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On the representation of solutions of

stochastic differential equations

Hiroshi Kunita

0. Introduction.

Let us consider the stochastic differential equation

(0.1) d03BEt = X0(03BEt)dt + Xj(03BEt)°dBti

defined on a connected C -manifold M of dimension d. Here Xo ~

X1, ..., X are (~-vector fields on M and B = ..., is

a standard Brownian motion. The symbol o denotes the Stratonovich-

Fisk integral. Recently a number of authors has expressed the

solution directly as a functional of Bt, under some conditions on

vector fields Xo ..., Xr, In Doss [1] Sussman [7], the solution is

expressed in such a way that it is a continuous functional of B , if

r=l or Xl’ ..,, Xr are commutative. However this is not the case in

general if r > 2 and X , ...~ Xr are not commutative. In fact,

Yamato [8] has proved that the solution is a functional of multiple

Wiener integrals of B , provided that the Lie algebra generated by

..., Xr is nilpotent.

In this paper, we shall consider the similar problem in case that

the Lie algebra mentioned above is nilpotent or solvable. In section 2,

we will discuss Yamato’s result from a different point of view;

Applealing Campbell-Hausdorff formula in Lie algebra, we will obtain

an explicit expression as a functional of multiple Wiener integrals.
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Section 1 is devoted to Campbell-Hausdorff formula. In Section 3,

we will discuss the case that the Lie algebra is solvable. We will

decompose the equation (0.1) into a chain of equations such that the

corresponding Lie algebra of each equation is nilpotent, and then show

that the solution of (0.1) is expressed as a composition of solutions

of these nilpoitent equations.

1. Campbell-Hausdorff formula.

Given a complete C -vector field X on the manifold M represented

as E with a local coordinate (xl, ..., Xd)’ we denote by
1=1 i axi ~ d

etX the one parameter group of transformations on M generated by X:

This means that ~t (x) = satisfies, (i) for each t ~ (-°°. ~°) ,

~t is a diffeomorphism of M, (ii) for any t~ s ~(~°, ~). ’I

= x and (iii) it is the solution of the ordinary differential

equation 2014-r-2014 
= starting at x, where X(x) = (X1(x), ...,

Xd(x)). When t = 1, we write it as eX,
Let X and Y be complete C~-vector fields. We define the Lie

bracket [X, Y] by XY - YX. It is often written as X(adY)

Campbell-Hausdorff formula is a formula like

X Y Y]+ ...

ee = e

We shall extend the formula to that of n vector fields.

Suppose we are given n C~-vector fields Y1, ..., Y such that

[...[Y. , Y. ] ...,]Y. ], m = 1, 2,; " . and their linear sums are all
1 2 ~m

complete vector fields. Consider a formal power series

(1.1) Z = 03A3m>0(-1)m-1m-103A3p>0 p( 1 )i..,p( 1 )ip( 1 2 )i p ( m ), . 1 |p|
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p2.i) p(2) 
 Y1(adY1) (adY2)2 ... (adYn) 

n (adY1)1 
... (adYn)n

where p(1)1, ..., p(m)n are nonnegative integers, |p | = 03A31in, 1jmp(j)i
and Z ~~ means the sum of terms such that ,E > 0 for all 

()P ~ 
~ ~ 

i=1 1 p(i)_1
1  j  m. If = 0, we understand the first member as 

instead of . , Now the term corresponding [...[Y. , Y. ],.,,
i~ i2

Yi ] appears several times in the power series. Summing up all the
m

corresponding term, we denote the coefficient of the above vector field

as 

ci1...im
. Then the power series is written as

(1.2) Z = 03A3 c Yi1...im,

m=l(i ...,i ) y...imm=1(y ...~ m

where

(1.3) = [...[Yi , Yi ] .;.]Yi ] 

,

Theorem 1.1. (Campbell-Hausdorff formula) Suppose that (1.2)

is absolutely convergent and define a complete vector field. Then it

holds

(1.4) eYn ... eY1 = eZ.

The proof may be found in Jacobson IS] in case n = 2. It can be

applied to the present case with a simple modification.

We shall compute coefficients c... Let us divide the multi-
,

index I = (il, ..., im) to a sequence of shorter ones Ij y j 
= 1, . ",R,

and write it as I;
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(1.5) 1 = (I1, ..., Ik1)(Ik1+1, 
..., Ik2) ... (Ikl-1+1, 

..., Ikl),

where each index Ik consists of same number ik and these numbers

îk, k = 1, ..., kl satisfies

(1. 6) î1 > î2 > 
... 

> îk1  îk1+1 > 
... 

> îk2 ...  îkl-1 +1 
> ... > îkl

The division I is defined uniquely from I. We call this a natural

division. We denote the length of Ik (the number of elements in Ik)
k

as nk. Then nk = m. Divide again each index Ik into jk indices, each

of which consists of (i) elements (i = 1, ..., j ). Hence it holds (1) +
( j ) 

nk k nk
... + nk 

k - 
nk. Then we have

1 R,-l R,-l 
j 1+...+jk -s-1 -1

(1.1) c, . - 1 Q~1 ~ (k 1)(-1) ~ 
(j 1 + ... + j - s) 

1

il...im m s=0 * s 1 kQ

 

1 n(1)1! ... n(j1)1! ... n(1)kl! ... n(jl)kl!

Here, the sum E* is taken for all subdivisions of Ik, k = 1, .,., kQ,
i.e., for all positive integers n(1), i = 1, ..., jk, k = 1, ...., k~
such that  n(i)k = nk.

Let I’ be another multi-index of length m and let

Î’ = (I’1 , ..., I’k’1) ... (I’k’l-1

+1, 
..., I’k’l)

be its natural division. We say that I and I’ are equivalent if

for each k Ik and Ik contain the same number of elements and

ki = kl, ..., k~ = k~ hold. Note that cI= cI, holds if I and I’

are equivalent.
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If each Ik in (1.5) contains a single element, I is divided as

I = (il, ..., ik i )(lk i +1’ ..., ik ) 2 ... (ik Q-1 +1’ .,., 

where kQ = m. We will call such I as single. In this case, (1.7)

becomes

(1.8) ci... im 
= 

1 m (l-1s)(-1)m-s-1(m-s)-1

We shall calculate a few of coefficients

(a) 

(~ a 

(c) ~ 9 if I  s  k or k  j  i

18 1 
6 if I # j = k

2. Representation of solutions (I). Nilpotent case.

Consider the stochastic differential equation on M.

r 
.

(2.1) d03BEt = jEl 

where X , X , ... X are complete C -vector fields. If Xo, X1, ... X
are commuting, i.e., [X., X.] = 0 for each i and j, then the solution

of the above equation starting at x is represented as
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(2. 2) 03BEt(x) = exp + B1tX1 + . " + 

Here we understand that + + ... + is a vector

field for each t and a. s. c~, This means that ~t(x, c~) equals

(}) (x, c~) a. s. , where (}) (x, is the solution of the ordinary differ-

ential equation

d~s 
- tX c~ + ... + r (~ ) ~dt = ( + ... + 

regarding t and c~ as parameters. The fact can be proved directly,

applying Ito’s formula [4] to (2.2). However, if Xo, ,.,, Xr are not

commuting, the formula (2.2) is not valid. We have to add several terms

to the right hand of (2.2). This will be done in Theorem 2.3.

Our basic assumption in this section is that the Lie algebra L =

X1, ..., Xr) generated by X(j, X1, ,.,, Xr is nilpotent of step

p, i.e.,

[...[X , Xi ] ...]Xi ] = 0
l 2 m

holds whenever i, ..., 1, ..., r} and m > p. The algebra

L is then a finite dimensional vector space, obviously. Then any

element of L is a complete (or proper) vector field (See Palais [6],

p.95). Under the same condition, Yamato [8] showed that the solution

~ of equation (2.1) is a functional of multiple Wiener integrals of

Bt of degrees less than or equal to p. We will obtain the functional

in a more explicit manner, making use of Campbell-Hausdorff formula.
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We begin with notations on multi-index. We shall divide a multi-

index I = (il, ..., im) to shorter ones.; .. ~ . I q (q ~ m)~
where each Ik consists of the same element îj. Given positive integers

k2  ...  k1 = q, we define a divided index of I as

(2.3) AI = ..., Ik 1 )(Ik 1 +1’ " ’~ ~ Ik ) 2 ... (Ik Q-1 +1’ ..., 

(This time we do not assume relation (1.6)). If each Ik contains a

single element (or at most two), we say that AI is single (or double),

The equivalence of two indices AI and is defined similarly as

in Section 1. Suppose now we are given an index I and a divided one

AI. AI is not equal to the natural division of I. But if there is

an index I’ , such that its natural division I~ is equivalent to 

then we set c0I 
= 

cI, for convention.

Let B = (B~, ..., B~) be a standard r-dimensional Brownian

motion. We set Bt = t for convention. Given a single divided index

AI, we define the multiple Wiener integral B as

(2.4) f .., A dBi1t1 1 ... dB im
where

(2.5) A = {tk1 ...  tl t, ..., 
... 

i = 1, ..., l}

If AI is a double index, we define
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I

(2.6) B~I - J ... J dB 1 ... dB 
ki 

,
t 

A tl tQ

where

.

(2.7) B I k - ’ B1kt k if I - k {ik} (single)

t 
t if Ik = {ik, ik} (double)

Lemma 2.1. Let ~t(x) be the solution of (2.1) with ~o = x.

Then it is represented as

(2. 8) ~t (x) _ (exp Wt)(x),

where

_ + + 
r 

+ 
E {E* c 

(2.9) jdt = tXo + ... + B1tXr + J:1|J|~p dJ 
0394J

XJ - [...[X. , X. ] ... ]X. ] (J = (jl, ..., jm))J1 1 JZ Jm m

Here E* is the sum for all single and double divided indices of J.

~J
Proof. For a f ixed positive integer n and positive time t,

set 8Bk -- and def ine
- 

- t ‘ t
n n

Yl = nXo + + ... + 03B4Br1Xr

Y - tX + 03B4B1nX1 + .,. + 03B4BrnXr
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Set .

(2.10) (x) _ (exp Yn ... exp Y ) (x) 
’

Then, clearly it is the value at 1 of the solution of equation

X +n 
r J J , . 

k-1 
 

k
ds 

= ( o t , ~ if ( n ) t _ ds 0 k s n - - n

There is a subsequence of 03BE(n)(x) converging to 03BE (x) a,s.
t t

We shall next apply Campbell-Hausdorff formula to the right hand

side of (2.10). It holds

i ,..i
(2.11) E c.. Y 

1 m

(i1,...,im) i1...im

_ 

E { E c.. sB i ,.. 

- jl,...,jm (il,..,,im) i i ...1 m i 
1 i m

j 1 . J
= 03A3 { 03A3 c0394J 03B4Bj1i1 ... 03B4Bjmim}XJ

Here ... means the sum for all indices I such that
I:I u0J il im

I is equivalent to The sum converges to if 0394J is a single

or double index. If 0394J is more than double (i.e,, 0394J contains a

subindex Ik with more than two elements), then the sum converges to 0,

Therefore, (2,11) converges a.s, to

J ~ 

This proves that the sum of (2.11) for m = 1, 2, ... converges to Wt a.s. ° 

’
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~t
Then the exponential map converges a.s. to The proof is complete.

We shall next calculate multiple Wiener integrals in (2.9) in cases

that )JJ are 2 and 3. We introduce notations.

[Bi, Bj]t = tBisdBjs - tBjsdBis, 
t o s s ’o s s

This indicates the stochastic area enclosed by the Brownian curve (B ,

0  s ~ t and its chord. Similarly, we set

[[Bi, Bj], Bk]t = t0 [Bi, Bj]sdBks - t0 Bksd[Bi, Bj]s

Lemma 2.2 (i) Coefficient of X~ in (2.9) equals B~]
if (ii) Coefficient of equals if

i, j, k are different or 0 = j = k ~ i. If 0  j = k ~ i, it equals

1 36 tBit plus the above quantity.

Proof. The coefficient of X~ equals

~’~ 

The coefficient of X~ is then equal to -~-[B~ B~] . Since X~ = 

joining these two terms, we see that coefficient of X~ is t[Bi, 
’ 

We shall next consider coefficient of . If i, j, k are

different or if 0==j=k~i, terms corresponding to double indices

are 0 and what we have is

~~~ ~ ’(i)(jk)~t 
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= 1 9 0titjtkt dBitidBjtjdBktk-1 18 (0titjt)(0tktjt)dBitidBjtjdBktk
-

1 18 (0,tjtit)~(0tjtkt)dBitidBjtjdBktk+1 9 0tktjtitdBitidBjtjdBktk
= 1 18 {[[Bi, Bj], Bk]t + [[Bj, Bk], Bi]t}

Similarly, the coefficient of Xjik is

~ {[[B~ B~]~ + [[BB B~], B~}

Since = -X ~ , we join these two and see that the coefficient of
X~~ is

(2.12) -~ (2[[BB B~]~ + [[BB B~], B~]~ - [[BB B~], 

We have on the other hand Jacob! identity

[[BB B~], B~]~ + [[BB B~], B~]~ + [[B~, B~], B~]~ = 0.

Substitute the above to (2.12), then.we see that the coefficient of

X~ is y~ [[B~, B~], B~.
If the coefficient of X ~ contains terms with

double indices. These are
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which should be added to the quantity obtained above.

Summarizing these two lemmas, we establish the following theorem.

Theorem 2.3. Suppose that the Lie algebra generated by Xa,

..., X is nilpotent of step p. Then the solution of equation (2.1)

with 03BE0 = x is represented (exp where

(2.13) W - E BitXi + 1 E [B1, Bj]t [X, X ]
t i=1 t 2 

i~~ 
t i, J

+ 1 E Bk] [[X1~ Xkl + 1 E E X ]
18 t 36 

i=~ ~=1 
t 1 J J

+ E { 

Example (Yamato [8]) Consider the equation in R3 where Xo = 0,

X - 
a 

+ 2x 
a 

and X - 
a 

- 2x 
a 

. Then [X , X2 ] _ -4 
a

and [[Xi, X2], X1] _ [[X1, X2], X2] = 0. Hence the corresponding Lie

algebra is nilpotent of step 2. The solution is then written as ~t(x) _
exp Wt(x), where

Wt = B1tX1 + B2X2 + 2[B1, B2]t[X1, X2]

- B1 a 
+ B2 a 

+ 2{Blx2 - B2x - [B1, B2] } 
a

Therefore

r~i + Bt
exp =~ x2 + Bt

),x~ + 2{B~X2 - B~X1 - [B1, B2]t}
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where x = (xl, x2, x3).
We shall mention that similar representation is valid for a more

general class of stochastic differential equation. Let us consider

a vector field valued stochastic process. Let X(t, x, w) = X(t, w)

be a stochastic process such that for each t > 0, it is a C -vector

field for almost all w. We assume that it is continuous in t for

almost all w and F -adapted, where F, t > 0 is a given family of

increasing a-fields. Suppose we are given r + 1 vector field valued

stochastic processes Xo, X~, ..., X . We will call that {Xo, X~, ..., Xr}
is nilpotent of step p, if

[ ... Xi ] ...,]Xi ](tl, ..., 
= 0 a.s. p

i 2, m 

holds for any i , ..., i m E{0, 1, ..., r} and t , 1 ..., t m_ > 0 if

m>p.

Let B = (Bl, ..., Br) be a F -Brownian motion. Consider the

stochastic differential equation

(2.14) 03BEt = x + t0X0(s, 03BEs, 03C9)ds + t0X.(s, 03BEs, 03C9)°dB
js

Theorem 2.2. Suppose that for each i, X.(t, w) is a complete

vector field for any t and a.s. w. Suppose further that the Lie

algebra generated by X1, ..., Xr} is finite dimensional and

nilpotent. Then the solution of (2.14) is represented as exp W(t),

where

W(t, x) = 
t 
Xo(s, x)ds + E r t X.(s, x)odBJ s 

.
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+ E cDJA XJ(1, ..., ... 

where A is the set of (2.5), Bsk is defined by (2.7) and sk = sk
if 1 and sk = sk) if 2. The sum E is taken

for all single or double divided indices dJ of J.

The proof is similar to that of Lemma 2.1.

3. Representation of solutions (lI) . Solvable case

Let L = L(Xo, X1, ..., Xr) be the Lie algebra of vector fields

generated by Xo, X1, ..., Xr. Define a chain of Lie algebras as

L1 1 = [L, L], L2 = [L 1, 
L 1] , ..., Ln 

= [Ln-1, Ln-1] . Then L > L2 ~ ...

and Li is an ideal in The Lie algebra L is called solvable

if there exists p such that Lp 
= {0}. By the definition, nilpotent

Lie algebra is solvable.

Consider the stochastic differential equation

(3.1) d03BEt = + E r 

The purpose of this section is to show that the above equation is

decomposed to a chain of equations whose coefficients are nilpotent

vector fields if L is a finite dimensional solvable algebra. We

will then prove that the solution of (3.1) is expressed as a composition

of solutions of these equations.

The differential of smooth map is needed for our discussion. Let

4l be a diffeomorphism of the manifold M. The differential ~* is

an automorphism of the space of vector fields defined by

(3. 2) ~*X(f ) (x) = X(f°~) (~ 1 (x) ) , C m (M) ,
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where C (M) is the space of all real C -functions on M.

Let ..., Yr} be a nilpotent subset of L. Consider the

stochastic differential equation

(3. 3) d03B6t = 

The solution 03B6t(x) starting at x is represented as (2.6), so that

~t may be regarded as a diffeomorphism for each t > 0 and almost all

w. Set

(3.4) Zj = (03B6-1t)*(Xj - Yj), j = 0, ..., r.

These are vector field valued stochastic processes. Consider

(3.5) dn = + E 
.

t t t t

Proposition 3.1. Solutions of equations (3.1), (3.3) and (3.5)

are linked by the relation ~t = 

Proof. Using a local coordinate, we shall write ~t 
= (r1t , ...,

etc. We put t as B for convention. Let f be a C. 00 -function.

By Ito’s formula we have

(3.6) f(03BEt°~t) - f(x) = 03A3k0 ~f ~xk(03BEt( x)) °d03B6kt(x) |x=~t

+ E t a 

Since d~t = ~ the first term of the right hand side equals
t J t t
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E 

J o

The second term is

t0 zlj(~t)~ ~xl(f°03BEt)(~t)°dB
jt

- 

E . t0 Zj(f°03B6t)(~t)°dB
jt

= 03A3 t (Xj - Yj)(f°03BEt°03BE-1t)(03BEt°~t)°dB
jt

j o ~ j t t ’ 
°’ 

t t t

- 03A3t0 (Xj - Yj)f(03BEt°~t)°dB jt

Therefore we have

f (x) _ ~ j 
Since this holds for any C~-function, we see that is the

solution of (3.1) starting at x. The proof is complete.

. Now we shall decompose vector fields Xo, ..., Xr into sums of

vector fields

X - + ... + X(n), ..., X _ X(1)+ ... + X(n)
0 o o r r r

such that
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L(1) - ..., X(1)) , ..., L(n) - ..., 
ij o r ~,...,L. 0 r

are all nilpotent Lie algebra. Such a decomposition exists always,

although it is not unique. For example, let us choose a basis of

L = L(X , ..., X ) and denote it as Y , ..., Y . Then each X. is

written as X. = n E a..Y. Setting = a..Y., for example, we
~- j = 1 1J j 1 1J J

have a decomposition mentioned above.

Let us now consider a chain of stochastic differential equations.

(3.7) d,* = l = 1, ..., n

(3.8) d~Q - ~ (~Q 1)~1 ... ~ = 2, 3, ... n

where = and

(3.9) 
r 

(03BEl-1t )-1 ... (03BE1t)-1*Xlj - Xlj}°dBjt,
Q = 2, 3, ..., n

Since L(i) is nilpotent, the solution 03B6lt(x) is a diffeomorphism of

M for each t and a. s . w. Hence the differential (03B6lt)-1* 1 is well

defined. In order to show the analogous fact and ni(x) ,
we require

Lemma 3.2. Coefficients of equations on are nilpotent.

Proof. We will prove that coefficients of the equation are in

L1, since L is nilpotent ([5], p. 51). We first consider the case

i = 2. Since 03BE1t(x) = 03B61t(x) = exp W where W is the vector field

valued stochastic process of (2.9), it is a diffeomorphism of M for
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each t and a.s. w. Hence the differential (~t)*1 is well defined.

We shall show that (03BE1t)-1*Xlj - Xlj belongs to L a. s. P for each

j and i, following the argument of Ichihara-Kunita [3]. Let us choose

Y , ..., Yn as a basis of L, ’ such that Y, ..., Yk (k  n) is a basis

of Ll. Set Yk(s) = (e t)*Yk, the parameter t being fixed. Then it

is known that

dY.(s) sW

Since Y ] in L1, it is written as

n

[Wt’ Yk] " aki(t)Yi, k  i  n.

Then the above equation derives a system of linear differential equations

= AY(s), Y(s) = [Y1(s)~ ..., 
A = 

The solution is then written as

Y(s) = e As Y(O) = E sp 
p=0 ~’

Note that = 0 if k  i  n, where (a(p)) = AP. Then Y(s) - Y(0)

is a linear sum of Yl’ ..., Y . Since XQ is written as a linear sum

of Y1, ..., Y , X. i also a linear sum of Y1, ..., Yk, so

that it is m Since (e J_ Wt )* = (eWt)-1*, we see that XQ J
is in L1 a.s. P for any t > 0, 0  j  r, 1 Q  n.
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Now noting that Ll is an ideal in L, we can show similarly as

the above argument that (~t)*1 maps L into itself. Therefore

(03B62t)-1*{(03BE2t)-1*Xlj - Xlj} is in L1 a.s.P for any t > 0, 0  j  r

and 1  Q  n. We have thus shown that coefficients of equation on

are nilpotent.

The solution has the decompotion by Lemma 3.1. Hence

is a diffeomorphism of M for each t and a.s. w. Thus equations

(3.8) and (3.9) are well defined for l = 3. We then see that coef-

ficients of equation on n3 t are nilpotent as before. Repeating this

argument, it turns out that coefficients of equations are nil-

potent for all l = 2, 3, ..., n. The proof is complete.

We can now show the following theorem.

Theorem 3.3. Suppose that the Lie algebra generated by XO’

X1, ..., Xr is finite dimensional and solvable. Then the solution

of the equation (3.1) is represented as

(3.10) ~t = 

where 03B6lt and are solutions of equations (3.7) and (3.9) with

nilpotent coefficients.

Proof. We have 03BEt = 03BE1°t ... °03BEnt by Lemma 3.1. Furthermore

it for l = 2, ..., n. Hence we get the represen-

tation (3.10).

If coefficients of equations in (3.8) are already nilpotent,

it is not necessary to decompose it to ~;t and D, and we may obtain
a shorter decomposition of 03BEt. This occurs if XQ, j = 0, ..., rare
in the derived ideal Ll’ since 1)*1 ... (03BE1t)-1*Xlj are in L1 for

any j = 0, ..., r. We shall discuss two examples.
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Example l. (Linear System) Consider

(3.11) d03BEt = A03BEtdt + CBt,

where A is a d d-matrix and C is a d r-matrix. Corresponding

vector fields are  .

Xo " 

03A3(03A3 aijxj)~ ~xi ’ Xj 
= 

E cij ax
It holds

(adX0)nXj = (-1)n03A3 (AnC)ij ~ ~xi
The Lie algebra L generated by Xo and Xj is the linear span of

and n = 0, 1, 2, ... The derived ideal L1 - - [L, L]

is the linear span of n = 1, 2, ... Since latters are

commuting each other, it holds L2 - [L1, L1] _ {0}. Hence L is

solvable.

Consider two equations

d~t = Xodt

d03BE2t = (03BE1t)-1*Xj °dBjt
Then it holds 03BE1t(x) = and

(~t)*lX. = 

i E aX i ,
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so that

d~~ = e-tACodB t

The solution is 03BE2t(x) = x + t Therefore we have

03BEt = 03BE1t°03BE2t = etA(x + te-sACdBs).

o

This is a well known formula for the solution of the linear system.

Example 2. (Bilinear system) Consider the equation

(3.12) A003BEt dt + E Aj03BEt °dBjt
t t t

where A, _ = 0, ..., rare d d-triangular matrices such that
J ~Q

= 0 if k > Q. Corresponding vector fields are

Xj = 03A3 ( 03A3 a(j)kl xl)~ ~xk , j = 0, ... , r.

It holds [X,, X.] _ - 03A3(03A3l [Ai, Aj]klxl)~ ~xk , where A.] ’

A.A.. Hence X1, ..., Xr) is isomorphic to the matrix Lie algebra

L(Ao, .. " Ar). The derived ideal L1 of L(A9, ..., Ar) consists of

nilpotent matrices as is easily seen. Thus ..., Ar), or equiva-

lently, L(Xo, ..., Xr) is a solvable Lie algebra.

We shall decompose matrices Aj to sums of diagonal matrices

Dj = (03B4kla(j)kl) and nilpotent ones N, = ((1 - d )a(J)), where 8 
QQ and ones ((1-03B4kl)a(j)kl, where k

is Kronecker’s delta. Consider
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d03BE1t = 03A3Dj03BEjt°dBjt

where B° = t. The solution is then written as

(3.13) 03BE1t(x) = e tx, Wt = E 

It holds (03BE1t)-1*Ni = e -Wt N.e . Wt Consider
t " J J

d03BE2t = 03A3 e -WtNjeWt03BE2t°dB
jt

Since = 0, ..., r are nilpotent matrices, the solution

is represented as 03BE2t(x) = e x, where

(3.14) Vt = E r t 
e -W sN.e 

.

~ j=0 0 ~ ~

+ 1 2 03A3 0sut[e-WsNiews, e -WuNjewu]°(dBisdBju - dBjsdBiu + ...

The solution of (3.12) is then written as,
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