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On the Sojourn Times of Killed Brownian Motion

By Frank B. Knight

University de Strasbourg
Séminaire de Probabilités 1977/78

Introduction

The sojourn (or occupation) times of the standard

Brownian motion B(t) have long been investigated using the

method of M. Kac and its variants. For B(t) killed at a

point a > 0, for example, the total sojourn in an interval

has a distribution whose Laplace transform is available but

somewhat complicated. Thus, for a  b  0 and B(0) = 0,

it is given by

(0.1) 1 - tanh (b - a) 203BB
,

1 + (a - b) 203BB tanh (b - a) 203BB

a result which is obtained below as Example 2.4, but can also

be obtained by Kac’s method as in [2, 2.b].

In the present paper, such problems are treated by

utilizing the local time method of [3] and [4]. Perhaps the

most significant advantage of this method is its adaptability

to the multivariate case. However, even for the case of a single

M-dependent boundary (where M(t) = max B(s)~ it seems to be

the more natural approach. It turns out that for a fairly wide

class of such boundaries the Laplace transforms of the sojourn

times can be given explicitly in simple form. While these results,

again, can probably also be obtained by combining Kac’s method

with a suitable limit procedure, it seems better to use Brownian

local times. Then, in the multivariate cases, the Markov property

of the local time circumvents complications which can easily

become prohibitive.
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Our main result is to obtain, in the case of a single

boundary, expressions which are completely general, insofar as

they apply to all measurable boundary functions f (M{t)).

Analogous expressions can be obtained when we have several such

boundaries, and seek the joint Laplace transforms of the sojourn

times in the several bounded intervals. The formulas become longer

to state, and we limit our treatment to two such boundaries. But

even in the case of constant boundaries the formulas, although

presumably known, do not seem to be in the literature.

In Section 1 we deal with a single boundary, where our method

requires only relatively simple information. Some of the prelimin-

aries can also be obtained by Kacfs method, but we proceed here

without this additional prerequisite. We include a zero-one law

and an absorbtion probability formula which are easy consequences,

as well as four explicit examples in which the transforms are

elementary functions.

In Section 2 we present the cases of two and three

bounded intervals, which require two formulas from [4]. As a

check on these results, we rederive the stopped Brownian formula

of H. M. Taylor [5] and D. Williams [6] by our method. We also

give some results for constant boundaries, and one further example.

Finally, we specialize to the case of one interior boundary point

with two killing points, and extend the Taylor formula to encompass

two sojourn intervals.

Except in a couple of instances we have made no attempt

to invert the transforms or to obtain further information from

them. Nor have we sought to extend the method to more than two

boundaries. Such matters can perhaps be dealt with better when

(and if) the need arises.
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Section 1. A Semi.infinite Boundary.

The problem described in the introduction has a "disguised

form" which is treated first. We write Px or Ex for the process

B(t), B(0) = x, but simply P and E when x = 0. Let s+(t,x) -
s (t, x, w) - 1 2 d dx t0 I(0,x) (|B(t)|) dt denote the local time at

x of the reflected Brownian motion |B|, and set s+(t, 0) = s+(t)
[2, 2.2]. For a ~ 0, let T+(a) = inf ~ t:s~(t) > a ~ be the

right-continuous inverse local time. By a well-known result of

P. Levy we have the P - equivalence (M(t) - B(t), M(t)) _

s+(t)), so that in particular T+(a) is a stable process

of exponent 1, 2 equivalent to the inverse maximum M-l(t).
Lemma 1.1. For x > 0 and ~ > 0,

E x exp - -BJ r 0 T+(o) I ( X ~ ’ ~~ dt = (1 + x ~ ) . -1 °

Remark : By use of tables, this is the transform of

( 2x 2 ~ry) ~ - - (x~ exp - z~ dz, 0  y.

2x 
’ o 2x

Proof. Although this result is quite certainly known,

we will use a method which introduces the sequel. We note first

that T+{o) is equal P - a.s. to the passage time to 0. Now

for Px, the process s+(T+(o), y) is a Markov process in the

parameter y ~ 0 with continuous trajectories. In fact, in

o  y  x it is the diffusion with generator z d2 + d, while
_ _ 

dz dz

in (x, p) it is the diffusion with generator z d 2 , in accord-

ance with [3, Theorem 2.2~,~ In particular, if s~(T’*’(0), x) - ~
is given (~ > 0) then

0 ~ (o) I{x~a) dt = 2 x " s + (T + (o)~ Y) dy,

* 
In the introduction to [3] the factor 4 should be 2, and

in Theorem 2.2, line 2, a~) should be as in line 14.
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which is Px-independent of and has the same distribu-

tion as 2 J f o s+(T+(~), y) dy for P. Setting s (t, y) =

l 2 t0 I(-~, y) (B(s)) ds (the local time of B(t)) and

T(P) = inf {t:s(t, 0) > P r, , this is P-equivalent to

2 y) dy. To see this, we recall [2, 2.11] that a

process equivalent to |B| may be constructed from B by deleting

the set -{ t : : B(t)  0 and telescoping the remainder of the
time axis to restore the continuum. But since we have

T(P) = 2 ~0 s(T(03B2), y)dy + 2 / p0 s (T(03B2), y)dy,
J 0 ~-M

where the two terms on the right are independent and identically

distributed, their Laplace transform is ([2, p. 26])

(E exp - x T(P))~ == (E exp - BT~(2p))~
= (E exp - ~,M_1 2~ ~
= exp - 

But, finally, the distribution of s+ (T+(o), x) for PX is the

same as that of s (T (0), x) for Px, which is known to be

exponential, with density x 1 exp - ~x 1 [3, p.~~]. Thus, the

transform of the Lemma is given by

Ex exp - 203BB ~x s+(T+(0), 03B2) d03B2 = ~0x-1 exp - 03B2 (x-1 + 203BB) d03B2

= (1 + x203BB)-1.

Using this result, we next establish

Lemma 1.2 . . E exp -x / pT+(a) =

exp - a  (1 + a ~) -1,
Remark. This transform can be inverted explicitely in terms

of the Bessel function II by using [1, Chap.XIII. 11, Exercise 13]

to introduce The result is complicated.
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PM2f. Since = 0 a.s., the sojourn times
n

I(a, ~)(|B(t)|) dt are independent and identically

distributed 1 ~ k ~ n. With probability one, there is for

large n at most one return from a to 0 in each such interval.

Finally we have P { max |B(t)|  a } = exp - 03B1a-1, since

s (T (a), y) for P is the diffusion with generator z d~
d~

and initial value a, which is killed before y = a with

probability exp - [3, Corollary 1.2]. Combining these

observations with Lemma 1.1, the desired transform can be

written as

lim f (1 - exp - a(na)’~-) (l + + exp - 1 
"

M 2014~ eo L J

= lim J ((l + a~/2x’)~ -. 1) + l 1 ~n -~. ce L J

= lim ) 1 - n~ a ~(1 + a ~x’)’~- ~ ~n -~ « L J

= exp - (1 + a~?x)’~-, as asserted.

Theorem 1.1. For Borel measurable f(x) ~ 0,

~~’’Jo ’(f(s"(t))~) C~’)’) ~

== exp - J / p 0 a (1 + ~ f(x))’" dx 3 B > 0, a > 0.

Proof. Suppose first that for constants c ,

f(x) = c~ for (k - 1)  x ~ 1 ~ k ~ n.
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Then since is a stopping time with

P ~ =0~=1, and s~(t) is a strong additive
functional of B~(t), the strong Markov property yields

~(s~(t))~) 

=n.=i _ n 

~ (1 + 

= exp - ~/~ f (1 + f(x) ~x)’~ dx.
For the general case, we need only remark that, by

the monotone convergence theorem, passage to monotone limits in

f is justified on both sides of the equation. Hence the asser-

tion is valid for the monotone bounded closure of the non-negative

step functions. Since this clearly contains the indicator

functions of disjoint finite unions of intervals, it also contains

the Borel indicators. But it is not hard to see that the closure

is likewise closed under linear combination with non-negative

coefficients. Hence it contains the non-negative Borel simple

functions, and the assertion follows.

Remark. For given a > 0, we note that the theorem involves f(x)

only for 0  x  a.

We now obtain the main result for single boundaries as

Corollary 1.1. For any continuous x, we have for

a > 

0, ~ > Eexp-x~ 0 x ~"~ 
1~ (B(t))dt

= 03B10 (1 + 203BB (x - g (x))-1 dx,
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where M" 1 (a) is a.s. equal to the first passage time to a.

Proof. We have
- ---- 

’(-’ S(M(t))) 

" ’(M(t) - s(M(t)), -)~~) - B(t)) dt.

Now, Levy’s equivalence (M - B, M) = s ) reduces Corollary 1.1

to Theorem 1.1.

Let us state three simple examples.

Example 1.1. Letting g(x)=x for 0 x  c and = c 

E exp - 03BB M-1(03B1)0 I(-~, c) (B(t)) dt

= r(exp - ~2B c)(l + (a-c) ~2B) -1 if 0  c  a,
" 

~(1 + ~2~ c)(l +~2~ (a + c))’~ if c  0.

Example 1.2. For c-,~1 and 

E exp - 03BBM-1(03B1)0 
M (a) 

I(-~, c1 M(t) - c2)  (B(t)) dt

= (1 +aV2x(l - +~2B c~)"~)’’~"~l) .
Example 1.3. For 0 and 

cM~(t))(~~) "
1

= 

I 
+ (1 - 4c203B32 - 2ca) |2c03B1, where

4c~a - (1 - 4c y - 2ca)

y= /cV~~ +4c~~ . In particular, for c=a=l this

~ 4c~~2x/
reduces to /2~-1 ~ , 

where -y = ~ ’/2x + 4 ~ 
~ ,-

~2Y+ 1 ~ B 4~2x/
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One general consequence of Corollary 1.1 which seems

of interest is the following:

Corollary 1.2. For 

or 0 according as f f____1___t dx ~ or =**.

Proof. Since the finiteness of total sojourn is a

tail event of B(t), and B(t) satisfies the 0-1 Law as t -"~

(by use of the equivalence B(t) = t B(~), for instance), we conclude

that the probability in Corollary 1.2 is always zero or one. Then

the assertion fol ows from Corollary 1.1 by letting a and

B -0. By applying this criterion, we obtain easily

Example 1.4. The total sojourn in (-co~ is

a.8. finite for c > 1, infinite for 0 ~ c ~ 1.

Another general result, even more easily derived,is

Corollary 1.3. For fixed a > 0, and Borel measurable

g(x) ~ x, 0  x  c~ 

P ~f B(t) ~ g(M(t)), 0  t  M~ (a) 1 = exp -f o (x - 
Proof. Let x - GO in Corollary 1.1.

Section 2. Two and Three Intervals.

Continuing the notation of Section 1, let

~(o. ~~ a s+ (~(a). y) dy.

and similarly yea) = 2 ~ r~ s’(T + + (a), y) dy.

The counterpart of Lemma 1.2 for the two intervals (o, a) and

(a, w) is given by
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Lemma 2.1. E exp - (xX(a) + 

= exp - {03B1203BB (03BB tanh 03B1 203BB + )} .

Proof. The Laplace Transform in x of the density of

X(a), conditional upon 2s (T+(a}, a} - ~ > 0, is given by

[4, Theorem 2.2] in the form (after trivial adjustment)

3 1 cosech J1 ( 2i cosech 
,

(03B2) ip0 (a;2a, P) exp ((2a +03B2) Vx cotanh 

where Po(a; 2a, ~} is the density of 2s (T (a)~ a).

When ~ > 0 is given, X(a) and Y(a) are independent and the

latter has transform exp - P ~~ ~ as seen in the proof of
Lemma 1.1. Finally, we have

P - s+(T+(a), a) = 0 ~ = exp - aa-1 , and conditional upon

this event, Y(a) = 0 a.s. and X(a) has transform

exp cotanh a as given by [~, Theorem 2.1~.

Combining these observations, and integrating term by term the

series obtained by cancelling p0 
and substituting

- 1+2j

J~(x)= ~ _ -1 ~ (x~2} ~ 

, we have
1 ~ 

(2.1) E exp - (BX(a) + exp - cotanh 

+ ~0 (03BB03B1 03B2)1/2 cosech a203BB J1(2i 03BB03B103B2 cosech a 203BB) exp -03B2  2 d03B2
0 # 

i exp((2a + 03B2) 03BB 2 cotanh 

= ( exp - cotanh exp 2 ax cosech2 a 203BB .

 + 03BB cotanh a 203BB

This reduces easily to the assertion of the Lemma.
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It now follows exactly as in the proof of Theorem 1.1

and Corollary 1.1 that we have

Theorem 2.1. For Borel measurable f(x) ~ 0,

E exp - (x r~") , f(s~t))) CB(t)!) dt

" ~o’ " ’(f(~(t)), -) ")

a

=exp-BT2xf 03BB tanh 203BB f(x) +  dx; 03BB,  > 0.
0 

Corollary 2.1. For Borel measurable g(x) ~ x,

E exp - ( 03BBM-1(03B1)OI(g(M(t)),03B1)(B(t))dt + M-1(03B1)O I(-~,g(M(t))(B(t)) dt)

= exp - 203BB03B103BB tanh 203BB (x - g(x)) dx.
~ ~ tanh’~2~ (x - g(x)) +~B

As a first example, we can treat the case of a constant

boundary.

Example 2.1. For g(x)= c ~ 0 in Corollary 2.1, we obtain by direct

integration (setting y = exp 203BB (x - c)) the expression

~ 
sinh 

To obtain the formula of Taylor [5], we need to apply

the following extension of Corollary 1.3:

Corollary 2.2. E ~M’~(a)3 B(t) >. g(M(t)), 0  t  J
= / 

~ 

cotanh.~203BB (x-g(x)) dx.

proof. We first replace ti by x + p. in Corollary 2.1,

and then let  ~ ~.
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Example 2.2. (Taylor [5], Williams [6]). For c > 0, let

Tc = inflt: M(t) - B(t) > c ). Then E exp - + VM(Te))
= 6 [ 6 cosh Be + v sinh 6C]-1; 6 = ,~~ v ~ . B cotanh 6c.

Remark: This is the expression (1.5) from [6]. As noticed there,
the general case of [5] follows from this by using the Cameron-Martin
formula.

Proof. We first invert this transform in v with ~

fixed, to write equivalently

(2.2) E f exp - a J
= (cosh sc) 1 exp - (as cotanh c 6)
= E f exp - M(t) - B(t) ~ c, 0  t  T~(a) 1

Now since is a stopping time with a = it

is seen that the last expression in (2.2) becomes

(2.3) E L exp - ~M’~-(a); M(t) - B(t)  c, 0  t  1
. E (exp - 

Substituting g(x) = x - c in Corollary 2.2, the first term of

(2.3) is exp - a 6 cotanh c 6 . The second factor is well-known

to be (cosh 6 (see for example [2, Section 2.6, Problem 2]),
hence the derivation is complete.

Example 2.3. For 0  ~r  1 and c, a  0,

E I exp - aM-1(a); B(t) > yM(t) - c, 0  t  1
= sinh 203BB c sinh 203BB (c + (1 - 03B3)03B1)1 1 - 03B3

Proof. By Corollary 2.2 with g(x) = yx - c.

We proceed next to the case of two boundaries and three

bounded intervals. Except for an inevitable increase of complexity,

this reduces directly to the former situation. For 0  a  b, we set
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X = X(a,b) = 2 a0 s+(T+(03B1), y) dy,

Y = 2 ba~ s+(T+(03B1), y) dy, and

Z = 2 b s~(T’’(a), y) dy.

Now by the Markov property of s+(T+(a), y), we have from Lemma 2.1,

E exp - (~X + vZ)
= E f(exp -XX)(E(exp - (~,Y + vZ) ( s (T (a) ~ g) ) ]

tanh (b-a) ~ + 

This simply has the effect of replacing the factor exp - 03B2  2
in the integrand of (2.1) by

tanh (b - a) ~~, , or in other words of

~ 2 ~ ~ tanh (b-a) ~~2iI + ~ 7
substituting a different value of ~, in the right side of Lemma 2.1

In short, we have

Lemma 2.2

E exp - (aX + ~,Y + vZ) = exp - ~j a ~ tanh ,~ 
~ ~ tanh 

where ~~ _ ~~, f~, tanh ( b - a ) ~ + ~v .4lv tanh (b - a) + ~~, /

As before, we have immediately

Theorem 2.2. For Borel measurable f2(x) ~ f1(x) ~ 0 ,

E exp - (03BBT+(03B1)0 I(0,f1(s+(t))
|(B(t)|dt +  T+(03B1)0

I(f1(s+(t)),f2(s+(t))

= exp - + dx, where

0 
tanh %§ fl(x) 
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03B6(x) =   tanh (fg(x) - 2  + 

B~v v tanh (f~(x) - f~(x))~/2u’+~/
Similarly, we have

Corollary 2.3. For Borel measurable x,

(B(t))dt

~ I 
(gg(M(t)), (B(t)) dt

+ v I 
( ..... , g2 ( M ( t ) )) 

(B ( t )) d B )
o 

a 

03BB tanh 203BB (x - g1(x)) + 03B6(x) dx,

- 03B6(x) tanh 203BB (x - g1(x) + 03BB

where =  tanh (g1(x) - g2(x)) 2  + 
.

B~ tanh (g~(x) - g~(x)) ~ + ~i /
As a first example, we can obtain the result quoted

in the introduction.

Example 2.4.

E exp - 03BBM-1(03B1) I..(B(t))dt = 1 - b 203BB tanh (b - a) ;
~0 ~ ~ ~ 1 + (a - b) V~ tanh (b - a) VS~

a  b  0.

Proof. In Corollary 2.3~ we = v ~0~ and then

replace ~ by ~. With gp(x) = a and = b, we are left with
a

~/~tanh (b dx, which is
~ (~f5~ tanh (b - a) ~2~)(x - b) + 1

integrated by an exponential substitution to give the result.
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For a second example, we observe that if we let

v -.~ in Corollary 2.3 with -~ ~ 0, we obtain the

joint Laplace Transform in (a, ~, ) of the sojourn times in

(g-(M(t)),a) and (-~, for the Brownian motion

killed at both a and -~, over the set where this killing

occurs at a. In this way we can obtain, for instance,

Example 2.5. For T(a,~) - inf t:B(t) - a or -~ , -~  0  a,

E -’ ~J pT(a,P) 1(~0)~~)~~ B
= + where

I a, ~, ~ , ~, ) = 47x (~~ cosh + ~~, sinh 

Proof. We set 0, g2 ( x ) - -~, and let

03BD ~ ~ in Corollary 2.3 to obtain

exp - f J/x tanh x + 03B6 dx, where 03B6 =  cotanh (03B22 ).
0 f ~ tanh x + f’~

The integral is evaluated by setting c = 0 and replacing 47m

by ~~ in Example 2.1. This yields I (a,~,7~,~,) for the

contribution over the set where B(t) reaches a before -~.

The other term is obtained by the obvious symmetry.

As a last example, we extend the formula of H. M. Taylor

(Example 2.2) to the joint sojourn times within two intervals of

M(t), for the process killed when M(t) - B(t) reaches c. It is

thought, with reference to the stock market application of [5],

that this might have a bearing on the question of when to "sell

early."

Example 2.6. In the notation of Example 2.2, for 0  a  c we have



442

(2.4) E exp - (03BBTc0 I(M(t) - a, M(t))(B(t))dt

"~’ I(M(t) -c. M(t) - 
= ~2~T f (~ sinh sinh (c-a) ~~T

+ ~ cosh a ~2~ cosh (c-a) 

+ 03BD(03BB cosh a 203BB sinh 

+  sinh a 203BB cosh (c - a) 2 )]
-1.

Proof. We proceed as in Example 2.2 to obtain the

inversion of the transform in v~ integrated from a to eo.

The same argument as there shows that this factors into

A . E [exp - (" I(M(t) - a, M(t))(B(t))dt

~J, ’(M(t)-c.M(t)-a)~(~); ~

M(t) - B(t) ~ c, 0  t  T~(a) j ,
where A is (2.~ with ~ = 0. Now the last factor is obtained

from Corollary 2.3 by setting = x - a, g~(x) = x - c,

and letting 03BD ~ ~ . Since lim 03B6(x) =  cotanh2 (c - a) 2 ,

this leads to the expression

exp - 03B1203BB 03BB tanh a + cotanh (c-a) 2 ).

cotanh (c-a) tanh a ~2~ + -~ /

Since A does not involve a, we can introduce the transform

variable v of (2.4) by differentiating the above and then
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forming the transform in v. This leads to an expression with

denominator given by the bracket on the right of (2.4)~ and numerator

(2.5) J~ (VB sinh sLnh(c- a)’/2~

Turning to the factor A, by Lévy’s equivalence

M - B = )B) we have

A = E exp -( / I(0,a)~~~~ ~ I(a,c)~~~~J ’ B ’

with T(-c,c) as in Example 2.5. Letting A(x) denote the same

expression with E in place of E (A = A(0)), we can easily

compute A(x) by the method of [2, 2.6]. We write A(x) = 1 - F(x),

where F is the continuously differentiable solution on (O~c) of

(1 2 d2 dx2 - f1) F = -f ; f(x) = 03BB I(0,a)(x) +  I(a,c)(x),
with F(0) = 0 and F(c) = 0. Then we set

F = ri 
+ c., cosh a x for 0 ~ x  a

"1 + Cp sinh (c - x) + c~ cosh (c - for a ~ x ~ c.

From F(c) = 0 we have c-, 
= -1, whence using continuity of

F’ at x = a to eliminate Cp we obtain finally

e =-  ( (x sinh a 203BB sinh (c - a) 2  +  cosh a 203BB

Evaluating A(0) and multiplying by (2.5) now completes the proof.

Addendum

An interesting application of Example 1.2 was brought to my

attention by Professor D.L. Burkholder. In Theorem 5.2 of [7], he

showed the existence of constants ~>0,0pl, such that if
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T = inf{t: B(t)  clri(t) - c2},

c 1  1, c~ > 0, then E TP/2 is finite or infinite according as

c 1 > - 03B2p or C1 -  - Sp. . Using Example 1.2 we will show that 8 P =

p 1-l. First we let ~. -~ oo to obtain

P{B(t) ~ c 1 M(t) _ c2~ 0 ~ t  M’~-(a)}

= (1 + a ~1_cl) c ) -(1_c 1 )_1"2

= P{M(T) >_ a }.

Differentiating yields the density of M(T) to be

c(1-c1)-12 (c2 + (1-c12)03B1)- (2-c1)(1-c1)- 1. Now it is shown in [7] that there

are constants cp and Cp such that, for

0  p  1, c P E 03C4p/2 ~ EMP(T) -  C 
P 

Since EMP(T)  ~ if and only

if p - (2-c 1 )(1-cl) 1  -1, or cl 
> 1-p l, the same applies to

E 
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