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Some extensions of Ito's formula

Hiroshi Kunita
Department of Applied Science, Kyushu Univ.

Hakozaki, Fukuoka 812, Japan

In recent studies of stochastic differential equations on manifold,
stochastic calculus to differential geometric objects are often considered.
In this note we shall discuss three types of formulas for stochastic
calculus which may be considered as extensions of Ito's formula. The
first formulas (Theorem 1.1 and 1.2) are concerned with the composition
of stochastic flows of diffeomorphisms defined by stochastic differential
equation. A similar formula is obtained by Bismut [1].

The second formula (Theorem 2.4) is for the stochastic parallel
displacement of tensor fields introduced by K. Ito [3]. The third ome
(Theorem 3.3) is concerned with the stochastic transformation of tensor
fields induced by flows of diffeomorphisms defined by stochastic differ-
ential equation. The theorem is due to S. Watanabe [9]. A special

case of the formula is also discussed in Kunita [7].

1. Ito's formula for the composition of processes.
Let (Q,F,P) be a complete probability space equipped with a
right continuous increasing family Ft’ t >0 of sub o-fields of F.
The;rem 1.1. Let Ft(x), t>0, xe€ Rd be a stochastic process
continuous in (t,x) a.s., satisfying

(1) For each t > 0, Ft(°) is a Cz-map from Rd into R1 a.s.

() For each x, Ft(x) is a continuous semimartingale represented as
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L A D
(1.1) Ft(x) = Fo(x) + jfl Jo fs(x)st

where N‘:, ey N’: are continuous semimartingales, fg(x), 8>0,xe¢ Rd

are stochastic processes continuous in (s,x) such that

(a) For each s > 0, f‘Z (x) are Cl-maps from Rd into Rl.

(b) For each x, f‘l (x) are adapted processes.

d,
Let now Mt = (M::, ceny Mt) be continuous semimartingales. Then we have

t 3 j d (t an 1
fs(Ms)st + z[ W(Ms)dns

n
(1.2) F.(M)=F. M)+ T I
tTe 0o 0 1=1J0 9%y

i=1

+ L I 1

d m (toaf) 5 1)
J P CL >
i=1 j=1 1

0

0 axiaxj

d It 32F

+
N

T ™ yaart, > .
i,j'l 8 8

Proof. Fix a time t and let A = {O=t,<t < ... <t =t} be

1
a partition of [0, t]. Then

n-1
FM)-FM)= % (F M )-F M ))
tht 00 k=0 tltl tx te by

n-1
+ I (F ™ ) -F ™))
k=0 S+l Tkl tet1 Bk

(n) (n)
=1+

It holds

i
1) <Nj sM >¢ 18 a continuous process of bounded yariation such that
~inq i ~
N-;':Mt - <Nj sM™>¢ 1s a local martingale, where N:t, (ﬁ:) is the local
martingale part of Ni (M:). See Kunita-Watanabe [8],



120

n—l m m n-1
{“) zJ fj(x)dN =1 = I fj(M yand.
k-O j=1t ®lxe,  3=1 k=0 ty
K

Let An’ n=1,2,... be a sequence of partions such that |An|—-'0. Then

m
lin 1{“) - I J fj(H )dN
o =1

The second member is computed as follow,

d n-1

Ié")- r I alrt o, )(Mt -M:)
1=1 k=0 ol Sk teel Tk
d n-l 2

1 3 i 19 .
= I I ——F ()M -M )M - )
24 5e1 k=0 ®1%%y el K Gl Bk kel Sk
RECIOS

i

where £, are random variables such that |E,'k - M | IMt - M |.
kt+l k
We have _
d n-1
RIS }:-aa—r M, )(M —M:)
i=]1 k=0 x4 k k ld'l k
d n-1 3 1 N
+ I I (= ™M )-=—F M )M -M ).
i=1 k=0 3" Trr e O bt gy oty

The first member converges to

d rt aF
z j (M )dM
1=1 3x

The second member is written as
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d m o1 el o) 5 . .
I ¢ I J s ()N x (M, -M )
1=1 3=1 k=0 't =t x=M K+l k
Y
d m n1 (e agd Jont L
=3 I I (J a—s(“t AN (M, - M)
1=1 j=1 k=0 ‘¢, X Yk kt+l k
This converges to
d m tofd .
Iz I == M)and, us |
i=1 j=1 Jo %%y 8
It is easily seen that Jgn) converges to
2
d (t 3°F
i,j=1/0 %1% 8

Summing up these calculations, we arrive at the formula (1.2).
In order to establish Ito formula for Stratonovich integral, we need

a stronger assumption.

Theorem 1.2. Let Ft(x), t>0,xe¢ Rd be a stochastic process
continuous in (t, x) a.s., satisfying

(1) For each t > 0, Ft(') is a C3-map from Rd into Rl for
a.s. w.

(#) For each x, Ft(x) is a continuous semimartingale represented
as
1)

t
J 3
fs(x)ost,

m
(1.3) Ft(x) = Fo(x) + I Io

i=1

1) The symbol ¢ demotes Stratonovich integral.
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where Ni, ceey Nl: are continuous semimartingales, f‘l(x) are stochastic
processes satisfying conditions (1) and (i) of Theorem 1.1, that is, they
are continuous in (t, x) a.s., Cz—maps from Rcl into R1 for each

t >0 a.s., and are represented as
Lot L.
(1.4) f:l x) = fj )+ Z [ gjk'(x)dok s
t 0 k=liq S s

where 01, ceey Og' are continuous semimartingales and g‘lk(x) are continu-

t
ous in (s, x), satisfying conditions (a) and (b) of Theorem 1.1.
Let now Mt = (Ml' s eeey M:) be continuous semimartingales.

Then we have

m (t j j d (t an i
(1.5) FM)=F. M) + ZJ £ (M )odN- + ZJ =—(M )odM .
t t 0o j=1)0 s s s =10 axi s s

Proof. Using Ito integral, Ft(x) of (1.3) is written as

m et t
F, () = Fy(x) + I I Swad +1 1 J gk macok, v _.

j=tlo ° 3,00

Hence by Theorem 1.1,

t t
- | izl jk k
.6  F ) = F M) + § J myand + 3 3 Jo glkon ya<o®, >

0 i,k

{t 3F ¢ o3

+1 | 52 (us)dM: + 3z J = @), ni>s
1 Jo 9%y 1,50 %4

2
¢ o%F
+2 zJ S oy, W .
2 8
i,3

0 Bxiaxj 8



123

We shall apply Theorem 1.1 to f‘Z(x) in the place of Ft(x). Then we see

that f‘l(Mt) is a continuous semimartingale whose martingale part equals

3

t Bf t
jk ~k

I (u )dM + I Io g5 (Ms)dos ,

where ﬁ: and ’62 are martingale parts of M: and 0:, respectively.

Therefore we have

t
}[Q fg(Ms)odN‘z - J eloyan + 1 <edan, W

0
t tafj

=J £ )de+—ZJ 2 aart, N>
0 88 21 03xi s

t
+ 1 jk k J
2 i JO g (Ms)d<o » N ’s *

81?
Similarly, 8 (M ) 1is a continuous semimartingale whose martingale part
is
e 3¢ g t o%F »
ZJ T(M)dﬂ +EJ 3 'Bx (Ms)dMs,
370 %% j ‘o “*19%

where ﬁ'lt' are martingale parts of N‘Z. Then we have

can i t3F
J Wi(us)"ms:‘J —:(M)dM +—< (M) M>

0 2
t OF_ . tafj 5 4
=J T (M) +72Ja—s(u)d<n,n>s
8 iji 8
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1 s 3 A
+ 2 § IO 31:1291:._’(){s)d<M M >s ’

Hence the right hand side of (1.6) equals that of (1,5). The proof is
complete.

In [6] and [7], the author used the above formula (1.5) without proof
for the study of the composition of flows of diffeomorphisms defined by
stochastic differential equations. We shall briefly discuss the problem.

Let M be a connected, O-compact Cw—manifold of dimension d.

Given C -vector fields Xl,...,Xr on M and continuous semimartingales
Ml,... ,M:, t > 0, consider a stochastic differential equation

t

an &, - jgl xj(gt).dm{ .
The solution starting at x at time 0 is denoted by Et(x). Under some
conditions on vector fields xl,..,,xr, Et defines a flow of diffeomorphisms
of M a.s. See [7]. We assume it throughout this note.

Now let Ft(x), t >0, x €M be a real valued stochastic process
continuous in (t,x) a.s., satisfying conditions (i) and (1i) of Theorem 1.2,
where we replace Rd by M. Then we have

t

m (t 3 Nj . r 3
1.8)  FE) =F ) + & [ £ doan + _jEJ XF, (B e,

j=1’0 ° 0

Here, Xst(x) is the derivation of Fs(x) (s; fixed) by X,. In fact,

]
let (xl,...,xd) be a local coordinate and let X;'(x), 1-1,..;,d be
components of X,, i.e., X, =L Xi e . Then §_= (El,...,id) are
3 b} i hj 3xi t t t
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continuous semimartingales represented as

(1.9) dEt =3 x;(zt)odni ,  i=1,....d.
i

Apply formula (1.5) to Ft(Et). Then the third term of the right hand
side of (1.5) is

t o BFS j
RIS jo STRE CREL

¢ i
J X.F (gs)°dMs.

This shows the formula (1.8).

1,...,Ym be other Cm-vector fields on M and nt be

a solution of stochastic differential equation

Let now Y

o k
= I Y (n)edN* .
e

(1.10) dnt

Then the solution nt(x) starting at x is a Cm-map under some conditions
1 d 1 d
on Y.,...,Y . Using a local coordinate (X ,...,X ), N_ = (N ye..,N.)
1 s t t t
satisfies

i

i - m ot k r (t 1 j
() = x + zj Y, (N °E ) odNy + zJ Xy (B o] .

k=1'0 j=1'0
Then the composed process Ct = nt°€t satisfies

m k r
(1.11)  dg = T Y (g)edN + I
e e T

oddd
e= L Enea (3 o]
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Here nt*(Xj) is a stochastic vector field defined by

nt,,‘(xj)x = (nt,,‘)“_1 (xj) -1

e ) T n )

where Nex is the differential of the map n,. See [6] and [7] for

other problems of decompositionms.

2. 1Ito's formula for stochastic parralel displacement of tensor fields,
As an application of extended Ito's formula established in Sectton 1,
we shall discuss an Ito's formula for stochastic parallel displacement
of tensor fields along curves obtained by a stochastic differential
equation. Stochastic parallel displacement along Brownian curves on
Riemannian manifold was introduced by K, Ito [3], [4]. Our definition is
close to [4]. See Ikeda-Watanabe [2] for other approaches by Eelles-
Elworthy and Malliavin, where stochastic moving frames play an important
role.
We shall recall some facts on parallel displacement needed later,
Let M be a connected, O-compact Cmdmanifold of dimenston d, where
an affine connection is defined. Denote by TxCM) the tangent space
at the point x of M. Suppose we are given a smooth curve ¢s(x),
8 > 0 starting at x at time 0. Let u, be a tangent vector belonging
to T )(M) and let u

¢, & 0
the curve ¢S(x), 0<s <t from the point ¢t(X) to x. Then the

be the parallel displacement of u_ along

t

map T, __ :u—u

tx ¢ 0 defines an isomorphism from T¢t(x)CM) to Tx(M).

Given a vector field Y on M, we denote by Yx the restriction

of Y to the point x, which is an element of Tx(M). For each t > 0,
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- v M.
a vector field ﬂtY is defined by (th)x 1r1:xY¢t(x)’ x e

The one parameter family of vector fields th, t > 0 satisfies
4 = v
(2.1) dt(“t:Y)x ('rrtV&’Y)x R XeM,

where V Y is the covariant derivative of Y along the curve ¢t:’
¢
If ¢t(x) is a solution of an ordinary differential equation:

T
¢, = jElxj(«bt)uj(,t), 9 = %>
where Xl,...,Xr are vector fields on M and ul(t) e ..,ur(t) are

smooth scalar functions, then equation (2.1) becomes

r
d
(2.2) dt(“tY)x z ("tvx Y)xuj (t).
j=1 J
The inverse map ﬂ::x defines another vector field w;lY as
(T‘;lY)x = '-’f-l Y 1,) which is the parallel displacement of Y

67 G 671

6760
along the curve ¢s, 0<s<t from ¢;1(x) to x. It holds

d, - r -
@3  faTn - El‘vxj“cl”x“j ®.

*
Let Tx(M) be the cotangent space at x (dual of TX(H)). The

* * *
dual Tex is an isomorphism from Tx(M) to T )('M) such that

¢ (x
* * t
<1rtx0,Y> = <e’"txY-> holds for any 6 ¢ Tx(u) and Y € T¢t(x) o).

*
Given a 1-form 0 (covariant vector field), nte is a 1-form defined by
-1
* * *
(m8)_ = 0 . T, 0 1is defined similarly.
t'x -1 -1 t
t¢t (x) ¢t (x)

1) It is assumed that ¢t is a one to one map from M into itself for

any t > 0.
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A tensor field K of type (p,q) is, by definition, an assignment

of a tensor Kx of Tz(x) to each point x of M, where
p _ * *
T, =T, MR ...OTMAT, M ©...®T,00

*
(Tx(M); p times and Tx(M) s q times). Hence for each x, K, isa

multilinear form on the product space
M * x X ( * x x X
T ) eee X T M) Tx(M) vee Tx(M).

Thus, for given 1l-forms 61,...,6p and vector fields Yl,...,Y .

q

1 - 1
Kx(e ,”',ep, Yl’---’Yq) (= Kx(exs-°°9e§9 le"”’qu))

is a scalar field. In the sequel, we assume that it is a Cw—function,
The parallel displacement ﬂtK of the tensor field K along the

curve ¢s is defined by the relation

1 P - %1 *xp - -
(2.4) R, 07,67, ¥,...0¥) =K (nol,...,moP, ntlYl,...,ﬂ Ly,

1 ¢t(x) t t t q

If K 1is a vector field, it coincides clearly with the usual parallel

displacement mentioned above. If K 1is a l-form, it coincides with
-1

*

“t K. Hence we can write the above relation as

1 -1.1 s - -
@4 @R, 60, YY) ,atel, ..t wtlYl,...,ﬂtqu).

= Kd)t (x

1) K is a C«Ltensor field.
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Let X be a complete vector field and ¢t’ the one parameter
group of transformations generated by X. Then the covariant derivative

VXK of tensor field K 1is defined by

,v-osY) .

=4 1 P
) = 3e (K _(07,...,07, ¥ o

1 P
(2.5) (VXK)X(G seeesBt, Yiseeent

q 1

The following relation is easily checked.

1 P
(2.6) (TgK) (87,6, Yl,...,Yq)

L}

1 P
X(Kx(e seeesDty Yl""’Yq))

P
-z Kx(el,...,v ok

L X yeoes0P, Yioeees¥)

q 1 P
- 221 LS CRFPORN TR SETRTN % FPRPPN Yq).
Now let Et(x) be the stochastic flow of diffeomorphisms defined

by the equation (1.7). The curves Es(x), 0 <s <t are not smooth a.s.,
so that the argument of the parallel displacement mentioned above is

not applied directly. We shall define the stochastic parallel displacement
following the idea of Ito [4]. We begins with defining the stochastic
parallel displacement of vector fields along Es(x), 0<s<t from

Et(x) to x.

A stochastic analogue of equation (2.2) is as follow.

r rt
@.7 ™.Y) =Y+Z[ (V. Y)_oat) , Vx e M.
t 'x b4 3=1l0 s Xj b4 s
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Here, T 1is a stochastic linear map acting on the space of yector fields

t
such that "t(ﬂ)x = f(_Et(,x)) (thY)x for scalar function £, Let

(xl,.. .,xd) be a local coordinate and let Bk = —?E . Then equation
9x

(2.7) is written as

t a 2 3
(2.8) (ﬂtak)x = (ak)x + :Eli aZRJO Xj (Es(x))rak(is(x)) C"saz)x“ms'
' k= 1)-1\'d:

where Xj =1 Xg‘ Ba and rc%.k is the Christoffel symbol, It may be
o

considered as an equation on the tangent space Tx(M). The equation
has a unique solution @rtak)x, k=1,...,d for any x, Define
(mY) =2 Yi(E x))(moa,) 1if Y =1L Yia . Then it is a unique solution
t'x i t ti'x i
of (2.7). We shall call (m _Y)_ the parallel displacement of Y
t'x Et(x)

along the curve Es(x), 0<s<t from Et(x) to x. Denote the

linear map YF,t(x)—’('"tY)x as wtx'
Lemma 2.1, Tex is an isomorphism from TEt(X) M) to ']:x(M) a.s.
Proof. Using the above local coordinate, we shall write

T U3 P P 1
T2y = DT MGy 2y 00 = I X (.

From (2.8), the matrix Ht(x) = (‘ni‘j (x)) satisfies

r (t
- o
2.9 LG =1+ ijo Py (E G ean]

where P 3 = (pljd') and I 1is the identity. Consider the adjoint matrix

equation of (2.9):
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r (t
= - o j
(2.10) Zt(x) I jZJO Zs(x)Pj(Es(x)) dMs .

Then Ito's formula implies dZt(x) Ht(x) = 0. This proves Zt(x) Ht(x) =1
so that Ht(x) has the inverse Zt(x). The proof is complete.

Now the inverse map al. T, (M)—T

x )(M) defines the stochastic

€, (x
parallel displacement from x to Et(x). Obviously we have

-1 kL _ kL
“tx(ak)x = E ot (x) (3£)£t(x), where Zt = (ot ). The components of the

-1
vector ntx(ak)x satisfies by (2.10)

kL Tt o 2 ki 3
@ M=o, - jzljo I, E @G, €, @00 wear]

In [2] and [4], the above equation is employed for defining the stochastic

parallel displacement. Actually, if 01:2'

is a solution of (2.11),
kL
Lo (3 i !
o ( 2’) gt(x) is defined as the stochastic parallel displacement of (ak)x
along gs(x), 0<s <t from x to Et(x): Then equation (2.8) is induced
from it as the inverse. A reason that we adopt (2.7) as the definition
is that all (m tY)x are elements of the fixed tangent space Tx(M)’
While “t:];Yx are moving in various tangent spaces Tet =) M) as t
and w vary. In fact we may consider that (2.11) is an equation for

stochastic moving frames represented by local coordinate (xl,...,xd,

o, .,0, 0, 0% (et [2D).
Given a vector field Y, we denote by (1r.';]"l)x the stochastic
parallel displacement of Y along Es, 0<s<t from E;l(x) to x.

Then it holds (1Y) =n"1_ ¥ )
CF altm rw
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Proposition 2.2. It holds

r (t
(2.12) (n'lY) =Y - I J w ﬂ_lY) o,
t X b 4 j=1'0 Xj s X s

Proof. It is known that the inverse map E;l satisfies
-1 - _ -1 -1 h|
G0 = - T EL ) E G0

(Kunita [7], Proposition 5.1). Apply Theorem 1.2 to Et. Then

It MR

kL -1
(2.13) 0 7€ () = 8§, , -

t
[P ) ki, -1 J
j J I XeTe, 0 € w)ear]

01i,a

r (t
- EJ Ee®x)on (6 T ) e
3=1’0
-1 -1 -1 k% - k& -1
Noting Es*(xj)f(gs (x)) = Xj(f°ES )(x), we see that k.~ =0 "eE
satisfies
r (t
@1 res -1 I LK@ r¥ kg (dhyeadd.
j=t'oa Y1 s s
-1 k2
Since m "9, = I k_9,, the above equality shows
t k g t 2

-1 r It -1 3
w9, =9 - L V, T 79, edM_.
t k k j=1'0 Xj s k s

This proves the proposition.

*
The dual L of ﬂt ts. defined as before. It is acting on the

space of 1-forms. It holds

*
<m 6,Y> = <0,m ¥>

Et(X)
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for any 1-form O and vector field Y, We shall obtain equatians for

*6 d *-le
T8 an me .

Proposition 2.3, It holds

* r

(2.15) (ﬂte)x =0_ - E
16 *loy co x5 | o™, 6 eadd

(2.16) (m ), = . (g Vg 8) odd .

Proof. Set Ft(x) = <6,ﬂtY>x. We shall calculate Ft(gzl(x)),

using Theorem 1.2. It holds

P ) - F ) =-1 | el @) ke )eadd
teoy X o'* j=1'0 s* " Ys® s x s
r (t
+ I J <0,m Ve > oam |
=0 %%y g °

Note that

-1 -1
L) FETE) = X <O v ).
D]

Since <VX 9,Y> + <6,Vx Y> = Xj(<9,Y>) holds by (2.6), the above formula

h|
leads to

t * i
- <e,5{>x =-3 <VX nse,Y>xodms .
(x) j‘o 3

<0,m Y>

£

This proves (2.15). (2.16) is proved similarly.

The stochastic parallel displacement of tensor field K is defined
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similarly as before: “tK is a tensor field such that

1 P -
@11 (K (67,000, Yp,elY) E ()(w ol O *oP, ntlzl,..., tlyq)

We shall obtain an Ito's formula for TrtK, which is an extension of
formulas (2.7) and (2.16).

Theorem 2.4, It holds

r rt 5
(2.18) m K =K+ I I 'nst KodMs

j=1’'o0 3
r (t 3 1 t 3
=K+ EI'ITVdeMS +-2— ZJ‘ITVVKd<M H>
j=lo %% 1.k0 %K
Proof. Apply Ito's formula to the multilinear form Kx'

Noting the relation (2.12) and (2.15), we have

K (v el,...,n oP, wtlYl,...,wlY)-K(e beeas8P, Y 1)

17700

r p(t - -
-- z{z[ K (meh, .. 0, 185, Y, 1Y ) edd
4=1 k=1J0 X' '8 st s 1 s q s

q (t
+ ZI K(ﬂe,...,wlY

e S RO
4=1 -3 s q s

0 1 X

Set
F. &) = K (11 9 seeesTy e , “tlYl""’"tqu)

and apply Theorem 1.2 to Ft(Et(x)). Then



(2.19) Ft(Et(x)) - Fo(.x)

r t i
- jfl{fo X,F (€, (x))oau]

t * 1 * k - - 3
- i Io Kis(x)(“se ,...,wstje ,...,ﬂlel,...,wleq)odMs

t .1 _ _ _ 3
- i Jo KES(X)(“se ”"’“lel""’ij“slyz""'“leq)°dMs}'

Noting the relation (2.6), we see that the right hand side of (2.19) is

r rt 1 5
z j m Vg KO7,...,0%, ¥ ..., Yod .
j=1'0 3 q
The proof is complete.

Remark. The inverse 7.1 is defined by

t

- 1 P = 1 P
a0 ol,...,6P, LATSEEN 8 Kg'l(x)("te e 80 MY Y ).
t

Then similarly as Theorem 2.4, we have

nle =K - ; J

t
v, 7 lReam
4=1 X, s s

0 73

r (t t
=K - zj v, 7k -% zJ v, v 1r_1Kd<Mj,Mk>S.
o X358 8 2440 X% s

The Ito formula (2.18) can be applied to getting a heat equation

for tensor fields. Suppose that Et is determined by
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r
= [ ] j
(2.20) dEt . 151 xj(Et) B + xo(Et)dt,

where (Bt,. . ,B:) is a Brownian motion. Then,

r (t j t 1 %
(2.21) mTK-K = EI 7 V, KdB +J m™ (& LV, + V., )Kds
t 3=1'0 s Xj s 0o 8 2 =1 Xj XO

Theorem 2.5. Define for each t a tensor field Kt by
®)_(61,...,0°, ¥ Y) = E[(rK)_(6%,...,0°, Y.,...,Y )]
t’x ’ ’ » fpoeee q tx sy s Iyseees q .

Then it satisfies the heat equation

9K r
t 1 2
— =G I VvV, +V_)X, K =K,
ot (‘l j=1 x.'i xo t 0
Proof. We shall omit 61,...,0p, Yl""’Yq for simplicity.

Set KS = E[TrsK]. Taking expectation to both sides of (2.21), we have

K -K=r E[T (—%-z v§ + ¥, )K]du,
s 0 u2y X, 0

Since I(x is smooth relative to x, so is (Ks)x'

Let us substitute Kt to the above formula. Then

s r
2
E[TK ] -K =I E[r (& VYV, +V_ )K ldu,
st t 0 u j=1xj Xo t

Now it holds 'nt 45 “tﬁs’ where 1?8 is the parallel displacement along

Eu’ t <u<t+s from £jt+s(x) to Et(x). Then by Markov property, we have
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Al
E[1TS+tK] = E[1rt1rSK] = E[T[tKS].
Consequently,
s 1. 2
K -K = J E[r G Z V, + V_ )X ldu,
t+s t 0 u‘2 j Xj XcI t
so that we have
) 1 2
K. =GV, +V_)K.,.
a o 4 ]
t t 2j_1 Xj Xo t

The proof is complete.

3. Ito's formula for Et acting on tensor fields.

In this section, we shall obtain an Ito's formula for stochastic
maps E: acting on tensor fields, which is induced by the solution
Et(x) of (1.7). The formula looks similar to the one for parallel
displacement. The only difference is that Lie derivative is involved
in place of covariant derivative. The formula has been obtained by
S. Watanabe [9]. His approach is based on the lift of the process to
a frame bundle in a suitable way and the use of scalarization of tensor
field on the bundle. On the other hand, our proof is very close to the
method in previous section.

Given a diffeomorphism ¢ of M, the differential ¢*x is a
linear map of Tx(M) onto T¢(x)(M)' The dual map ¢: of the differ-
ential ¢*x is a linear map of T¢(x)(M)* onto TxCM)*. Let Y be

a vector field. The ¢-related vector field ¢,(Y) is defined by the
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relation ¢*(Y)x = ¢* _1( )Y¢_1( ). For 1-form 6, ¢*(0) 1s defined
¢ T(x X

* * *-1
by ¢ (0)x = ¢xe¢(x)° The inverse ¢ ~(0) is defined in the same way.
Let K be a tensor field of type (p,q). We define a tensor field

¢*K by the relation
* 1 P
(3.1) ¢} K)x(e sesesbB’,y Yl,...,Yq)
*-1 1 *~1 p
=K@ st T(07),0,()) 5000, (X)),

If K is a vector field, it holds ¢*K = ¢;1(K) and if K is a
1-form, it holds 'K = ¢ ().
Remark. The definition of the above ¢* is not equal to that
of $ in Kobayashi-Nomizu [5], p. 28. The relation of these is
=" or 3=
Let X be a complete vector field and ¢t, t € (-»,o) be the
one parameter group of transformations generated by X. The Lie derivative

of tensor field K with respect to X is defined by

1,.%
(3.2) LK = lim —t-[cbtK - K}.

t+0
The following properties are well known. (i) If K is a scalar functionm,
then LXK = X(K). (ii) If K is a vector field, then LxK = [X,K],
where [ , ] 1is the Lie bracket. (#i) If Y is a vector field and

0 is a 1-form, then

(3.3) <Ixe , Y> + <6 ,LXY> = X<6 , Y>.
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(iv) If K is a tensor field of type (p,q), then
(3.4) K)_6%,...,6P, ¥ Y ) = x® _6%,...,0°, ¥ )
. G"x x> 9oy 9 1"t's q X PRI ’ 1“." q

P 1 k
- kzlxx(e RS A veeesBP, Ypeenn¥)

q 1 »
- gf-lx"(e PRI STTTIN % ST0VIN AR
Now let Et(x) be a solution of stochastic differential equation
(1.7). Then E:K is a stochastic tensor field. We shall obtain Ito's
formula for E:K and (E:)-lK. We first consider the case that K 1is
a vector field and then the case that K is a l-form
Lemma 3.1. (c.f. [7], Proposition 5.2 and 5.3). Let Y be a

vector field. Then it holds

(3.5) £y Y+;rg* Yoamd
: t 3=1l0 sLXj s

r (t
= - o j :
(3.6)  E M =Y jEJo ijgs*(v) )

Lemma 3.2, Let 6 be a 1-form. Then it holds
(3.7) | £ =0 +z r £L. foad
t j 0 SLXj s
* -1 t *-1 g
(3.8 (Et) 0=0-1I I LX (Es) 9°dMS.
j‘0o 73

Proof. We shall prove (3.8) only since (3.7) is a special case
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of the next theorem. It holds

*-1 *
e,Y) =<e,£Y>

<(E:)—le ’ Y>x = <€t x t -1,.°
g, )

Then similarly as the proof of Proposition 2.3, we have

BLED> - < =2 r <Ly (g:)"le,b‘xodui .
€, ™ i‘o 73
This proves (3.8).

Formulas (3.5), (3.6), (3.7) and (3.8) correspond formulas (2.7),
(2.12), (2.15) and (2.16), respectively. Then the next Ito's formula
for tensor field E:K is proved in the same way as the case of parallel
displacement.

Theorem 3.3. (c.f. S. Watanabe [9]). Let K be a smooth

tensor field of type (p,q). Then it holds

* T (t & 3
(3.9 EtK =K+ I J ESLX KﬂdMs
j=1’0 3
rot o, . t
1 * 3
=K+ ZI&’,L KdMJ+—ZIE ra<ad M5 .
j=1'0 s xj s 2 3,k0 sLXjLXk s
Similarly as Theorem 2.4, we have
Theorem 3.4. Let Et be a solution of (2.20). Set

*
K, = E[EtK].

Then it satisfies



[1]

[2]

(31

[4]

[5]

[6]

{71

[8]

[9]

141

Y
n,L“’
"
[
~
MR

2
+ )X _,
L, xR

References
J. M. Bismut; Flots stochastiques et formula de Ito-Stratonovich
généralisbe, C. R. Acad. Sci. Paris 290 (10 mars 1980) .
N. Tkeda-S. Watanabe; Stochastic differential equations and
diffusion processes, forthcoming book.
K. It0; The Brownian motion and tensor fields on Riemannian manifold,
Proc. Internat. Congress of Math. Stockholm (1962).
K. 1:8; Stochastic parallel displacement, Springer, Lecture Notes
in Math., 451 (1975), 1-7.
S. Kobayashi-K. Nomizu; Foundations of differential geometry I,
Interscience 1963.
H. Kunita; On the representation of solutions of stochastic
differential equations, Séminaire des Probabilités XV, Lecture Notes
in Math., 784 (1980), 282-303.
H, Kunita; On the decomposition of solutions of stochastic
differential equations, to appear in the proceedings of Durham
conference on stochastic integrals.
H, Kunita-S, Watanabe; On square integrable martingales, Nagoya Math.
J., 30 (1967), 209-245.
S, Watanabe; Differential and variation for flow of diffeomorphisms
defined by stochastic differential equation on manifold (in Japanese),

Sukaiken Kokyuroku 391 (1980).



