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Transience and Recurrence of Markov Processes

by
*

R. K. Getoor

1. INTRODUCTION.

The purpose of this paper is to present an elementary exposition of some

various conditions that have been used to define transience or recurrence of a

Markov process. Transience is discussed in Proposition 2.2 and Corollary 2.3

while Proposition 2.4 deals with recurrence. In several important papers ([1]

and [2]) Azema, Kaplan-Duflo, and Revuz have treated the question of recurrence

and transience. Most of the results discussed here may be found in those papers

or are easy consequences of them. Moreover, Proposition 2.4 follows in outline

the series of somewhat opaque exercises II-(4.17) through II-(4.22) in [3]. In

spite of this I think that an elementary and unified discussion of these ideas

may be worthwhile.

2. STATEMENT OF RESULTS.

In this paper we assume that X= (Q, 3’, ~t, Xt, 6t, PX) is a Markov process

with state space (E, e) which satisfies the right hypotheses as stated in

Section 9 of [4]. In particular E is a universally measurable subset of a
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compact metric space is the o-algebra of Borel subsets of the metric
*

space E, and e the a-algebra of universally measurable subsets of E. The

process X is a right continuous strong Markov process such that if f is

a-excessive for some then t-+f(Xt) is almost surely right continuous.

Let and the semigroup and resolvent of X. As usual we

write U = U~ for the potential 1 kernel 1 of X. Each Pt and Ua sends univer-

sally measurable functions into universally measurable functions, but we do not

assume that they map Borel functions to Borel functions. Moreover, we do not

assume that excessive functions are nearly Borel, although they are nearly Borel

in the Ray topology. However, we shall make no explicit use of the Ray topology

or the Ray-space of X. We do not assume that Ptl = 1 and so we suppose the

existence of a point 0394~E that acts as a cemetery. As usual we write 

for the lifetime of X. Then 

We adopt the following notational conventions. A function f is a non-

negative universally measurable function on E and a set B is a universally

measurable subset of E unless stated otherwise. Also any function f is auto-

matically extended to E f1 by setting f(~) = 0. The statements f>0 or 

mean f (x) > 0 or f (x)  ~ for all 1 x in E. For each denotes the

cone of a excessive functions. These are functions on E which vanish at A

by our convention. Let ~e be the a-algebra generated by U ga. It is immed-
a>_0

iate from the resolvent equation that a(ga) for each fixed a>0. Under

our assumptions ~~~e~~*. If define

TB = i nf {t > 0: XtE B}
(2.1)

LB = sup {t: 

where the infimum, resp. supremum,of the empty set is taken to be ~, resp. 0.

Then TB is the hitting time of B and is an (~t) stopping, and LB is the
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last exit time from B and is J measurable.

A set B~~e is called transient if almost surely. We shall denote

by (LSC) the condition that for some a > 0 the a-excessive functions are lower-

semi-continuous (.Q,sc). If Sa, dnd so under (LSC) all excessive

functions (a = 0) are .Q,sc. In Proposition 2.4 we shall use the (apparently

weaker) condition that all excessive functions (a = 0) are .Q,sc which ~ae denote

by (LSCO).
We are now prepared to state our results.

(2.2) PROPOSITION. The following conditions are equivalent.

(i) There exists a bounded h with Uh bounded and Uh > 0.

(ii) There exists a bounded fine ly continuous ~e measurable h > 0

with Uh bounded. (Under (LSC) h may be chosen .Q,sc.)

(iii) There exists a sequence with each hn and Uhn
bounded and Uhn fi ~.

(iv) There exists a sequence with Bn ~ E and U(., Bn)
bounded for each n.

( i ’ ) There exists h  ~ with 0  Uh  ~.

(ii’) There exists a finely continuous e measurable h with

and (Under (LSC) h may be chosen Qsc.)

( i i I) There exists a sequence (hn) with hn  ~ and Uhn  ~

for each n and Uhn 

(iv’) There exists a sequence ) with Bn fi E and U(., Bn) ~
for each n.

(v) There exists a sequence of transient sets with Bn fi E;

that is, each Bn~~e and LB  ~ almost surely.
n
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If X satisfies any, and hence all, of the conditions in (2.2) we shall

say that X is transient. It will be evident from the proof of (2.2) that the

sets Bn in (iv), (iv’), and (v) may be chosen finely open and ee measurable,

and even open under (LSC). If one assumes a bit more about X, then the state-

ments in (2.2) are equivalent to statements involving compact sets. For example,

the following result is an immediate consequence of (2.2) and the fact that the sets

Bn in (iv), (iv’), and (v) may be chosen open under (LSC).

(2.3) COROLLARY. Assume (LSC) and that E is a countable union of compact

sets. Then each of the following conditions is equivalent to X being transient.

(vi) U(., K) is bounded for all compact K.

(vi’) U(., K) ~ for all compact K.

(vii) Each compact K is transient.

We turn now to recurrence. If f is a function and then the state-

ment f=c means f(x)=c for all x in E. If BEee, define

= 

It is well known that ~B is excessive and ~B is called the equilibrium poten-

tial of B. Clearly 

(2.4) PROPOSITION. If E has at least two points the following conditions

are equivalent.

( i ) For each B , U(. , B) = 0 or U(., B ) _ ~ .

(ii) ) If B is nonvoid and finely open, U (’, B) = °°.

( i i i ) If is not polar, then 03C6B =1. .

(iv) If B~~e is nonvoid and finely open (or only open under

( LSCO) ) , , then ~B =1. .



401

(v) Each excessive function is constant.

(vi) ) If is not polar, then LB = ~ almost surely.

If is nonvoid and finely open (or only open under ,

then almost surely.

If X satisfies any, and hence all, of the conditions in (2.4) we shall

say that X is recurrent.

3. PROOFS. We begin by establishing Proposition 2.2. Clearly the statements

(i), , (ii), (iii), and (iv) imply respectively the corresponding primed statements

(i’), (ii’), (iii’), and (iv’). In addition it is obvious that (ii) ~ (i) and

(ii’) ~ (i’) since Uh>0 if h>0.

(a) (i) ~ (ii). Let h be bounded with Uh bounded and Uh > O. Let

g = U~’h with Ct> O. Then Uh > 0 implies that g = Uah > 0. Clearly

9 s Uh and so g is bounded. From the resolvent equation

Ug = UU h = 

and so Ug is bounded. Since g is a-excessive it is finely contin-

uous and ~e measurable. Under (LSC) one may choose a>0 such

is ~sc. Thus ( i ) ~ ( i i ) .

( b) ( i ) « ( i i i ) . If ( i ) holds let hn = nh. Then Uhn = nUh ~ ~

since Uh>O. If (iii) holds, let bn = sup{1, .

where ~f~) = sup ~f(x)~ for any function f, and define
x

h = E (2nb ) 1 h . Then hand Uh are bounded, and since

for each x E E there exists an n with Uhn(x) > o, it follows

that Uh > 0.

(c) (iv) ~ (iii). Let hn = n1B. Since for each x, U(x, Bn) E) >0
n

it follows that Uhn ~ °°.

(d) Let Then BntE since h>O. Clearly

Bn is finely open and ee measurable, and even open under (LSC).

Now lB snh and so U(., Uh is bounded for each n.

n
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We have now established the equivalence of (i), (ii), (iii), and (iv). The

equivalence of the primed statements is established by exactly the same arguments

except for the implication We shall actually show that 

establishing the implications from the primed to unprimed statements. To this

end i f f is s a function, a > 0, and A = {Uf  a }, then 
,

U(lAf)(x) = 

0

s Ex f(Xt)dt = 

Let (hn) be the sequence in (iii’). Set

n 
1 kn

Then (h’n) is increasing, ~, and Uhn fi ~. Now replacing hn by hn n n

we see that we may suppose that the sequence (hn) in (iii’) is increasing and

that each hn is bounded. 1 1 let A . = and

lA 
n,k 

Then by the above estimate k. For each fixed n,

k fi °°, and so

lim lim lim Uhn = ~ .

Hence for each x there exist n and k with Ug k(x) > o. Therefore

h = ~2n+k 1 
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where b. = sup(l, ~Ugn,k~), is. a bounded function with Uh bounded

and Uh > O. Hence (iii’) ~ (i).

This completes the equivalence of all the statements in (2.2) except (v).

(e) (i ) ~ (v) . Let Then Bn E e e, Bn is finely open

(even open under (LSC)), and Bn t E. Thus it suffices to show that

each Bn is transient. To this end let B = ~Uh > a} where a> O.

Then if t>0,

B t t 
a Px(t + 8t  ~) . .

But as t -~ ~ since Uh is bounded, and consequently

for each x. Therefore LBoo almost surely.

Hence each Bn is transient.

Before coming to the final implication we state and prove a well-known fact

that will also be needed in the proof of (2.4).

(3.1) LEMMA. Let g be a bounded excessive function with Ptg -~ 0 as 

Define g). . Then each gn is a bounded, nonnegative, finely

continuous ~e measurable function such that

/-1/n

Ugn = Ptg dt ~ g
0

as n--.

PR oo F. " Since g is excessive, Pl/n g is also excessive and so each gn is

bounded, nonnegative, finely continuous, and ee measurable. Now

/ t Psgnds = n Psg ds - n Psg ds =0 0 1/n
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- n Psg ds - n Psg ds.0 t

provided t> 1/n. But is decreasing and so the last term is dominated

by Ptg. Thus letting and using the hypothesis we obtain

Ugn = n f 1/n P s g ds. Making the change of variable t = ns it is clear that

(f) (v) ~ (i). Let BnEe.e be transient with Fix B = Bn and let

~(x) = Px(LB > 0) = Px(TB  -). Then ~ is excessive and

= = 

as since almost surely. Now let ~K(x) = 

-). . Since

Bk fi E, it follows that 0 and so 1. Let = P1/n 
Then and by (3.1 ) , I as Therefore for each x

there exist n and k with > 0, and so we can construct a bounded

h with Uh bounded and Uh > 0 as before. This completes the proof of

Proposition 2.2.

We turn now to the proof of (2.4). The following implications are obvious:

(i) ~ (ii), (iii) ~ (iv), and (v) ~ (iv). We shall break up the proof into a series

of steps.

(3.2) LEMMA. Assume ( i i ) . If is such that ~o(x)=1 1 for some x in

E, then ~B = 1. .
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PROOF. Since 03C6B is excessive, is decreasing. Let 03C8 = lim

Then derail 1 s  o. Let g = ~B - ~. Then

Ptg = PtW = 

as t-0 and so g is excessive. Clearly as t-~°° and g_ 1. Thus

by (3.1) there exists a sequence (gn) of bounded, finely continuous, e~

measurable functions with Ugntg. If is not empty, then (ii)

implies that Ugn = °o. Since g  1 we conclude that each gn = 0 and so g = 0.

That i s 03C6B = and hence Pt03C6B = 03C6B for all 1 t.

So far we have not used the hypotheses on B. Let D = ~~B  1}. Then D

is finely open and ee measurable. By assumption there exists an x with

= 1, and so

1 = = = 

Consequently for each t >_ 0, which in turn implies that

U(x, D) = 0. But by (ii) if D is not empty, U(., D) _ ~, and this

establishes (3.2).

(ii) ~ (iv). Let be nonvoid and finely open. If xE B, = l,

and so 1 by (3.2).

(iv)~(v). Let f be a non-constant excessive function. Then there exist

0 a b and xE E with f(x)  a and B = {f>b} nonvoid. Also B is finely

open (open under (LSCO)). Hence ~=1 1 by (iv). But

a > f(x) >_ PBf(x) = Ex[f(XT ); TB °°]
f b = = b~
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establishing (v).

In view of the obvious implications mentioned above (3.2) we now have estab-

lished the following: 
’

(3.3) and (iii)~(iv).

The next lemma is the only place where we explicitly use the assumption that

E has at least two points.

(3.4) LE MMA. . Assume (iv) and that E has at least two points. Then

Px(~ ~) = 0 for all x E E.

PROOF. Let ~(x) = Ex(1 - e ~). Observe that

= t ~} = t ~} fi 

as t-~0. Hence ~ is constant since (iv) a (v). Therefore = c for all

x in E. Since E is a metric space with at least two points there exist x

in E and a nonvoid open set G c E with x not in G, the closure of G.

By ( i v ) , ~G =1. Of course, since G c E, {TG  ~} _ ~TG  ~ } . Hence

c = = 

= 

= cEx(e - T G).

But xflG and so - T G) l. Therefore c = 0, establishing (3.4).



407

(3.5) (iv)~(i). Let Bee* and suppose that b=supU(’,B)>0. Let 0ab

and A = {U(’, B)>a}. Then by (iv), ~=L and from (3.4), ~=- almost

surely. Now fix x~E and t>0, and observe that

~ / = 

B

= B); . 
A "

~ = a.

Moreover

U(x, B) > + E~ ~ 

~ Ex it 
and letting t-- we obtain U(x, U(x, B) + a. This yields U(x, B) = -,

establishing (i) since x is arbitrary.

(3.6) Since almost surely by (3.4). Suppose

is not polar. Then by (iv), where c is a strictly positive

constant. Hence for each x~E and t>0

c = P~(Tg-) = + pX ( t  T B’ 
= + 

= + 
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and letting we obtain c( 1-c ) = 0. Since c ~ 0 we must have c = I

proving (iii).

In view of (3.3), (3.5), and (3.6) we have now established the equivalence

of the first five statements in (2.4).

(v) ~ (vi). Let Bee~ and assume that B is not polar. By (iii),

0) = = I for all 1 x. Let = ~) = ~) . Then

= ~). Thus ~ is excessive and 0 as By (v)

~ = c, and since 7;=00 almost surely according to (3.4), c = Ptc. But

Ptc = as Therefore c = 0 proving (vi).

It remains to show that in order to complete the proof of (2.4).

Let and suppose that for some x E E, U(x, B) ~. Then for this x,

as t~~. If a>0 let G={U(’,B)>a}. If G is not empty

(vii) implies that almost surely and consequently for each

t, =1. But 
..

= ); 

>_ 6t ~) = a.

Hence G must be empty and since a>0 was arbitrary U(., B) = 0. This

completes the proof of (2.4).
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