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LOCAL TIMES AND SINGULARITIES OF CONTINUOUS

LOCAL MARTINGALES

by

M. J. Sharpe(*)

0. INTRODUCTION.

The first section of this paper is mostly expository. Given a complete probab-

ility space (S~, ~, P) and a filtration of (S~, ~, P) satisfying the

usual hypotheses - that is, is right continuous and ~0 contains all null

sets - we consider some properties of the space ~c of continuous local martingales

over (~, J, P) related to the local time processes L~ (a E R). Though most

results in Section 1 are known, they do not all seem to be well known, and they set

the stage for the results of Section 2 where we study continuous local martingales

having a singularity at the time origin. Given a filtered probability space

(Q, 3, ~t, P) as above, let ~o P en denote the space of all real processes 

defined on the open interval such that tMt is a.s. continuous and

(0.1) There exists a decreasing sequence of stopping times such that

P{0 Sn ~} =1 I for aZ2 n, and P {S n = 1 ; .

(0.2) for each n, the process t  M( Sn + t) is a local martingale over the

filtration + 

(*)
Research supported, in part, by NSF Grant MCS-80623
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It should be emphasized that in general the sequence which reduces

(M(S + t)) - that is, such that uniformly integrable

martingale over (;;(5 + t)) and Tkn ~ ~ a.s. as depends on n. To illus-

trate the possibilities, let be a standard Brownian motion on Rd (d >_ 2)

and let f be harmonic on R~~O}. Since Bt never hits 0 at a strictly

positive time, the Ito calculus shows that copen relative to PG,
the law of B starting at 0. The nature of the singularity of f at 0 is re-

flected in the behavior of at If the singularity is removable,

lim f(Bt) exists in JR. If f has a pole at 0, lim f(Bt) exists in
" 

R = [-00, while if f has an essential singularity at 0, lim inf 

and lim sup Walsh [51 studied conformal local martingales on 

and showed that almost surely, either the limit as exists in the Riemann

sphere or the path is dense in the Riemann sphere. Me consider here two aspects

of the space ~o p en’ . First of all, we shall state and prove the analogue of

Walsh’s Theorem for real continuous local martingales on ]0,~[, with character-

izations of the cases in terms of the quadratic variation and local time at zero.

Following that, we consider a generalization of these results to stochastic

integrals fc dMs, where the stochastic integral is meaningful over any interval

bounded away from zero, but may have a singularity at time zero. In this case one

may not select one single local martingale on whose increments give the

stochastic integral over an arbitrary interval, so new methods are needed.

1. LOCAL MARTINGALES.

For the basic properties of local martingales we shall use Meyer [4] as a

reference, but since we shall consider only continuous local martingales here,

little is needed beyond the article of Azema and Yor [1]. Given the

local time process for M at a is defined to be the unique continuous
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increasing process with L~ = 0 such that Lt belongs to ~c. In addition,

the quadratic variation process (M, M)t is the unique continuous increasing

process with (M, M~0 = 0 such that (M, M~t belongs to ~c. The following

facts are very well known.

(1.1) (M, M)t and Mt have the same intervals of constancy ([3], for example).

(1.2) If (M, then is a standard Brownian motion over (~t)
(Levy’s Theorem [4]).

( 1. 3 ) For a11 1 a E R , dL~ is carried by Ha = {t > 0: Mt = a } and dL~ does not

charge any interval contained in Ha ([1]).

(1.4) If and Tn = inf {t: n} then Tn fi ~ a.s. and for all n,

is a (bounded) martingale over (~t).

(1.5) If and E(M, ~, then M-MO is a martingale with

E[sup 5 4E(M, M) (Doob’s inequality).

(1.6) If if and if M is uniformly bounded below then

Mt is a supermartingale (Fatou’s lemma) and M~ = limt~~ Mt exists

and is finite a.s.

(1.7) One may choose the L~ so that is jointly measurable

([1], p.10) and then (M, M)t = J L~ da. (Assume M bounded, by stopping,

so that is a martingale, and consequently da

is a martingale.)
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(1.8) d(M, M). does not charge H~ for any (by (1.7)).

(1.9) (Tanaka’s formula [1]). If then

+~ 
0

where sgnx=1 I if x>0,-1 1 if x0 and 0 if x=0.

The following consequence of Tanaka’s formula seems to be known, at least to

experts.

(1.10) Proposition. Let with M0 = 0, and set sgn MudMu
~~

(i) (M, w)~ = (M, M)~ for ~Z 

( it) for all 

Proof. Statement (i) comes from the fact that

W, W>t = t sgn2 Mu dM, M>u- &#x26;

which is equal to (M, M). by (1.8). To prove that L~=M~ for all t>0, it

suffices to prove that their right continuous inverse processes are indistinguish-

able. Let (with inf (})=-) and If

r (w) is a point of increase of and so by (1.3), 

Since and if we obtain ~.~((i))=r if a~)-. It

follows that for all s r, and so for all r. On

the other hand, if r (o))~, T (w) is a point of increase of so
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~(~)~~T(oj)~’ Using L-M=~~0 this implies L~~~~-r~O if

T~((A))co. This implies that for all I s r, so 

By right continuity we obtain for all r>0 a.s.

As a first application of (1.10), we consider the convergence of as

too.

(1.11) Theorem. Let M ~. almost surely

exists and is finite} = {lim supt~~ Mt~} = {(M, = {L0~~}.

Proof. Me may assume that The first equality is due to Doob ([2], p.382)
but since the proof is a model for the other equalities we indicate its proof.

Let M~>n} so that = sup Since is

bounded above, it converges a.s. (1.6), hence M~ exists a.s. on =00}. For

the next equality, first set so that MTnt = is a

uniformly bounded martingale. Since is an L bounded martingale,

M ) ~n , and in particular (M, Since =00}~ exists},

this shows that exists} ~ {(M, In the same way, 

shows that exists} c Now set M, M>t~n} so that
U{R~=-}={(M,M~~}. Since M~ is L~ bounded (1.5) and so

exists. Thus {(M, exists}. Finally, let !M~ I as in

(1.10). Because lim sup Wt  ~ on {L0~~} so M. converges on

But since 

" 

exists} = {(w, = {(M, = exists}, we

have shown that M converges on 

The connection between convergence of M and the local time of M at zero

is not surprising because it is Well known that L~ can be expressed as a



81

normalized limit of the number of downcrossings of [0, e] up to time t. If

and M 0 = 0, it is easy to see from (1.10) that EL~ = T a

finite stopping time} so that in particular, if M is a martingale, M is

Ll bounded if and only if Further in this direction, if .M ES,c and

then setting so that (W, W} = (M, M), the Burkholder-Davis-

Gundy inequalities imply that for every p > 1, there exist absolute constants

Cp such that

(1.12) C T a finite stopping time}.

Similar arguments show that if M is in BMO then

(1.13)  ~ for some ~ > 0.

The inequality (1.12) was obtained in [1] by different (more elementary) methods.

If in the situation of (1.10), M is a standard Brownian motion then

W = LO- ~M~ I is also a standard Brownian motion since (W, W} t = (M, M} t = t. The

fact that (= sup{M : 0 _ s  t}) sharpens the well known fact that L~ and

the one-sided maximal process of Brownian motion have the same law, by actually

producing a Brownian motion for which L" is the one-sided maximal function.

Similarly, (1.10) demonstrates why |Mt| I and Mt- Mt are processes with the same

law: one produces a Brownian motion Wt with |Mt| = Wmt-Wt.
In preparation for a number of arguments in the next section, we need the

following simple lemma about birthing a local martingale at a stopping time.

(1.14) Lemma. Let J, Jt, P) satisfy the usuaZ hypotheses and Zet R be

a stopping time over (Jt). Then
.
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(i) for any stopping time T over (Jt), the random variable

is a stopping time over (~R+t);
( i i ) if M is a Zocal martingale over (S2, ~, ~t, P) then Nt=Mt+R 1 

is a local martingale over (~R+t) relative to the conditional probability measure

Proof. It is easy to see that (3~.4.) satisfies the usual hypotheses. To prove

(i), just observe that ~(T-R)1~T>R}> t} _ For (ii) we may assume

that for otherwise N = 0 and there is nothing to prove, no matter

how is defined. If M is uniformly integrable with limit M~ then

using optional sampling, for G E 

1 ~}

= 1 

= 

so N is a uniformly integrable martingale relative to (Q, (~R+t), 
In the general case assume that {Tn} reduces M, and let Tn = (T -R)1.T or
Then is an increasing sequence of stopping times over (3~.4.) such that

P{lim T’n = ~|R~}=1. For every n

= 

Since 
n 1{T n >0} is a uniformly integrable martingale and ~Tn > R}E ~R,

it follows that t-~M(R+tAT~) 1{T’>0} is a uniformly integrable martingale

over (~, (~R+t), for every n * 1.
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2. LOCAL MART I NGALES OVER ]0,m[.

Observe to begin , with that ~~°~~~ implies . It will turn out ~~°~~~

that if and Mo=Mo+ exi sts and iS finite a.S. then (Mt)t~0 iS in C.

(2.I) Proposition. A continuous PrOCeSS iS in if and only if f°"

some sequence {Sn} of stopping times (not necessarily finite valued) satisfying

(2.2) P(s~>0)=1 and decreases to 0)= 1

it is the case that

(2. 3) for aii n * I , the Process N( = M(Sn + t)i {S ~} is a local martingale
n

over (Q, (JS +t), P{.|Sn~}) .

n

If , then for every sequence (S n ) satisfying (2.2) the condition

(2.3) holds.

Proof. Fix one sequence {Sn} satisfying (2.2) and (2.3) and let be a

sequence satisfying (2.2). Ye shall prove then that {Rn} satisfies (2.3).

Taking each R finite valued will show M~03A3copen, and the last assertion of (2,I)

will obtai n for general {Rn}. For m * I and s > 0, let T(m, s) = inf(t > s: * m).

Then T(m, s) is a stopping time over (Ft) and for all .s>0, T(m, s) increases

in m, say to T(m, s). By hypothes is T(m, sn) =m a. s. for all n. Since Sn~0
a.s. and s-T(m, s) is increasing in s for all it follows that

P(T(m, s) = m for all s > 0) = 1 . Because of (2.3) , (1 . 4) and (I ,1 4) , the process

~ ~ "~~~~ ~ 
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is a bounded martingale over st, JS +t, P{.|Sn~}) 
for all nzl 1 and 

n

It follows that as t+T (m, M(t) converges a.s. on (T(m, Sn) > Sn}.
Denoting the limit by M(T(m, S )) one has

M((Sn+t)^T(m, Sn)) 1 {T(m,Sn)>Sn}=E{M(T(m, Sn))1{T(m,Sn)}|JSn+t} .

By optional sampling, with t repl aced by (Rk + t - S ) n 1{Rk+t>Sn} 
we obtain, ’

a .S. on {Rk + t > 

~’~~~k~~~~~~~~ 

This equal ity holds in particular on {Rk>Sn}, and one may then interpret the

equalitY to mean that t~M(Rk+t) I is a local martingale relative to

(Q, JRk +t, P{.|Rk~}) having reducing times (T(m, l{T(m, Sn)> s .k ’ 
n 
> n k ’

(Note that for a fixed k, P{sup T§ = i.)
m,n 

’

The first important result describing the behavior at the time origin of

is the following.

(2.4) Theorem. Let M Then for a. a. w, either

( I) i Mt(W) exists in lR

or

’°’t++o 
or

(i i i) lim inft~~0 Mt(03C9) = -m and lim supt~~0 Mt(03C9) = m.
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’ 

This theorem may be deduced from Walsh’s Theorem on conformal martingales

since every local martingale is the real part of some conformal martingale.

Because Walsh’s proof is a little obscure at one point,~we shall derive (2.4) from

scratch. In preparation for this we need a couple of lemmas.

(2.5) Lemma . Let and suppose that M~ = b a. s.. Then if a  b  c ,

hits a before it hits c~~~}_ (c-b)/(c-a).

Proof. Let Ta (resp., Tc) denote the first time Mt hits a (resp., c). As

we mentioned in (1.4), a uniformly bounded local martingale is in fact a martingale.

Since T and T are stopping times over (~t), it follows that is
~ ~ ~ 

ac

a bounded martingale whose limit at infinity is

°

Taking conditional expectations leads to

b_a 

from which the desired inequality obtains.

(2.6) Lemma. Let M and for a  b  c and k a positive integer, let

M s (o _ s  t) completes k upcrossing of [a, b] } and

(with inf 03C6=~). Then

Tc} - ~ ’
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Proof. In the course of the proof, we let R denote . On {Rk  ~},
M(Rk) = b by definition of Rk. Let P~ denote the conditional probability

measure P~(. ) = P(. ]Ri m) defined in an arbitrary way if We

showed (1.14) that the process under GO} is a

continuous local martingale over the filtration ~(Rk + t). Moreover, if

P k {M ( R k) = b} = 1 . For all l k >_ 2 we have

+t) hits a before it hits c}

, 

= t) hits a before it hits c~~(Rk-1)}; Tc}
= + t) hits a before it hits 

~ (c-b)/(c-a)  Tc}

because of (2.5) applied to the filtration +t). The conclusion of (2.6)

is now clear by induction on k.

Proof of (2.4): Given a  b, let

 a, b}

r = ~~ E S~: lim _~, 1im °°}

Obviously ab rationals}. In order to prove (2.4) it is enough to

prove that r ~ for any pair of rationals a  b. If c > b, let

Tc Mt >_ c}. We shall l prove that for a11 l C > b, Tc = 0 a.S. on 

and this will show that lim SUPti-i-O a.s. on ra,b’ Applying this result

to -M, one will then obtain r ~ a.s.. Fix abc and let ~Sn}
satisfy (0.1) (and hence (0.2) also by (2.1)). For each let
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T~ n = inf{t: M(S n + t) >_ c} and let denote the first time M(S n + t) completes

k upcrossing of [a, b]. Now fix k >_ 1. As n increases, the events

> S } n Tn} increase, for on > Tn = T - S . On the other hand,

their union over all n contains > 0} n Thus

P{{Tc>0}~0393a,b}~ lim P{RknTnc}

~ (c-b c-a)k-1.

using (2.6). Since k is arbitrary, this proves that a.s. on 

completing the proof.

Me turn now to characterizing the cases (i), (ii) and (iii) of (2.4) in terms

of the quadratic variation and local times for M, which we now describe.

If M is a continuous local martingale over an arbitrary filtration (çt)
(satisfying the usual hypotheses) of (n, ~, P) it is easy to see, using (1.14),

that for any finite stopping time R the quadratic variation process and the

local time at a for t)1 are respectively (M, ~M, M~R
and LR.

The following result obtains by an elementary covering argument.

(2.7) Proposition. Let . There exist unique random measures Q(w, dt)

dt) on such that if {Sn} are stopping times satisfying (o.l).
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Then for all n

(2.8) +t - Q(w, ]S n (c~) , S n (c~) + t] ) is a ZocaZ martingale over (~ Sn+t ) ;

(2.9) n n +t a ) - 03BBa(03C9, ]Sn(03C9), Sn(03C9) + t] is a local martingale over n n +t).

In general, Q(w, dt) and dt) blow up at the origin and so they are

not always generated by continuous increasing processes normalized to vanish at

the origin. However, (2.7) shows that a.s., Q(w, .) and ~a(c~, .) are Radon

measures on ]0,co[. We record now two elementary operations which preserve the

class ~o p en. . The proofs are routine and are left to the reader.

~ (2.10) Proposition. . I f then

(2.11) for any stopping time T, ’

( 2 .12 ) if H E dO then ~o p en ’ °

It is evident from (2.7) that if Q and X~ are the quadratic variation and local

time measures for M, then those for and 1HM are respectively

and 1H(w)Q(w, dt), dt). For example,

the last case above uses the observation that

I1H ’’H ~a(]s~ s+t]) = s+t])] + 1 H 

is a local martingale over (3-+4.) for all s > o.
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(2.13) Lemma. If M and M is uniformly bounded, then is a

martingale. consequently, Mt exists a.s. and is a

martingale.

Proof. Once we prove that is a martingale, the assertions of the sentence

will follow from the reverse martingale convergence theorem. Let rn ~~ 0. Then

by (2.1), + t) is a local martingale over (~(rn+t)), and its boundedness

implies that it is in fact a uniformly integrable martingale. It follows that M~

exists and for all That is, 

martingale over (~t).

(2.14) Lemma . Let M E and suppose that M2 - t t E . Then M t = M 0
exists and is finite, and (Mt - is a standard Brownian motion over (~t).

Proof. Fix a sequence of constant times rn ~~ 0 so that for all n, M (r n + t)
and M2(rn + t) - (rn + t) are continuous local martingales over (~r n +t). Levy’s

Theorem (1.2) implies that M(r +t)-M(r ) is a standard Brownian motion. It

follows that for 0 u v, M -M has a normal distribution with mean 0 and

variance v - u, and that the increments of Mt are independent. Therefore

the process t-~M - 1 M 1-t (o _ t  1) is a continuous martingale which is L2-bounded,
so lim M1 - M1-t exists a.s.. Consequently M~ exists a.s., and since then

’~ 

Mt-MO = lim Mt- Mu has independent Brownian increments, the result follows.
" " u++0

Here then is the main result of this section.

(2.15) Theorem. and let % " ~c~ E S~: ]0, for some

(and hence all) t > 0}, S~a = ~c~ E S~: ]0, tJ)  ~ for some (and hence all)

t> OJ. For each fixed a E R , almost surely
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(i) {03C9: lim Mt(03C9) exists and is finite} = 03A9Q;Q

(ii) {03C9: lim Mt(03C9)=± ~}=03A9aB03A9Q; a

( i i i ) for aZZ 03C9~(03A9Q~03A9a), lim inft~~0 Mt - -~ and 1im supt~~0Mt(03C9) °°’

Proof. Let l~ _ {c~: lim exists and is finite}. Si nce A E ~g+ _ ~g,

Nt=1~ Mt by (2.12). For lim N = NO exists and is finite.
t~~0 

t 0

For each k > 1 let k}. Then a. s. The process

~l{T k ~0} is uniformly bounded and in ~o p en by (2.10). According to (2.13),

k 
is a bounded martingale over (~t)t>0’ - Thus 

k 

has a finite quadratic variation process Ak. On the other hand, by the remarks

following (2.12), = 1 ~ Q(w, ]0, a.s.. Since

U{T k > 0} = st a.s., it follows that S~Q, ~ A a.s. , In order to show that 11 ~ S~ Q
a s . , > we define now Zt =1 ~ Q Mt for t > o. Since S~Q E ~~+ _ ~~, Z E ~o p en and

Z has a finite quadratic variation process l~ ]0, t]). It suffices
Q

to prove that Z having a finite quadratic variation process implies that

ZD+ exists and is finite a.s.. To this end, we may adjoin to the underlying space

by the usual product construction a standard Brownian motion independent of

j. The quadratic variation process for Z remains the same over the augmented

filtration since it is given by a limit of quadratic variational sums of

Z without conditioning. Replacing Zt by affects neither the

limiting behavior at time zero nor the finiteness of the quadratic variation.

Let At be the quadratic variation process for It. Then At is continuous,

strictly increasing, and A a.s. If Tt 
= inf{s: As> t}, then Tt is

strictly increasing, continuous, and for all In addition, 
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as It is easy to see then that is a continuous local martingale

on ]0,°o[ relative to (? ). Since also the case that

7 (T~)-A(T.)=? (r.)-t is a continuous local 1 martingale on ’j0,oo[ relative

to (~ ). Then (2.14) shows that lim Z exists a.s., and hence 1im Zj.~t t . t~~O

exists a.s.. Me have now proven (i). Me now turn to (n). On 

inf{t: Mt = a}>0 for all a (P. Since .) is carried by it: 

and ~(jo, .) is a Radon measure on ]0~[, it follows that ~.
On the other hand, since is in copen and so, by the

remarks following (2.12), if we set = l03A9a (03C9)03BBa(03C9, ]0, t’]), then .

Nt=+l03A9a Mt-a|-Lat~copen .

Obviously lim (2.4), Nf exists a.s. in [0, oo].

Because of the alternatives (2.4) for M~, it is clear that on ~ M~ must 
’

exist a.s. in [-00, co]. That is exists in Using (2.4) again, we

see that (2.15) has been proven.

(2.16) Coroll ar . If and if exists and is finite

a:.s._, °

Proof. The first part of the proof of (2.15) shows that if 

then is a bounded martingale over (3~). Since T ~°o a. 5.

3. LOCAL MARTINGALE INCREMENTS.

The situation described in §2 does not cover the possible ways a singularity

at the time origin can manifest itself. Consider the following examples.
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(3,I) Let (a genuine continuous local martingale) and let C be a pre-

dictable process such that for all t>0, d(X, for all

h > 0 but / C§ d(M, M>s = ~ with positive probability. 0ne may then

define the stochastic integral t+htCs dMs as a local martingale on [t,m[

for all t>0, but it is not possible in general to find one single normali-

zation at t= 0 which makes t+htCs dMs the increment over ]t, t+h] of

one local martingale on ]0,m[, simultaneously for all t>0.

(3.2) Let and let C be a bounded predictable proces s . ° Then

t+htCs dMs is well defi ned for all t > 0 and but, as in (3,I ),

there is no way to define N such that t+htCs dMs =Nt+h- Nt.

(3.3) Let M~copen and let Q be its quadratic variation measure. ° Though we

can defi ne the Process M( - M§ - Q(w, ls, tl) for t * s, there is no

N having the same increments on [s, m] for all s>0.
open

These examples motivate the following definition.

(3.4) Definition. A local martingale increment process (Ms,t) is a family

of real random variables indexed by pairs 0 s~t such that

( 3.5) for aii s > o , (t * s) s a local martingale relative to

~~’ ~~~
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(3.6) for all triples 0 r  

Note that (3.6) forces Mt,t=0 for all t>0. The examples (3.1) - (3.3) obviously

fit into the above scheme. Let denote the space of all local martingale

increment processes relative to (n, ~t, P) such that for all s > 0, 

a.s. continuous on If then for all (t>_s) has

an associated quadratic variation process (M . , M S; ).. (t>s). If 0rs,

then since and 
.. 

have the same increments over intervals in

one has

(Mr, .’ , Mr~,)t- (Mr~., ,M )~ = M . M )~.

It follows that there is a well defined random measure Q(w, dt) defined on R

such that if 0  s  t, then

Q(’,] s,t]) - CMr , ~ , P1r , ,~t- ~Mr , .’ 

for all O,s]. The random measure Q will be called the quadratic variation

measure for M. For obvious reasons it is not in principle possible to define

local 1 times for 

(3.7) Lemma. Let M and let R be a stopping time with P{o R ~}=1. 

Then (t > 0) martinga Ze over the (~R+t).

Proof. Let 0. If we show that for every n, local 1

martingale over (~R+t) . Then since 1 as n -~ ~, the claimed result
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wi 11 l follow from the following argument. and for k>1 1

let k}. Since ln Yt is a continuous local martingale,

Y (t iB B) is a uniformly bounded martingale for all k>1 1 and n >_ 1.

Now let to see that 1{T k ~g} is a bounded martinaale for all k.

That is, is a local martingale. Fix now s > 0 and let A= ~R> s}.

Then is a continuous local 1 martingale over the filtration (~s+t),
and hence because R v s - s is a stopping time over we see from (1.14)
that a local martingale over ° But since

Ms, Rvs+t - Ms,Rvs and Ms,Rvs E dRys ’ it follows that MRvs,Rvs+t is

a local 1 martingale over However, is therefore a

local martingale over and since the trace of on A is equal

to the trace of dR+t on A, we are done.

(3.8) Proposition. Suppose that M and that for some r > 0,

Ms,r exists and is finite almost surely. For arbitrary 

de fine (P1g~r - Mt~r)1 ~D~r~(t) + and for

aZZ 0  s  t, °

- Proof. The fact that for all 1 0  s  t i s evi dent, as is the fact

that Mt = Ms,t for all t > 0. Because the increments Ms t form a local 1

martingale in t >_ s for s > 0 it follows that Since 

a.s. as t ++ 0, the result follows from (2.16).

We turn now to a criterion which guarantees that exists for

some (and hence all) r > 0.
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(3.9) Proposition. Suppose that has quadratic variation measure Q

such that Q(w,] 0, t])  ~ for all t > 0 a.s.. Then there exists N E ~c such

that for aZZ 0 s t, Ns.

Proof. Let ]0, t]) for so that Ao=0 and A is a continuous

increasing process adapted to (3~.). We show that 1 exists in R

almost surely. To this effect we may assume that A is strictly increasing and

a.s., for if this is not so, adjoin an independent Brownian motion Bt
so that M s, tis replaced by See the proof of (2.15).

Mith the above assumption on A in force, let As > t}. Just as in the

proof of (2.15), for every s > 0 the process a local martingale increment

process over the filtration (J Tt ). We are also using (3.7) at this point. For

every s>0, the process is a local martingale over (3~ 
S ...) 

and so is

.4--(A(T+t)-A(Tj). " + t) - A(Ts) ). By time change, it follows that M,~ 2 s ~T - t s (t - s) is a

local martingale for (t >_ s) over the filtration t>_s . It follows from Lévy’s
theorem (1.2) that (t > s) is a standard Brownian motion relative to

). In particular, for s _ t, has a normal distribution with mean zero

and variance t - s . Consequently s -~ M ( o  s  1 ) is an L2-bounded martingale

so 
~ T 1 

exists and is finite almost surely. In other words,

limu++O M 1 
a.s. exists and is finite, and one concludes that 1

exists and is finite.

(3.10) Theorem. Let M with quadratic variation measure Q. Then

={03C9~03A9: lims~~0 Ms,l(03C9) exists and is finite} and r = ]o, 

are almost surely equal.
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Proof. since r = iQw, io, ei  mi for every e > o, r in addi tion ,

A = (w  Q: M S,r (w) exists and is finite} for every r > 0 so A  j 0+ = j 0°
Obviously ~A and since ~A exists and is finite almost

surely, 3.8> shows that iA "s,t iS obtained from the increments of a genuine

continuous local martingale N. Since the quadratic variation of l M is given

on one hand bY l Q and on the other hand by (N, N), this proves that Ac r

~°~°° Going the other ~i has quadratic variation measure ~r ~’
Which iS a.S. finite near zero. Then 3.9> shows that lims~~0 ir Ms,t exists a.S.

and is finite, so 0393~ almost surely.

kle show next that all continuous local martingale increment processes may be

obtained as increments of stochastic integrals in the manner of example (3.1).

( 3.ll ) Theorem. >t M  cinc. Then there exists N  c and a predictable process

C such that for all 0 s t

( 3,1 2) It C~ d(N, N)  m a.s. ;/ ~ 

(3.13) = / 
t 

c~ dmi~’ /
Proof. Let Q be the quadrati c vari ati on measure for M. Fi x a sequence tn~~0

and let Dt denote the predictable process

Dt(03C9)=2-nl[tn,tn-1[(t)e-Q(03C9,]tn,t])

Where to iS Set equal to +m. Obviously Dt(03C9)>0 for all t>0.
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We have then s since At = Q(]tn, t]) is continuous and At = 0
n

For any s > o, the stochastic integral

t

Ns,t = Du dMs,u
J

is therefore defined, and has quadratic variation process

dMs,.
, M

s,. > u 
= ts D2u Q(du)

s s

bounded by one. If 0 r s t

~‘ , s t

Nr,t = J Du dMr,u = 1 Du dMr,u + Du dMr,u
r r s
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= Nr,s+Ns,t+ts Du d(Mr,u-Ms,u)

= Nr,s+Ns,t.

That is, The quadratic variation measure for N is the measure D2 Q(du)
which is bounded by one. Consequently, (3.10) shows that Ns,t
exists a.s. and defines a local martingale. It is clear then that since

Ms,t = ts D-1u 
1 

dNu’ one obtains (3.12) and (3.13), setting .

Our final 1 results on concerns the behavior of Ms, t as s ~~ 0 when

it is known that convergence does not occur. The result here is rather less

precise than either (2.4) or (2.15). Given we define the maximal

increment process for M by

(3.14) Ws, t = : s  u v  t} .

It is clear that for 0 s . t, and for fixed s>0, is

continuous and increasing, while for fixed t>0, is continuous on ]0,t]

and it increases as s decreases. The quantity

(3.15) WD = Ws,tW0=limt+0 sup Ws,t

is in so+ = It is clear that on {W0=0}, lims~~0 Ms,t exists and is finite.

On M f does not exist in R , though it may exist in R .
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(3.16) Theorem. Let M and let WC be the limiting oscillation of M,

defined in ( 3 .15 ) . Then P10  WD = 0 .

Proof. As in the proof of (3.9) we may assume, adding an independent Brownian

motion of M if necessary, that the quadratic variation measure Q for M has

the property that a.s., for all s>O, t-~Q(~s, t]) is strictly increasing on

[s ,oo[ and tends to infinity as We shall prove that for all a>0,

a.s. on and from this the assertion follows trivially. Observe

first that on for every t>O there exist 0 u  v  t with |Mu,v| > a.
For c > 0 and s>0 let

R~ (c, s) = inf~t> s: ( = c for some u E [s, t[}

= -inf{t>s: max M a min M + c}.s~u~t ~~ 
s~u~t ~"

Recursively, for k>1 1 set

s) = R~(c, Rk(c, s))

= s): for some u E [R k ( c. s), t[}.

On since M must.have oscillations of size > a in arbitrarily small

time intervals, it must be that for every 1

Rk(a, s) -~0 as 

On f W~  2a } there exists t>O such that forall 1 0  u  v  t.

Consequently, on a }, for each fixed k >_ 1, Rk(a, s)  R1 ( 2a, s)
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for all sufficiently small s>0. We prove that there exists a sequence ek(a),
independent of s > 0, such that

(3.17) s)  s)}  and as k-m.

Once we prove (3.17), since k is arbitrary, it will follow that P~a  WD  2a}= 0.
In order to prove (3.17); we set At = Q(]s, s+t]) and let Au > tj.
Then the process is a standard Brownian motion. Since Ms, t (t >_ s)

and Bt (t >_ o) run through the same points in the same order, it is enough to

prove that is dominated by a suitable sequence c k (a), where R~
denotes for the process (Bt) (ta0). By definition of the Rk ,
|B(Rl2a)|~2a, and the discrete parameter process (k >_ 1) is a random

walk. Then

P{RkaRl2a}~P{sup|Yj|~ 2a} .

Letting = P{sup the fact that the law of Yl is not degenerate
j~k ~ ’

shows that Ek ( a ) -~ 0 as koo, completing the proof.

(3.18) Corollar . Let M and let C be a predictable process such that

/ C 2 d(M, M) u  ~ a. s. for all 0  s Then for any t > o,

A= {(jj: converges to a finite limit as s ~~ 0} is almost 

equal to 0393 = {03C9: ~0C2u(03C9)dM, M>u ~ for some E> OJ, and a.s. on r ,

has unbounded oscillations as s ~~ 0.
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Proof. The first assertion is just (3.10) applied to Ns ’ t = s j C dMu and the

second assertion follows from (3.16) since c = > 0}.
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