (n) = E E ~ F (M )(Mi - Mi )

d n-l 2
+ 1 E E = F (~ )(Mi - - Mt )

= J(n) + 
1 2

where ~ are random variables such that ~~k - I  ~Mt - Mt I.
We have

d n-1

J(n) = E E a F (M )(Mi - Mi )
1 

i=1 k=p axi tk tk tk+1 tk

d n-l
+ E E ( a F (M ) - a F (M ) ) (Mi - Mi ). .

The f irst member converges to

t0 ~Fs ~xi
(Ms) dMis

The second member is written as
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tk+1 tk~fjs ~xi(x)dNjs |x=Mtk x (Mitk+1 - Mitk)

d m n-1 
~ i i- E E E ( - Mt )i k ’ "k+1 k

This converges to

d m 

E E Mi> .
i=1 ~=1 0 i s

It is easily seen that J’ converges to

1 2 t~2Fs ~x,~x, (Ms)dM , " i,~=10 i s 
)dM , M s

Summing up these calculations, we arrive at the formula (1.2).

In order to establish Ito formula for Stratonovich integral, we need

a stronger assumption.

Theorem 1.2. Let Ft(x), t ~ 0, x E Rd be a stochastic process

continuous in (t, x) a.s., satisfying

(i) For each t > 0, Ft(.) is a C 3 -map from Rd into R1 for

a.s. w.

(ii) For each x, Ft(x) is a continuous semimartingale represented

as

(1.3) Ft (x) = FO(x) + E It 
1)

j-l-’0 
" ~

1) The symbol * deaotes Stratonovich integral.
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where N1, ..., Nm are continuous semimartingales, ’ f t. (x) are stochastic

processes satisfying conditions (i) and (3i) of Theorem 1.1, that is, they

are continuous in (t, x) a.s., C2 maps from Rd into R1 for each

t > 0 a.s., and are represented as

~ 1 .4) f j (x) _ j f (x) + E ! t t 0 
a 

s s

where O1, ..., 0~ are continuous semimartingales and are continu-

ous in (s, x), satisfying conditions (a) and (b) of Theorem 1.1.

Let now Mt = (M1 , ..., Md) be continuous semimartingales.

Then we have

~ 

It ~ 
d 

It 
aF 

i
(1. 5) = + E f s (Ms) odNs + E 

. 

j=10 
s s s 

i=10 i S s

Proof. Using Ito integral, Ft(x) of (1.3) is written as

F x = F x + E It f 3 (x) dNj + 1 E t j k (x) dOk, Nj> .t() 0() s s 2 gs(x)d0, N’> s

Hence by Theorem 1.1,

(1.6) Ft(Mt) = F 0 ( M 0) + E It fjs(Ms)dNjs + 1 2 E t gjks(Ms )dOk ’ Nj>s
+ E lt aFs (M )dI"I i + E t0~fjs ~xi (Ms)dNj , M i >s

+ _ E I ax Mj>s .



123

We shall apply Theorem 1.1 to in the place of . Then we see

that is a continuous semimartingale whose martingale part equals

03A3t0~fjs ~xi(Ms)dis + 03A3t0gjks(Ms)dks ,
where Mis and are martingale parts of and 0B respectively °
Therefore we have

~ = ~ ~~’ , ~>,

~~s~~~~~~
+ 1 2 X gjks(Ms)d0k, Nj>s .

Similarly, ~Fs ~xi (Ms) is a continuous semimartingale whose martingale part
is

~~’".~~~~. 
where Ñjt are martingale parts of Njt. Then we have

t0~Fs ~xi(Ms)dMis = t0~Fs ~xi(Ms)dMis + 1 2 ~F ~xi(M), Mi>t
- 
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+ 1 2 03A3 t0~2Fs ~xi~xj(Ms)dMj ,Mi>s .

Hence the right hand side of (1.6) equals that of (1,5), The proof is

complete.

In [6] and [7], the author used the above formula (1.5) without proof

for the study of the composition of flows of diffeomorphisms defined by

stochastic differential equations. We shall briefly discuss the problem.

Let M be a connected, 03C3-compact e0153-manifold of dimension d.

Given C -vector fields X1,...,Xr on M and continuous semimartingales

M1,...,Mr, t > 0, consider a stochastic differential equation

(1.7) d03BEt = E r 

The solution starting at x at time 0 is denoted by 03BEt(x). Under some

conditions on vector f ields Xl, , .. ,Xr, , ~t defines a flow of diffeomorphisms

of M a.s. See [7]. We assume it throughout this note.

Now let Ft(x), t > 0, x E M be a real valued stochastic process

continuous in (t,x) a.s., satisfying conditions (i) and of Theorem 1.2,

where we replace Rd by M: Then we have

(1.8) Ft(03BEt)=F0(03BE0) + 03A3 t0 fjs(03BEs)dNjs + 03A3 t0 XjFs(03BEs).dMjs.
Here ’ is the derivation of Fs(x) (s; fixed) by Xj. In fact,

let (x1,...,xd) be a local cobrdinate and let , be

components of X , , i.e., X = E Xi a 
. Then 03BE = (03BE1,...,03BEd) are

" j i ~ axi t t t
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continuous semimartingales represented as

(1.9) d03BEit = E i=1,...,d.

Apply formula (1.5) to Then the third term of the right hand

side of (1.5) is

E = E E 

i=1 0 i ~ i~O ~ i

= 03A3t0XjFs(03BEs)dMjs.

This shows the formula (1.8).

Let now Y i ,...,Y m be other C -vector fields on M and t~t be

a solution of stochastic differential equation

m 
k

(1.10) = !; 
k=1 

’

Then the solution ~t(x) starting at x is a C -map under some conditions

on Yl, ... ,Ys. Using a local coordinate (x , ... ,x ) , ~t = (~1t,...,~dt)
satisfies

~11 ( ~ ) = xi + E t .~ + E t ° d’M~ .t t k=1 0 k s ~s s 

Then the composed process = satisfies

(1.11) d03B6t = 
m 

E dNkt + E 
r 

~t * (X ) (03B6t) °dMjt .



126

. 

Here is a stochastic vector field defined by

,

where is the differential of the map See .[ 6] and [7] for

other problems of decompositions.

2. Ito~s formula for stochastic parralel displacement of tensor fields.

As an application of extended Ito’s formula established in Section 1,

we shall discuss an Ito~s formula for stochastic parallel displacement

of tensor fields along curves obtained by a stochastic differential

equation. Stochastic parallel displacement along Brownian curves on

Riemannian manifold was introduced by K~ Ito [3], [4]. Our definition is

close to [4]. See Ikeda-Watanabe j2] for other approaches by Eelles-

Elworthy and Malliavin, where stochastic moving frames play an 

role.

We shall recall some facts on parallel displacement needed later,

Let M be a connected, (~-compact C -manifold of dimension d, where

an affine connection is defined. Denote by the tangent space

at the point x of M. Suppose we are given a smooth curve 

s ~ 0 starting at x at time 0. Let ut be a tangent vector belon.ging

to and let u.. be the parallel displacement of ut along

the curve 03C6s(x) , 0 ~ s ~ t from the point 03C6t(x) to x. Then the

map 03C0tx : defines an isomorphism from to Tx(M).
Given a vector field Y on M, we denote by x the restriction

of Y to the point x, which is an element of For each t > 0~
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a vector f ield is def ined by ~tX ~ t (X) , 
d x E M.

The one parameter family of vector fields t > 0 satisfies

(2.1) = e M ,

where D~Y is the covariant derivative of Y along the curve ~t.
is a solution of an ordinary differential equation:

t = =1 E X (03C6t)uj (.t) f 03C60 = x, f

where X1,...,Xr are vector fields on M and ul(t),...,ur (t) are

smooth scalar functions, then equation (2.1) becomes

(2.2) d (~t Y) - dt t x 
~=1 

t X~ j

The inverse map 03C0-1tx t defines another vector field as

- ~’~ . Y 1~ which is the parallel displacement of Y
t x t~~1 (x) ~-1 Cx) ~ 1 (x)

t 
-1 

t

along the curve ~s, 0 ~L s  t from ~t (x) to x. It holds

(2.3) = - ~ r (Q dt t x 
~=1 X~ t x ~

Let Tx(M) be the cotangent space at x (dual of TX(Ml), The

dual 03C0*tx is an isomorphism f rom Tx (M) to T03C6(x)(M)* (M) such that

* * t

03C0tx03B8,Y> = 03B8,03C0txY> holds f or any 8 E Tx (M) and Y E 

Given a 1-form 6 (covariant vector field), 7r 6 is a 1-form defined by

(03C0*t03B8)x = 03C0* 
-1 

8 
-1 

’ 03C0*
- 

1 8 is defined similarly.t " 

~t (x) 
t

1) It is assumed that ~t is a one to one map from M into itself for

any t > 0.
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A tensor field K of type (p,q) is, by definition, an assignment

of a tensor X of to each point x of M, where

Cx) = Tx CM) ~ ... ~ Tx (M) O TX CM) * ~ ... Qx Tx (.M) *

p times and q times). Hence for each x, x is a

multilinear form on the product space

TX (.M) * X ... 
X TX (M) * X X 

... x 

Thus, for given 1-forms 61,...,8p and vector fields Y1,...,Y ,q

KX(03B81,...,03B8p, Y ,...,Y ) (= Kx(03B81x,...,03B8px, Y1x,...,Yqx))

is a scalar field. In the sequel, we assume that it is a C ~-function.1)
The parallel displacement of the tensor field K along the

curve ~s is defined by the relation

(2.4) (03C0tK)x(03B81,...,03B8p, Y , ... ,Y ) = K x (03C0*t03B81, ...,03C0*t03B8p, 03C0-1tY1,...,03C0-1tYq).

If K is a vector field, it coincides clearly with the usual parallel

displacement mentioned above. If K is a 1-form, it coincides with

*-1
~rt K. Hence we can write the above relation as

(2.4’) (03C0tK)x(03B81,...,03B8p, ’ Yl, ... ,Y ) x (03C0-1t03B81,...,03C0-1t03B8p, ’ 03C0-1tY1,...,03C0-1tYq).
~

1) K is a C -tensor field.
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Let X be a complete vector field and ~t, , the one parameter

group of transformations generated by X. Then the covariant derivative

OXK of tensor field K is defined by

(2.5) (~XK)x(81,...,8p, , .

The following relation is easily checked.

(2.6) (YXK)x(8 ,...,8 , 

= X(Kx(6 ,...,8 , Yi,...,Y q ))

- z Kx(03B81,...,~X03B8k,...,03B8p, Y1,...,Yq)

- Kx(03B81,...,03B8p, Y1 ,...,~X Yl ,.. ., Yq ).

Now let 03BEt(x) be the stochastic flow of diffeomorphisms defined

by the equation (1.7). The 0 ~ s ~ t are not smooth a.s.,

so that the argument of the parallel displacement mentioned above is

not applied directly. We shall define the stochastic parallel displacement

following the idea of Ito [4]. We begins with defining the stochastic

parallel displacement of vector fields 0  s  t from

~t (~c) to x.

A stochastic analogue of equation (2.2) is as follow.

(2.7) = Yx + E MI
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Here, 03C0t is a stochastic linear map a,cting on the spa,ce of vector fields

such that 03C0t (fY)x = f(03BEt (x))(03C0tY)x for scalax function f, t Let

(xl,...,xd) be a local coordinate and let a - a , Then equationk ax
(2.7) is written as

(2.8) ~~ a ) - (.a ) + E E t C~) ) C~ a ~ tkx a~~~ ~ s ak s s~,~c s

k = 1,...,d,

where X - E Xa a and 0393l03B1k is the Christoffel symbol. It may be

considered as an equation on the tangent space The equation

has a unique solution k=1,. " ,d for any x, Define

= E Yi (03BEt (x) ) if Y = E Yia . Then it is a unique solutiont x it. t x i

of (2.7) . We shall call the parallel displacement of 

along the curve 03BEs (.x) , 4  s  t from 03BEt (x) to x. Denote the

linear map Y03BE t (x) 
~ (03C0tY)x as 03C0tx.

Lemma 2.1. is an isomorphism from T03BE (x)CM) to Tx(.M) a.s.
t

Proof. Using the above local coordinate, we shall write

x = ~ Cx) Ca ) x ~ Cx) ~ ~ (x) r’~’ Cx) .

From (2. 8) , the matrix t (x) = Cx) ) satisf ies

(2.9) t (x) = I + E r t P C~ (x) ) s (x) 

where P - (pkf) and I is the identity. Consider the adjoint matrix

equation of (2.9):
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C2.10) E (x) = I - E t E Cx)P (~ (x) ) °dM~ .t ~=10 s ~ s s

Then Ito’s formula implies dEt (x) == 0. This proves Et (x) nt (x) = I
so that nt(x) has the inverse Et(x). The proof is complete.

Now the inverse map : 
(x) (M) defines the stochastic

parallel displacement from x Obviously we have

03C0-1tx(~k)x = E 03C3klt(x)(~l)03BEt(x), where E - (Qkf ) . The component s of the

vector 03C0-1tx(~k)x satisfies by (2.10)

(2.11) = S - E r t E (x) ) r~ (~ 
t k~ 

j=l’’0 
s

In [2] and [4], the above equation is employed for defining the stochastic

parallel displacement. Actually, if is a solution of C2.11),

E ~ ~t ~X) is defined as the stochastic parallel displacement of Ca ) k ~x
0  s  t from x Then equation ~2.8) is induced

from it as the inverse. A reason that we adopt (2.7) as the definition

is that all are elements of the fixed tangent space TXCM).
While 

X 
are moving in various tangent spaces as t

and t) vary. In fact we may consider that (2.11) is an equation for

stochastic moving frames represented by local coordinate (xl, " ,,xd,
Q ,".,Q d,,..,Q ,,..,Q~) BC.f. [2]). .

Given a vector field Y, we denote by the stochastic

parallel displacement of Y along 03BEs, 0  s  t to x.

Then it holds = ’~^1 1 Y 1 ’

~ " 
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Proposition 2.2. It holds

(2.12) = Yx - E (~Xj03C0-1sY)xdMjs.

Proof. It is known that the inverse map 03BE-
1t 

satisfies

d~tl{x) _ - E ~ . 
(Kunita [7], Proposition 5.1). Apply Theorem 1.2 to Et. . Then

(2.13) 03C3klt(03BE-1t(x)) = d E 

-  t0 t 1 (X ) ( 
1 

tx) ) ° dMjs.

Noting 03BE-1s*(Xj)f(03BE-1s(x)) = Xj(f03BE-1s)(x), we see that = 

satisfies

(2.14) E r It E + a 

Since E the above equality shows

03C0-1t~k = ~k -0 03A3 t0 ~Xj03C0-1s~kdMjs.

This proves the proposition.
*

The dual Tr of 03C0t is.defined as before. It is acting on the

space of 1-forms. It holds

*
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for any 1-form S and vector field Y, We shall obtain equations ;for
* *-1

and 1ft 6.

Proposition 2,3, It holds

2.15 ) (03C0*t03B8)x .. 
t 

(~Xj03C0*s03B8)xdMjs ,

(2.16) (03C0*-1t03B8)x - 6 + E r t (03C0*-1s~Xj03B8)xdMjs .

Proof. Set Ft (x) = 03B8,03C0t Y>. . We shall calculate F 
using Theorem 1.2. It holds

F (03BE-1t (x) ) - F0 (x) = - t003BE-1s* (Xj) (Fs)(03BE-1s (x))=dMjs

+ t0 03B8,03C0s~X jY> 03BE-1s(x)dMjs 
,

Note that

03BE-1s*(Xj)(Fs)(03BE-1s(x)) = Xj(03B8,03C0s Y> 03BE-1s(x)).
Since 9,Y> + Y> = X j (6,Y>) holds by (2.6), the above formula

leads to

- ~ x _ - J It ..

This proves (2.15). (2.16) is proved similarly.

The stochastic parallel displacement of tensor field K is defined
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similarly as before: is a tensor field such that

(2.17) (03C0
t
K)
x

(03B81 , ... , 03B8p , Y1, ... ,Yq) = K
03BEt (x) (03C0*t03B81 ,...,03C0*t03B8p , 03C0- 1tY1,...,03C0-1tYq).

We shall obtain an Ito’s formula for which is an extension of

formulas ~2.7) and (2.16) .

Theorem 2.4. It holds

(2.18) 03C0t K = K + r E It ?! QX KdMjst 
~=1 0 S j S

- K + E It 03C0s v KdMjs + 1 E It 03C0s v o KdMj,Mk>s .

$X~ S 2~~k0 sX~ -It 
’ 

s

Proof. Apply Ito’s formula to the multilinear form Kx.
Noting the relation (2.12) and (.2.15), we have

Kx(03C0*t03B81,...,03C0*t03B8p , 03C0-1tY1,...,03C0-1tYq) - K (91,...,9p, Y ,...,Y )
r p 

It K (03C0*s03B81,...,~ X ,03C0-1sY1 ,...,03C0-1sYq).dMjs

+ q 03C0*s03B81,...,03C0-1s,..., 11 -1sYl,...,03C0-1s1 )0 s .s s 1 X~ S q s

Set

* 1 * p - L- - L-
F (x) = Kx(03C0*t03B81, ... ,03C0*t03B8p, 03C0-1tY1, ... ,?f--Y )

and apply Theorem 1.2 to Then
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c2.19) 

= { It XjFs (03BEs(x)).dMjs
~=1 0 

s s s

- o t 03BEs (x) (03C0*s03B8 1 
... 

Xj
6k, ... ,03C0_ S 1 , ... ,03C0-1sYq o s

- Jt K X 1,...,03C0-1sY1,...,~Xj 03C0-1sYl ,...,03C0-1sYq) dM j 
.

Noting the relation C2.6), we see that the right hand side of C2.19) is

E r It ~ vX K(el, ... , ep, ~=1 o s j 1 q s

The proof is complete.

Remark. The inverse is defined by

Y ,...,Y ) = K 1 (03C0t03B81,...,03C0t 03B8p, 03C0t Y1,...,03C0t Y ).x 1 q ~-1 C~) t t t 1 t q
t

Then similarly as Theorem 2.4, we have

= K - E r It vX 03C0-1sKdMjs
= K - E t0~Xj 03C0-1sKdMjs - 1 2 E t0~Xj v ,M--> .

The Ito formula C2.18) can be applied to getting a heat equation

for tensor fields. Suppose that ~t is determined by
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r

(.2. 20) d~t ~ ~ X + 
t t t t

where (~1,...,Br) is a Bxownian motion. Then,

(2.21) K = E r It 03C0s OX KdBjs + It 03C0s (1 2  p2 + p )Rdst 
~=1 o s ~ s 

0 
s 2 XO

Theorem 2.5. Define for each t a tensor field Kt by

(Kt)xC8l,...,8p, Y 1 ,,..,Y ) q = E[(1TtK)x(e ,...,8 , Y1,...,Yq)].

Then it satisfies the heat equation

aKt 1 
r 

2
at = ~ E v~ + v~ Ro = K,

~=1 ~ o

Proof. We shall omit 81,...,6p, Y1,..,,Y q for simplicity.

Set KS = Taking expectation to both sides of (2.21) , we have

R - K = s (1 2 E ~2X4 + p )K]du.s 
0 X 0

Since Kx is smooth relative to x, so is (RS)x.
Let us substitute Kt to the above formula. Then

K ] - K - s (1 E ~2X4 + p )K ]du,s t t 
a 

u 2 
~=1 

Now it holds 03C0t+s = 03C0ts ,where s is the parallel displacement along

03BEu, t  u  t+s from (x) to 03BEt(x). Then by Markov property, we have
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°

Consequently,

Kt+s = s 
so that we have

a K - (1 2~2Xj + ~X0)Kt.
The proof is complete.

3. Ito’s formula for 03BE*t acting on tensor fields.
In this section, we shall obtain an Ito’s formula for stochastic

*

maps ~t acting on tensor fields, which is induced by the solution

~t (x) of (1.7). The formula looks similar to the one for parallel

displacement. The only difference is that Lie derivative is involved

in place of covariant derivative. The formula has been obtained by

S. Watanabe [9]. His approach is based on the lift of the process to

a frame bundle in a suitable way and the use of scalarization of tensor

field on the bundle. On the other hand, our proof is very close to the

method in previous section.

Given a diffeomorphism 03C6 of M, the differential 03C6*x is a

linear - map of T 
x 
(M) onto T 

03C6 (x)(M) . The dual map 03C6*x of the differ-

ential ~*x is a linear map of T~(x) (M) onto TX(M) . ° Let Y be

a vector field. The 03C6-related vector field 03C6*(Y) is defined by the
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*

relation 03C6*(Y)x = 03C6*03C6 1 
Y 

_1 
. For 1-foxm 03B8, 03C6 (8) is defined

by 03C6*(03B8)x = 03C6*x03B803C6(x). The inverse 03C6*
_ 

1(9) is defined in the same way.

Let K be a tensor field of type (p,q). We define a tensor field

*

03C6 K by the relation

(3.1) (03C6*K)x(03B81,...,03B8p, Y1,...,Y )x q

= K ~ (x) (~* 1(el) ~...,~* 1(ep) ~~*(Y ) 1 ~...,~*(Y q )) .

If K is a vector field, it holds 03C6
* 
K = 03C6-1*(K) and if K is a

* *

it holds 03C6 K = 03C6 (K) .
*

Remark. The definition of the above 03C6 is not equal to that

of 03C6 in Kobayashi-Nomizu [5], p. 28. The relation of these is

~1=~* or ~=(.$1)*.
Let X be a complete vector field and ~t, t E C- ~,~) be the

one parameter group of transformations generated by X. The Lie derivative

of tensor field K with respect to X is defined by

(.3. 2) L~~K - lim K} .
t t

The following properties are well known. Ci) If K is a scalar function,

then LXK = X(K). (ii) If K is a vector field, then 

where [ , ] is the Lie bracket, (~i) If Y is a vector field and

9 is a 1-form, then

C3.3) LX8 , Y> + 8 = X9 , Y>.
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(iv) If K is a tensor field of type (p~q), then

(3.4) O~K)~(~,...,eP, Y~...,Y~) . X(~(e~,...,eP, 

-  Kx(03B81,...,LX03B8k,...,03B8p, v ,v )
-  Kx(03B81,...,03B8p, Y1,...,LXYl...,Yq).

Now let 03BEt(x) be a solution of stochastic differential equation

(1.7). Then 03BE*tK is a stochastic tensor field. We shall obtain Ito’s

formula for ~K and (~ )~. We first consider the case that K is

a vector field and then the case that K is a 1-form

Lemma 3.1. (c.f. [7], Proposition 5.2 and 5.3). Let Y be a

vector field. Then it holds

(3.5) 03BE*tY = Y + E f 03BE*sLX YdMjs
" ~"j ~

(3.6) ~ (Y) =Y- 
1

~ ~j ~ ~

Lemma 3.2. Let 6 be a 1-form. Then it holds

(3.7) 03BE*t03B8 = e + z f 03BE*sLXj03B8dMjs
(3.8) (03BE*t)-103B8 = e - z f 

Proof. We shall prove (3.8) only since (3.7) is a special case
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of the next theorem. It holds

t ~ x x = t ~~ ~ x = t ~~1 ~x) .
Then similarly as the proof of Proposition 2.3, we have

03B8,03BE*tY>03BE-1t (x) - 03B8,Y>x = - t0 LXj(03BE*s)-103B8,Y>xdMjs .

This proves (3.8).

Formulas (3.5), (3.6), (3.7) and (3.8) correspond formulas (2.7),

(2.12), (2.15) and (2.16), respectively. Then the next Ito’s formula

for tensor field 03BE*tK is proved in the same way as the case of parallel

displacement.

Theorem 3.3. (c.f. S. Watanabe [9]). Let K be a smooth

censor field of type (p,q). Then it holds

(3.9) 03BE*tK = K + b It 
= K + t0 03BE*sLXj K dMjs + 1 2 t0 03BE*sLXj LXk KdMj,Mk>s.

Similarly as Theorem 2.4, we have

Theorem 3.4. Let ~t be a solution of (2.20). Set

*

Kt = 

Then it satisfies
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~ ~tKt = 1 2(L2Xj + LX0)Kt,
K0 = K.
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