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CONDITIONAL EXCURSION THEORY

by

David Williams

1. The purpose of this note is to draw attention to CMO formulae, that is,
'conditional' versions of the Motoo-Okabe formula (of Theorem VIII,1 of Maisonneuve
[3]) in which the sample paths of the 'process on the boundary' are assumed known.
Various CMO formulae have long been used - often with more intuition than formal
'rigour' - in constructing sample paths of Markov chains. The type of general CMO
formulae for Markov processes which I have in mind will be intuitively obvious from
the special case degcribed here.

Walsh ([4]) has recently provided very illuminating explanations of the theorems
of Knight and Ray on diffusion local time, and of other Markovian properties in the
space variable. The CMO formulae establish Walsh's conjecture that, for diffusions
with known initial and final values, martingales relative to the excursion fields
can jump only at the process minimum M (whence any excursion-field stopping 'time'

S with P{S=M} = 0 is previsible).

This brief note is merely intended to generate interest. It is not very
polished. I stick to my favourite diffusion, '3-dimensional’ Bessel process, BES(3),
so as to be able to provide cross-checks on some complicated formulae. I hope that

a more complete version of some of these ideas (with much less cavalier use of the

word 'obvious') will soon take shape at Swansea.

+ +
2. Let  be the space C(R , R ) of continuous paths with state-space [0,») .

Let X be the coordinate process:

X(t,w) = Xt(m) = w(); X(»,w) = 9.
Fix x in (0,~), and make the following definitions:

F = [0,x]; T = inf{t>0 : xteF};
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mn

H(t) measure{s <t : Xse F}; H = H(»);

1]

p(t) = inf{t : H(t)>1}; Y(T) = Xop(T).

\

(By the usual convention that inf@ = =, ¥Y(t) = 3 for 1 H.)
The og-algebra Ex determined by excursions below x is defined as follows:
g, = o{Y(1) : 0<T <},
This agrees with Walsh's definition for the diffusion case.

In the situations which concern us, the local time:

measure {0 <1 : Y(0) € (x-h,x)}
2h

Y
L (1) = lim

x
h+O

exists.

We use‘the functional notation for measures, so that we do not require different
symbols for probability and expectation. Define:
BES’ to be the law of '3-dimensional’ Bessel process starting at vy ;

M

to be the law of Brownian motion starting at y;
ITOx to be the Itd excursion law (characteristic measure) at boundary point x for
reflecting Brownian motion on [x,»), with the It6-McKean normalisation of local
time at x.
Fix X > 0, and define

Y = (2)\)%.

The appearance of Y in the CMO formulae derives from the well-known fact that

ITO*{1 - exp(-AT)} = «v.

3. FIRST-ORDER CMO FORMULAE FOR BES(3).

Let f be a bounded Borel function on [0,©) and let & be an exponentially

distributed variable of rate A which is independent of X.

Then, on the set {T = «}, we have:

b _ b-x
1) BES {f(Xg)IEX} = BES {f(x-*XE)}-
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On the set {T< «}, we have:

b
2) BES {f(XE), T > Elex}
b
= BM {f(xg); T>E};
b
E X); T ; X
(3) BES {£( i T £; £ € Flgx}
b H Y
= BM {T<F,}f Aexp [-At - YL (1)) £(Y ) dt
0 X T
(4) BESP{ £ (X ); T<E& X ¢ F; £<p(-)lg }
£ 3 x
H
= BMb{T<g} ITOx{f(X ); E< T}J exp [-)\T—YLY(T)]dLY(T) ;
3 o X b3
%) BEsb{f(xgn T<E X 4T £ oGo)s )

b 0 Y
= BM {T< £} BES {f(x+X£)]exp [-AH-yL ()] .
Proof. The above formulae seem to me to be obvious given Itd excursion theory ([2])

and Theorem 3.1 of Williams [5].

4. The reason that I believe the formulae is that they 'integrate out' correctly.

If, for example, formula (3) is correct, then we must have, for b < x,

' b, (1 Y
(3%) BES {I exp [—AT—ny(T)]f(YT) dt} = h(p),
0
where

h(b) = BESb{I e')‘tf(x )I_(X.)dt}.
0 t) F Ut

Now (see, for example,[5]) it is well known that, for b < x,

b X

2y sinh (yy) f(y) dy + Y_lsinh (Yb) J 2ye
b

Yy

bh(b) = v‘le’“’f £(y) dy .

0
Thus, h is bounded near 0O, h satisfies

Ah - 3n" - p L

h' =0 on (0,x),
and h obeys the elastic-barrier condition:
[xh(x)]' + yxh(x) = O.

These facts confirm (3*) (but not, of course, (3)!).

With a little effort, you can check that (4) integrates out properly, using
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(among other things) the results:

ITOx{f(Xg); E<T} = zxfme'Y(y'X)f(y)dy ;
H x
Y - -
BESb{J exp[—AI-YLx(T)]dLi(T)} = (yb) L sinh (ybyxe YX.
0
5. Formulae (1)-(5) determine the martingale Z , where
z_ = BES’{£(x )18}
x g Ux" !
and show that Z is continuous in x except perhaps at x = M, where
M = inf{X(t): t 2 0}.
It is clear that what we must do now is to transfer the proof of Meyer's
celebrated previsibility theorem for Markov processes 'from time to space’. If
you consult pages 36-38 of Getoor [1], you will see that Walsh's conjecture will

follow once we prove the following result.

THEOREM. Let n € N and let 51,52,...,£n be exponentially distributed variables
(of rates Al,xz,...,xn ) such that gl,gz,...,gn and X are independent. Let
fl,fz,...,fn be bounded continuous functions on [0,«]. Then the martingale
(6) x > mssb{fl(xE )fz(XE FERERRE ¢ L yie }

1 1752 1*8gte - e X

is continuous except perhaps at x = M.

(The fact that this theorem implies Walsh's conjecture is easier to establish than

the corresponding result in Getoor [1] where the £ variables are not added together.)

6. Instead of working through all the tedious details of a full proof of the theorem,
let us look at one case which gives the key 'inductive' idea.
Let & and n be exponential variables (of rates \,p respectively) such that

£,n and X are independent. Then we have the following extension of (4): if f

and g are bounded Borel functions on [0,») ,

b
)] BES {f(Xg)g(X€+n), T <& X ¢ F; £ <p@EE ]}
b H Y Y
= BM {T < E}J exp[—)ur—ny(‘r)]Adex(r) on {T<oo }

o]
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where Ax is a shorthand for the expression (depending on many 'parameters'):
- - Y
A_ = zxre YOy [BESy{g(Xn)]Y}] °6_dy.
x

Y
=0
Here, GT 0 (1)

heavily on the Markovian property of the Ité excursion. Given It6's results,

shifts Y through Y-time 7. Of course, equation (7) relies

equation (7) is at least intuitively obvious (and perhaps obvious). You can check,
if you wish, that equation (7) integrates out properly.
The theorem for the case when n = 2 follows easily from second-order CMO

formulae such as (7).
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