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ON STOPPED FEYNMAN-KAC FUNCTIONALS

by

Kai Lai Chung*

1. Introduction

Let X = (x(t), t ~ 0) be a strong Markov process with

continuous paths on R = (- °o, +0°). Such a process is often

called a diffusion. For each real b , we define the hitting

time Tb as follows:

(1) Tb = inf {t > 0 ~x(t) - b} .

Let Pa and Ea denote as usual the basic probability and

expectation associated with paths starting from a . It is

assumed that for every a and b , we have

(2) 00} = i . °

Now let q be a bounded Borel measurable function on R ,

and write for brevity

t

(3) e(t) = exp(f q(x(s))ds).
0
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This is a multiplicative functional introduced by R. Feynman and

M. Kac. In this paper we study the quantity

(4) u(a,b) = 

Since q is bounded below, (2) implies that u(a,b) > 0 for

every a and b , but it may be equal to +00. A fundamental

property of u is given by

(5) u(a,b) u(b,c) = u(a,c) ,

valid for a  b  c , or a > b > c. This is a consequence

of the strong Markov property (SMP).

2. The Results

We begin by defining two abscissas of finiteness, one for

each direction.

S = inf{b E RI3 a  b : u(a,b) = co}

= sup{b E R~Y a  b : u(a,b)  oo};
(6)

a = sup{a E R )3 b > a : u(b,a) = 00}

= inf{a E b > a : u(b,a)  oo).

It is possible, e.g., that P = - oo or +00. The first case

occurs when X is the standard Brownian motion, and q(x) _ 1 ;

for then, u(a,b) ~ E (r.) = oo , for any a / b .
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Lemma 1. We have

~= inf ~b E a  b : u(a,b) = m)

= sup{b E R ~~ a  b : u(a,b)  ;

a - sup{a E R ‘V b > a : 

inf{a E R ~3 b > a : u(b,a)  oo) .

Proof: It is sufficient to prove the first equation above

for S, because the second is trivially equivalent to it, and

the equations for a follow by similar arguments. Suppose

u(a,b) - ~ ; ; then for x  a  b we have by (5).

For a  x  b we have by SMP,

u(x,b) ~ Tb} ~~’~~ " ~

since P x {T a  Tb} > 0 in consequence of (2).

The next lemma is a martingale argument. Let ~t be the

a-field generated by {xs, 0 x s ,t} and all null sets, so

that st+ - ~t for t >, 0; and for any optional T let T
and 3 and 3 have the usual meanings.

Lemma 2. If a  b  ~, then

(7) lim u(a,b) = 1 ;

(8) lim u(a,b) = 1 .

b ~ a
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Proof: Let a  b~l ~ b and consider

( 9 ) ( j( Tb ) } , n >, 1 .
n

Since b  S, u(a,b)  ~ and the sequence in (9) forms a

martingale. As n ~ ~, 03C4b ~ Tb a.s. and (03C4b ) ~ j(Tn ) ’n n 
Since E ~(Tb-) , the limit of the martingale is a.s.

equal to On the other hand, the conditional probability
in (9) is also equal to

As n 1~ ~ , this must then converge to e(Tb) a.s: since

converges to a.s., we conclude that u(b ,b) -~ 1 .
n n

This establishes (7).

Now let S > b > an ~ a , and consider

(10) )} , n >. 1 . °
n

This is again a martingale. Although a -~ Ta is a.s. left

continuous, not right continuous, for each fixed a we do

have Ta and ~(Ta ) J~ ~(Ta) . Hence we obtain as
n ~ n 

before -~ u(a,b) and consequently

u(a,b) ~ 1 . °u(an,b)
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This establishes (8).

The next result illustrates the basic probabilistic method.

Theorem 1. The following three propositions are equivalent:

(i) S = + ~ ; ;

(ii) a - - ~ ; ;

(iii) For every a and b , we have

(11) u(a,b)u(b,a) ~ 1 .

Proof: Suppose x(0) =b and let a  b  c. If (i)

is true then u(b,c) for every c > b . Define a sequence

of successive hitting times Tn as follows (where 8 denotes

the usual shift operator):

S = {
03C4a if 03C4a  03C4c ,

~ if 03C4c  03C4a ;
(12)

To = 0 , Tl = S ,

T2n - 6T 2n-1 ~ T2n + S o 

for n >. 1. Define also

(13) N = min{n ~ 0 ~T2n+1 - oo} . °

It follows from a.s. For

n >, 0 , we have
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2n Tk+1
N = n} = Eb{exp(03A3

Tk
q(x(s))ds)}

(14) 

= Eb{e(03C4a) ; 03C4a  03C4c)n Ea{e(03C4b)}n Eb(e(03C4c) ; 03C4c  03C4a} .

Since the sum of the first term in (14) over 0 is equal

to u(b,c)  o° , the sum of the last term in (14) must converge.

Thus we have

(15) u(a,b)  1 . ° 

Letting c -~ oo we obtain (11). Hence u(b,a) for every

a  b and so (ii) is true. Exactly the same argument shows

that (ii) implies (iii) and so also (i).

We are indebted to R. Durrett for ridding the next lemma

of a superfluous condition.

Lemma 3. Given any and Q > 0 , there exists an

e = e(a,Q) such that

QQ
(16) E}  co

where 

inf{t > 0 ~x(t) ~ (a - e, a + e)) .

Proof: Since X is strong Markov and has continuous

paths, there is no "stable" point. This implies Pa{Q£ >. 1} -~- 0

as e -~ 0 and so there exists e such that
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(17) P {Q >. ll  e-(Q+1) ,

Now 03C3~ is a terminal time, so x i P x la e >. 1} is an excessive

function for the process X killed at o . Hence by standard

theory it is finely continuous. For a diffusion under

hypothesis (2) it is clear that fine topology coincides with

the Euclidean. Thus x ~ Px{03C3~  1} is in fact continuous.

It now follows that we have, further decreasing E if necessary:

(18) sup P {a >,1}  e (Q+1) .
x E

A familiar inductive argument then yields for all n >, 1 .

(19) n}  
a E

and (16) follows.

Lemma 4. For any a  ~ we have

(20) u(a,~) - ~ ;

for any b > a we have 

Proof: We will prove that if u(a,b)  oo, then there

exists c > b such that u(b,c) . This implies (20) by

Lemma 1, and the second assertion is proved similarly.
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Let Q - ~ (q ~~ . Given b we choose a and b so that

a  b  d and

( 21 ) }  ~ . °

This is possible by Lemma 3. Now let b  c  d; then as c ~ b

we have

(22) E b{ e ( T a)’ T a  
. 

, 

because Tc} -~ 0 . ° Hence there exists c such that

(23) 03C4a  03C4c}  1 u(a,b) .

This is just (15) above, and so reversing the argument there,

we conclude that the sum of the first term in (14) over 0

must converge. Thus u(b,c) , as was to be shown.

To sum up:

Theorem 2. The function (a,b) + u(a,b) is continuous

in the region a ~ b  S and in the region a  b  a .

Furthermore, extended continuity

holds in a  b  S and a . b  a , except at (P,f3) when

P°°, and at (a,a) when a > -~ .

Proof: To see that there is continuity in the extended sense

at (a,s) , where a  S , let a  b Then we have by

Fatou’s lemma
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Ea{ lim )} - Ea{e(T~)~ - u(a,s) - °~ 
°

n ~ 
n-+OO n

If P  °o 
, then u(~,S) - 1 by definition, but u(a,8) = °o

for all a  ~; hence u is not continuous at (S,S) . . The

case for a is similar.

3. The Connections

Now let X be the standard Brownian motion on R and q

be bounded and continuous on R.

Theorem 3. Suppose that u(x,b) for some, hence all,

x  b. Then u(.,b) is a solution of the Schrodinger equation:

2 ~ ~ ~~ + q~ - 0
in (- ~,b) satisfying the boundary condition

lim cp (x) - 1.
x -~ b

There are several proofs of this result. The simplest and

latest proof was found a few days ago while I was teaching a

course on Brownian motion. This uses nothing but the theorem

by H. A. Schwarz on generalized second derivative and the

continuity of u(.,b) proved in Theorem 2. It will be included

in a projected set of lecture notes. An older proof due to

Varadhan and using Ito’s calculus and martingales will be published
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elsewhere. An even older unpublished proof used Kac’s method

of Laplace transforms of which an incorrect version (lack of

domination!) had been communicated to me by an ancien collègue.
But none of these proofs will be given here partly because

they constitute excellent exercises for the reader, and partly

because the results have recently been established in any

dimension (for a bounded open domain in lieu of (- in

collaboration with K. M. Rao. These are in the process of

consolidation and extension.

I am indebted to Pierre van Moerbeke for suggesting the

investigation in this note. The situation described in Theorem 1

for the case of Brownian motion apparently means the absence of

"bound states" in physics! I


