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ON THE UNIQUENESS OF OPTIMAL CONTROLS

by Masatoshi FUJISAKI

Université de Strasbourg
Seminaire de Probabilites 1977/78

INTRODUCTION.

There are many works concerning the existence of optimal controls
under various conditions. The purpose of this paper is to give some cri-
teria for the uniqueness of optimal controls.

In § 1 we discuss the uniqueness of optimal controls in the complete-
ly observable case, under the hypotheses of Ikeda-Watanabe [2]. In this
case we can easily give simple criteria for the uniqueness of the opti-
mal control whose existence is proved in [2].

In g 2 we consider the same problem, but in the partially observable
case ( Fujisaki [1]). The control system is more complicated, and unique-
ness becomes more difficult to prove.

~ 1. COMPLETELY OBSERVABLE CASE.

Let T be a positive number. Loosely speaking, the control problem is
the following. One considers a process with values in ~n and

continuous paths, y solution ( in the sense of law ) of the following dif-

ferential equation

(1.1) utdt + d ~t XO=x
where x is a vector in ~n, and Ut=w(t, the control, is a gi-
ven functional of the process X depends on the information obtained

from the data X , st ). The equation (1.1) in the sense of law means
that the law of the process

03B2t = Xt - x - tusds
is the same as that of standard n-dimensional brownian motion. Then our

optimization problem consists in finding a control u in a suitable class,
such that the process X minimizes a cost function

(1.2) J = ]

where f(t,x) is a ~+-valued function over the product space 
which for each t is increasing w.r. to x.

Now we define the class of controls precisely. Since J depends only on

the la.w of the process X, we may assume first that Xt is the coordinate

mapping wt at time t on the Banach space W=Cn of all Rn-valued continuous
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functions over [O,T], with uniform norm. Bn is the topological Borel

field of ( also generated by all cylinder sets ), and Bt is the
sub-a-field generated by the cylinder sets up to time t. Let Y be the

class of all Rn-valued functions 03C8(t,w) over [O,T]XW satisfying the

following three conditions

(~.1 ) ~(t,w) is measurable in (t,w)
(~.2) for each t, is measurable w.r. to Bt
(~.3) ( ~(t,w) ~  1 for all (t,w)

~ will be called the class of all admissible functionals.

By Girsanov’s theorem we have the following proposition on the exis-

tence of solutions of equation (1.1) :

PROPOSITION 1.1. For any there is a unique law P~ on such that

under P ~ t 

-

wO=x a. s . w.-w~ - is a .standard n-dimensional
t C 

0 brownian motion

There are several ways of constructing the law P~. The first one is

the following ( a second one will be given later ). Start with a Wiener

probability law P on W, that is, the unique law under which 

is a standard n-dimensional Brownian motion, and assume the stochasfic

differential equation on W

dXt = + dwt XO=x
has a unique solution in the pathwise sense. Then the law of the process
X is equal to P~ .

Since there is a unique law P~ associated to ~, we may also define
the cost associated to ~

J( 03C8) = E03C8 [Tf(t,|wt|)dt ]

We say that an admissible functional is optimal if

(1.3) J(~)

The following theorem relative to the existence of optimal functionals

is due to Ikeda-Watanabe [2]

THEOREM 1.2. There exists an admissible optimal functional 03C8o and moreover

it can be written in the following explicit form

(1.4) U(wt)
(1.5) U(x)= for U(x)=0 for x=0

Besides that, the law P03C8o can be constructed by the above method : the
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stochastic differential equation :

(1.6) dXt = U(Xt )dt + dwt XO=x
( w.r. to Wiener measure ) has a unique solution in the pathwise sense.

Let us now return to the general case : any process with

values and continuous paths, over some probability space 
defines a mapping from 0 to still denoted by X : X(w) is the path
t~-~ This mapping is measurable. A control for X is a process

which can be written as for some We say

that a pair (X,~) is an admissible system , or that the control (ut) is
an admissible control if X and u satisfy the stochastic differential

equation (1.1), or equivalently, if the image law of P under the mapping
X is the law P ~,

In the canonical situation ( Q=W, Xt=wt ), X is the identity mapping,
and controls are the same as functionals.

Before we study uniqueness, we need some preliminaries and notations.

First of all, let us describe the second way of constructing the law P~,
on for given We start again with a Wiener probability measure
P on W, but this time such that WO=x P-a.s.. Then we set

(1.7) exp( 

Since is bounded, it is well known that (03C1t(03C8), Bnt , P) is a
uniformly integrable martingale for If we define a measure by

(1.8) = 

then P~ is the same measure as in proposition 1.1. Note that, since p is
a martingale, the density of P’~ w.r. to P over Bn is p.(t).

To see this, we remark that from Girsanov’ s theorem, the stochastic

process given by

(1.9) w - w - ~(t w)dt

is a standard brownian motion under the law (1.8). Therefore equation
(1.1) is satisfied and we know it has a unique solution in the sense of
law.

Therefore we also have the following result which shows that J(t)
depends on only

(1.10) J(t) = ]

Let F(t,w) be a non-negative Borel function defined on which

is increasing in the following sense : for any t, 
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(1.11 ) If w and w~ belong to S and (s) ~~w2(s) ~ for all sECO,t],

then F(t,w1)  F(t,w2).
Then, by Ikeda-Watanabe [2], as a corollary to Theorem 1.2, we have the
following result. If ~ ° is the optimal functional (1.4), and if (X,t) is

any admissible system on any probability space 0, then

(1.12) ]  ECF(t,X(w) ) ], 
This can be translated into a result which involves only Wiener measure,

namely that, for any and any t~

(1.13) 

For each t, denote by B~ the sub-a-field of Bt, which is genera-
ted by the random variables st. Then we can give very easily the
following characterization of the functional 

THEOREM 1.3. The functional ~° satisfies the following properties

(U1) Inequality (1.13) holds for any admissible functional ~

(U2) For each t, is Bnt -measurable
If ~’ is any admissible functional satisfying these conditions, then

a.s. with respect to the product measure dtdP.

PROOF. We already know that (U1) is satisfied. By (1.7)

exp( - t(ws,dws) |ws| - 1 2t )
where (ws ,dws) =  wisdwis . On the other hand, |ws|2=  |wis|2, so that

d(|ws|2) = 2(w ,dw )+ ndt , and / 0 = 1 2 t 1 |ws|(d|ws |2-ndt)
is Bnt-measurable . It is shown in [4J that this process is a 1-dimensio-
nal brownian motion.

To prove uniqueness, we remark that if ~’ is another functional

with the same properties, we must have for any t

= 

Taking F(t,w) to be (w)~), where k1, ..,km are increa-

sing functions on and t t, ... , m t t, we deduce very easily that
a.s. for each t. Since these processes are continuous,

they a.s. have the same paths.

1. Looking a little more closely at the proof, we may restrict the class

of functions F(s,w) to those which are adapted to the family 
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On the other hand, equality of these processes implies that of the pro-

, 

0 

t 

0 
~(~) 

The square integrable martingale / then is equal
to 0, and so is its increasing 

0 
process /t 

The theorem follows at once. 
0

~ 2. PARTIALLY OBSERVABLE PROBLEM

In this section we intend to apply the preceding results to the par-
tially observable case. Then the situation is more complicated so that
there are few works relative to the existence theorem of optimal controls,
except linear ones. Here we shall adopt a linear control system as for-
mulated by Fujisaki [1]. First we describe this problem and the previous-
ly known results, and next we give some uniqueness results.

Here equation (1.1) is replaced by a system

(2.1) dGt = utdt + d~t GO = a given random variable

d~t = at03B8tdt + d03B3t 03B60 = 0
f-

to be solved in the law sense. Here (St) and (Yt), are/m-dimen-
sional and n-dimensional brownian motions respectively, with Pr)=0, 03B30=01,
(9,~ is an 119-valued process called the state of channel , (~ ) is an ~n-
valued process called the output , , at is an (n,m) matrix ( non random,
measurable and bounded as a function of t ) such that atat=cIm , where c

is a positive constant and Im is the m-identity matrix ( we denote by *
the transpose of any matrix or vector ; vectors are always meant to be
column ones ). Finally, u=(ut) is the control , which may depend upon the
a priori distribution of 80 and the information obtained on 
but not on , st~ - this is why the problem is called partially ob-
servable. The cost function will depend only on the process(9t) and will
have the following form

(2.2) J(u) = ]

where f(x) is a non-negative function on Rm, for instance
(1) f(x) = (2) f(x)=0 (|x|~H) , =1 1 (|x|>H )

1. In the paper [1] and are replaced by Btd03B2t and btdYt with
( non random ) orthogonal matrices Bt and bt. If the system is to be sol-
ved in the sense of law, this makes no difference.
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where H is a positive con.stant. Especially, in the 1-dimensional case,
f(x) is always taken as an increasing function of )x~ . .

Next we define the class of admissible controls in the same manner

as in the completely observable case. Define Cn, Cm, Cn+m as in the

preceding section ( i.e. Banach spaces of continuous functions over [O,T],
with the uniform norm ), and the obvious notation for the corresponding
a-fields. Denote by § the class of Rm-valued functions cp(t,w) over

[O,T]xCn satisfying the same three conditions as ~ in section 1, except
for For simplicity we shall work only on the canonical

space denoting by 9 the projection map of onto Cm,
by 03B6 the corresponding map onto Cn , and by 03B8t(w), ~t(w) the correspon-

ding values at time t. Then the control ut(w) is equal to and

we can again identify controls and functionals.

We again have a proposition similar to proposition 1.1 :

PROPOSITION 2.1. Given any 03C6~03A6 and any probability law  on there

exists a unique law on W=gm+n such that

1) t03C6(s,~(w))ds and 

are independent m-dimensional and n-dimensional brownian motions

2) SO= 0 a.s. and the law of GO is  . .

That is, equation (2.1) is satisfied in the sense of law. We shall denote

this law by or simply P if no confusion can arise.

The cost corresponding to this law can be denoted by or J() if
no confusion can arise. A functional or the corresponding control

is said to be optimal ( for a given ~, ) if

(2.3) J(~P°~~) - J(~~~.)
For convenient choices of the cost function ( for instance f(x) given

by (2) after (2.2)) and of the measure ~,, one can again give an explicit

description of an optimal control.

THEOREM 2.2 ( Fujisaki [1]). If the initial distribution ~, of GO is nor-
mal N(m,02), where m is an m-vector and 02 is an (m,m)-matrix of the type
cIm , c>0, then there exists some optimal such that the control ut=

can be represented as

(2.4) Ut = U(mt)
where U(x), xEm is given by (1.5), and 

We are going now to apply section 1 to the partially observable pro-

blem. Since there are essential computational difficulties in the multi-
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dimensional case, we are going to assume that m=n=1. Let G be the class
of all real valued functions over 1x1 which satisfy the follo-
wing condition : if is the normal density with mean a and
variance Q2, then
(2.5) g(cr2,a) = f 
depends only on is non-negative and increases with ( this
implies that g itself is non-negative ; functions where

f is a non-negative increasing function on [, obviously belong to
the class G ).

Consider now the minimizing problem with the same control system as
in theorem 2.2. , but involving a. cost function of the type

T

(2.6) J(u) = E[ 0 f ] g~
We shall use the following results from [1J. For simplicity we assume

that a=1. It can be shown that the conditional distribution of 9t w.r.
to F. = ale , is Gaussian N(m , where mt is the conditional
mean as in theorem (2.2), and Qt=EL(9t-mt) that is, the conditional

variance. Furthermore, they satisfy the following equations

(2.7) dat 2 2 2 2
(2.8) dmt = utdt + 03C32td03BDt , m0=m
where (vt) is a (F.)-adapted 1-dimensional brownian motion. Note that

is a non random, well determined function of t only.

On the other hand, the cost function J(u) can be written as

(2.9) J(u)= J

In (2.8), the control ut is a functional adapted to (Ft), while
the process (mt) is adapted to (Ft), but may generate smaller a-fields.
If it turns out that the control ut can be written as a functional 
then looking at (2.8) and (2.9) only we have a completely observable
control problem, entirely similar to that of section 1 since g(t,x) is,
for fixed t, an increasing function of (x~ only. The only difference lies
in the fact that we have, in (2.8), instead of simply dv .

From now on, when we lock for uniqueness criteria, we shall restrict
ourselves to the following subclass $ which consists of those cp
for which the control ut depends only on the conditional mean 
We know from theorem 2.2 that this class contains optimal controls. It

is easy to see that the control can be written as with some ( pos-
sibly different ) 03C6 .
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Let be a control of the class $ . . It is easy to construct

on 0~ the law P~ of the conditional mean process m . Let P be the fixed
law on C under which / dw is a standard brownian motion, and such

that a.s.. Then according to Girsanov’s theorem, P’ is absolutely
continuous w.r. to P, with density given by

(2.10) p (~) = exp( -/ (~)’~(s,w)ds ).
t 0 

~ s "0 
s

Since we are reduced to a completely observable problem, we may apply

now the method that leads to theorem 1.3, with very small changes, to get

the uniqueness results given below. However, the statements concern the

functional 03C6 associated with 03C6 rather than 03C6 itself, and so the condi-

tions are difficult to verify.
Let B~. be the a-field generated by the random variables s~t.

Then we have the following
PROPOSITION 2.3. Let = where U(x) is given by (1.5). Then

~° satisfies the following properties :
1) For arbitrary n ( n=1,2,...), for any g.E G ( i=1,2,...,n) and subdi-

vision of [0,T] 
~ "

,mot )|Fotn ]]

for any 

2) For any t, 03C1t(03C6o) is B1-measurable.

Moreover, if another satisfies these properties then it holds that

a.e. (dtdP).

The proof depends on the preceding discussions and the following

lemma :

LEMMA 2.4. Let 03C6 and 03C6’ be in $ and satisfy the formula

= E03C6’[Tg(’t,m’t)dt ]
for all g in G where m.. and m’ are the conditional expectations of t
and Qj corresponding to 03C6 and 03C6’ respectively. Then for any te[0,T]

(2.11) I I a.e.(P),

where is the a-field generated by the sets a>0.

PROOF. To see that such g generate is enough to take g(x,of)
= = 
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