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WIENER-HOPF FACTORIZATION FOR MATRICES

by

M.T. Barlow, L.C.G. Rogers, and David Williams

1. The main results. Let E be a finite set. Let ~(E) denote the

set of (real) E X E matrices Q such that, for i, j E E ,

Q(i~j) ~ ~ (i ~ J) ~ ~ Q(i~k) ~ 0 .

kEE

Let Q now denote some fixed element of ~(E) . Let v be a function

from E to ~tB {0}, and let V be the diagonal E X E matrix

di ag { v ( i) : i E E} . Let E+ - {i E E : v ( i) > 0} , and E - {i E E : v ( i)  0} .

Let I denote the identity E X E matrix, I+ the identity E+ x E+ matrix,

and I the identity E x E matrix.

Let c be a strictly positive real number.

THEOREM I. There exists a unique pair where 03A0+c is an E X E

matrix and IIc is an E+ X E matrix, such that, if

(1) S = ( ).~+ I_

then S is invertible and

(2) S 1CV 1(Q - cI) ]S - c 

N ,

0 _ Qc

where E (E+) and E (E-). Moreover, 03A0+c and 03A0-c are strictly

substochastic: thus, for i E E , j E E ,

4 ~ ~  1 .
c 

kE E E C



325

Theorem I will be said to yield the ’Wiener-Hopf factorization’ of the

matrix .

Now let X be a Markov chain on E u {a} (3 is the cemetery state)

with Q-matrix Q . . Thus the transition matrix function of X is

P(t) = exp(tQ) . . For t ? 0 , , define :

t

})(!) = , T+(t) = inf{s : ~(s) > t} . .

As usual, we shall (for example) write Tt for T (t) when more convenient.

Note that X(T) E E+ u { a } . .

THEOREM II. For i E E and j E E+ , ,

(3) ~ = j~ - .

For i E EB j e E+ , , and t > 0 , ,

(4) 
~ 

~ = 

The corresponding ’minus’ results follow, on replacing (() by (-~) . .

The problem of finding the joint distribution of Tt and is of

course solved by Theorems I and II. The way in which lI+ and II* may be
c c

calculated will be clear from the proofs.

Comment. The reader may feel that the martingale techniques used in this paper

are more sophisticated than those required for this Markov chain problem. The

following two statements are therefore apposite. First, we do not know how to

prove the purely algebraic Theorem I without appealing to probability theory

(and ultimately to martingale theory). Second, the martingale technique

generalises to other (more interesting) cases, though the problem of obtaining

explicit answers proves to be very difficult. First thoughts on the ’continuous’

state-space case appear in the following article by Rogers and Williams.

2. Basic martingales. It is important to regard the strictly positive

number c as fixed throughout the remainder of the paper, except in section 7.
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Let f be a function on (E u ~ a }) x nx such that f(3,’ ,*) = 0 . .

A natural extension of Dynkin’s formula shows that (for every initial

distribution)

f(Xt,03C6t,t) - t0f(Xs,03C6s,s)ds
is a local martingale, where

.

Here, of course,

..

YEE

In particular, if g is any vector on E, , and

(5) on E, ,

then is a local martingale (in fact, a martingale, because it is

bounded on every finite interval).

3. Definition of fi. Before recalling part of the theory of the Jordan

form, we recall the proof of the well-known fact that V (Q-cl) cannot

have an eigenvalue on the imaginary axis. For suppose that p lies on the

imaginary axis and that

(6) (Q- cI)g = ~ Vg

for some non-zero vector g. . Choose i in E with I > ~g(j)~ I for

all j in E. . The i-th coordinate of (6) reads :

Q(i,j)g(j). .

But the left-hand side has modulus at least equal to (~Q(i,i)~ ,

while the right-hand side has modulus at most equal to . The

contradiction establishes the ’well-known fact*.

One of the main steps in Jordan-form theory shows that the space of complex

vectors on E has a basis -1 such that every g in ~ solves an equation
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(7) I]kg = 0 ,

where u is an eigenvalue of V-1 (Q - cI) and k is a positive integer.

Fix , , and let J U [respectively,~ ] denote the set of those vectors g

in ~ for which the associated p-value has (strictly) negative [respectively,
positive] real part.

4. The structure of Let g E JV, so that g satisfies (7) for some k

and some p with negative real part. Then the function f at (5) may be

written

f (. ,4> , t) = exp( - ct -~~) exp { - ~[V 1(Q- cI) - uIJ}g , ,

and the second exponential may be expanded in a power series in which all terms

after the (k-1)-th annihilate g. . Hence, since u has negative real part,

(8) for g ~  and f as at (5), f(X ,(() ,s) is bounded on 

for every t.

In particular, on applying the optional stopping theorem at time , we

find that (for all i E E )

° = g(i) . ~

Now define n via the probabilistic formula (3). We have just shown that

(9) if g E , then g = + g where g denotes the restriction of

g to E . .

Hence fU has at most ~E+~ elements, and, by a similar argument, ~ has at

most ~E ~ ( elements. The only explanation is that

(10) ~ has precisely ( elements and the elements g + where g E N
form a basis for the space of vectors on E+ . .

5. Proof of the uniqueness of Wiener-Hopf factorization. Suppose that for

some E 
_ 

x E matrix K , , some E x E 
_ 

matrix Kc , , some Q~ 
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and some Q- c in (E-), we have that 

+ 
is invertible, andK I

V _1 (Q - cI) I+ = Q+ c 0 ~ j .

Kc I Kc I _ 0 _ Q_ c

Then the eigenvalues of V with negative real part must coincide

with the eigenvalues of . Moreover, if

(11) (Q~ - 0

for some positive integer k , , some (with negative real part) and some vector

+ +
u on E , , then 

{V-1(Q - cI) - I}k(I+) u+ = 0,
{V (Q - cI) - BII} 

K+ 
U = 0 I

so that, from the argument leading to (9),

(12) (I+)u+ = (I+)u+ .(12) u - 
~c + 

u .

By the theory of the Jordan canonical form for equation (11) holds for

a set of vectors u+ spanning the vectors on E+ , , and so therefore does

equation (12). Hence

K+ - ~+
c c

and the required uniqueness follows from this fact and its ’minus’ analogue.

6. Existence of the Wiener-Hopf factorization. For the moment, regard

t Z 0 as fixed. Let ~g define f as at (5), and recall that

f(Xs,~s,s) is a martingale. Using (8) as justification, apply the optional

stopping theorem at time Tt to obtain

X(Tt) ] = g = cI) ]h , ,

where h = . Note that h will automatically satisfy

the same version of (7) as does g , , so that h , , like g , , has property (9).

Hence, since E E+ , , we have
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(13) = I+ + h+ .(13) 

II 
[exp(- c B) h OX(Tt)] = exp[ tV (Q - cI)] 

II 
h .

We have obtained (13) for a class of vectors h+ which clearly spans the

space of all vectors on E+ , , so that (13) holds for all vectors h+ on E+ . .

It is almost immediate from the strong Markov property of X that

+c(t;i,j) = Ei[exp(-c03C4+t) ; X(03C4+t) = j] (i,j E E+)

defines a subMarkovian transition function on E+ , , so that

+c(t) = exp(t+c)
for some in (E+). (One can alternatively deduce this from (13).)

On differentiating (13) with respect to t and setting t = 0 , we obtain

(14) I+ + V _ 1(Q - cI) I+ + .

Theorems I and II now follow from (14) and its ’minus’ analogue.

7. The case c = 0 . As has already been noted, Theorems I and II solve

the problem of calculating the joint distribution of Tt and , but

the involvement of the positive parameter c complicates the formulae, and

is irrelevant if only the law of X(Tt) is sought. This corresponds to the

case c = 0 , in which case we have the following result.

THEOREM III. There exists a unique pair , where II+ is an E x E+

matrix, and 1I 
- 

is an E+ X E 
- 

matrix, such that, for some Q+ E and

Q- ~ (E-) ,

(15) v- 1Q s = s(
Q+ 0 0 -Q-)

where

~I+ fi

(16) S - + _ ,
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Moreover, lI+ and 1I are substochastic, and for i E E, j E E+ , k E E+ ,

(17) (TO) + = j ] = 

and

(18) PkC X (T t) = j] - 
for each t >_ 0 .

Remarks. The matrix S need no longer be invertible, and it is also possible

that both Q+ and Q may be conservative.

Proof. The existence of such a decomposition follows easily from Theorem I:

by considering a sequence (cn : n >_ 0) of reals decreasing to 0 , we may

suppose, by taking a subsequence if necessary, that 03A0+c ,lIc ’ , and Qc
n n n n

each converge entry by entry to Q+, , and Q 
- 

respectively. Thus

(15) follows immediately from (2), (17) follows from (3), and (18) follows

from (4).

As to the uniqueness of the decomposition (15), the argument of section 5

serves again with minor modification. Suppose that there exists ~(E+)
and an E x E+ matrix K+ such that

v-1Q (I+ K+) = (I+ K+) +.

Consider a basis ~ for the space of complex vectors on E+ such that

for each u+ E ~ there exists an integer k >_ 1 and an eigenvalue u of Q+ ^
such that

19> (Q - u ~ 0 ~ (Q - u - 0 .

(Such a basis is guaranteed by the theory of the Jordan form.)

As the argument of section 3 shows, the non-zero eigenvalues of Q have

strictly negative real part, so if u+ E ~ is associated through (19) with a

non-zero eigenvalue, the argument of section 5 leads to

(20) (I+ K+) u+ = (I+ 03A0+) u+.
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To complete the proof, we must notice that if is associated through

(19) with a zero eigenvalue, then Q+a+ - 0. [Indeed, were this not so,

then P (t) a~ = a~ would not remain bounded as t ~ oo.]

Accordingly, if a is defined by

a ~ (I+ K+)a+,

then a E ker(Q) and so a(Xt) is a martingale, whence (20) is satisfied

by a, and we conclude as before that K+ = n+.

Department of Pure Mathematics Department of Pure Mathematics
University of Liverpool University College of Swansea
P.O. Box 147 Singleton Park
Liverpool L69 3BX Swansea SA2 8PP

(Barlow) (Rogers, Williams)

Correction. The uniqueness assertion for the case when c = 0 is obviously

false, as can be seen by taking 
~ (0 0 0B °

The error occurs in the last two lines of the paper. The treatment of the

’c = 0’ case in the following Rogers-Williams paper is correct, and points to

the way in which Section 7 above can be redeemed.


