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THE Q-MATRIX PROBLEM 3: THE LEVY-KERNEL PROBLEM FOR CHAINS

by

David Williams

Part 1 Introduction (including a ’correction’ to [QMP2])

(la) Experts on Markov process theory will probably find this paper,[QMP3], ,

more interesting than either of its predecessors, [QMP1] = [6] and [QMP2] = [7].

Indeed, since chain theory will soon become f ar too difficult for me, this is a

deliberate attempt to persuade process-theory experts to take a more active interest

in chains.

This paper is largely independent of its predecessors. Martingale-problem

techniques will underlie much of our work, so that we begin a serious effort to

tie in the probabilistic side of the theory with the analysis of infinitesimal

generators. At the very least, this paper looks more like (say) spin-flip theory

than chain theory has tended to do in the past. In particular, we strive to work

with strong FELLER, stochastically continuous transition functions on compact

metric spaces.

That said, it is perhaps as well to emphasise right away (even before

discussing the LEVY kernel problem) some of the rather peculiar features of chains.

Let I be a countable set, and let fp(t)j be a transition function on I. . That

~P(t~~ is "standard" in CHUNG’s sense:

lim p..(t) = 1 (Vi) , ,
0 

ii

is taken to be part of the def inition of transition function. Further, we shall

deal only with transition functions fp(t)j which are honest in the sense that

P(t)1 = 1, , Vt y 0.

(1b) VIA RAY TO FELLER

When it comes to proving that a certain special ~P(t~~ has a strong FELLER,

stochastically continuous extension to a given compactification E of I, I find

myself unable to do this directly. I first show that the resolvent 



311 

of {P(t)} acts as a RAY resolvent on E and then show that E has no branch-

points. (Because we use the RAY property only as a stepping-stone, we need very

little RAY theory here. The very brief Chapters 1 - 3 of GETOOR [2] provide all

that we need.)

( lc) ’NATURAL’ INFINITESIMAL GENERATOR

A closely related ’diff iculty’ must also be clarified now. The space

Z = , where denotes the space of bounded functions on I , , is

independent of ~,, , and the closure Z of Z is exactly the domain of strong

continuity (at t = 0) of ~P(t~~ acting on B(I~. . The strong infinitesimal

generator A of has domain (independently of X) and, of course

= f, , Vf E Z. .

If we are to use the martingale-problem method effectively, we must abandon A

and instead work with the ’natural’ infinitesimal generator N defined

unambiguously on ~(N~ = Z via the equation

= f, , Vf E B(I~ . .

(The reader can easily check from the resolvent equation and the fact that

= f(i) (Vi) ,

that the map B(I) ~ Z is injective for every À; ; etc..)

It is important that if f E ~(N~ and X is a (nice) chain with transition

function {P(t)} , then- 

f o x(t) - t0Nf o X(s)ds
is a martingale (for every initial law). See Expose II of MEYER [4].

( ld) NEVEU’ s LEMMA

Let us recall one particularly good feature of honest chains. Suppose that

E is some given metrizable compactification of I. . Then the two properties:

P(t~ : B(I) - C(E) (Vt > C~ ; ; B(l) -~ > o)

are equivalent. This is an immediate consequence of Proposition 2 of NEVEU (5~. .

It will henceforth be used without further comment.
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(le) ) KOLMOGOROV BACKWARD EQUATIONS

Let Q be an I x I matrix satisfying

(DK~ : : 0 S oo 

(TI~ ~ ~ ~ ~° qii ~ (d i ~ .

Set

with D(&#x26;) consisting of those f in such that

(i) for each i , , the series def ining ~). i converges absolutely,

.

We know from that Q = P’ (O) for some ~P(t)~ if and only if the

condition

(N~: ~ n qbj ,  o0

holds. The main result of [QMP2] is the following:

THEOREM 1 (~Q~IP2~~ ) When (DK~ , , (TIE) ) and (N) hold, , we can choose ~P(t~~ )
with natural infinitesimal generator N satisfying N C ~,.

Theorem 1 is the result actually proved in [QMP2] though the result stated

in [QMP2] is the apparently weaker result with A replacing N .

Let us put [QMP2] right. Introduce the three conditions:

~ ~ c ~; 

(~,-~~R(~,~f - f , ’ 

The f act is that these three conditions are equivalent. What is obvious is that

(KBE) _> (KBE) => °

The proof that (KBE) => (I ~Q) beginning at the bottom of page 508 in [QMP2] is

f allacious but easily corrected. [[It is always true that

~ ~,gb(~,~ .
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Thus

b 

1 - ’

This estimate allows us to replace u = x b j (which is not necessarily in Z -

and certainl not in Z under hypothesis ) by (which is in Z)

and then let fJ. -~ The proof that => (KBE) 2 in is correct.

The equivalence of (KBE) , , (KBE) 2 and (KBE)g is now established. We

simply write (KBE) and say that X (or ) satisfies the KOLMOGOROV

backward equation if (KBE) holds.

The probabilistic significance of (KBE) is that when (KBE) holds, each

excursion from a point i of I will begin at a point of ~i~ . . Thus (KBE)

rules out both continuous exiting from i and jumping f rom i to a fictitious

state.

(lf) THE LEVY-KERNEL PROBLEM

We assume from now on that Q satisfies (DK) , (TIE) and (N). . In [QMP2], ,

we proved Theorem 1 by explicit construction of a chain X satisf ying (KBE). . What

makes Theorem 1 and its proof in [QMP2] unsatisf actory is that, however we choose

the parameters, the chain X of [QMP2] will make jumps from fictitious states; such

jumps are not controlled by Q. For example, topological considerations show that

that chain can jump from the bottom of the tree to the top.

What we would like to be able to say is that a chain X can be chosen to

satisfy (KBE) and also have the property that

(FLK) : : Q is the full LEVY kernel of X

in the sense that, almost surely,

’ 
=> E I , E I~ . °

The jumps of such a chain will be entirely controlled by Q in the sense of LEVY

kernel theory. (Of course, we are light-years away from a situation where the

transition function of X is uniquely specif ied by Q.)
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(lg) THE MAIN RESULT

The purpose of this paper is to construct such a chain X and further

arrange that its transition function has certain very desirable smoothness

properties.

THEOREM 2 We can choose satisfying (KBE) such that for some

metrizable compactification E of I , ,

(i) P(t~ : B(I~ ~ C(E) , ’dt > 0;

(ii) ~P(t~~ is strongly continuous on C(E~ ; ;

(iii) any (E-valued, HUNT) chain X with transition function 

satisfies (FLK).

Conditions (i) and (ii) imply that the domain Z of strong continuity of

~P(t~~ on B(I) is exactly C(E~. More significantly, they imply that the

strong generator A of ~P(t~~ is exactly DYNKIN’s characteristic operator on

C(E). . (See Theorem 5.5 of DYNKIN [1]). Property (FLK) therefore corresponds

to the fact that A is local at points of EB I. (See (4~~ . ~ The problem of

contracting tl to a generator by imposing appropriate boundary and/or lateral

conditions is of course the exact analogue of the problem considered by FELLER

under the assumption that all states are stable. Provided that we always

remember that "the process is the thing’, FELLER’s ideas act as valuable guides

in the present situation.

(ih) The experts on process theory to whom this paper is chiefly addressed

will, in the first instance, wish to see general principles rather than merely

another complicated construction, even though the construction requires much more

cunning this time.

Parts 2 and 3 collect together some ’theoretical’ lemmas which outline our

basic strategy. On the analytic side, we need the ’perturbation’ Lemma 3 which

guarantees that, under certain conditions, we can extend the LEVY kernel without

destroying the strong FELLER property.
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I had anticipated that it would be technically difficult to prove rigorously

that a chain constructed by a limiting operation has property (FLK). . It there-

fore surprised me that Lemma 1 provides all that is required.

This paper adds weight to the idea expressed in [8] that chains are essentially

one-dimensional because I provides a dense set of points each of which is

regular (for itself).

Part 2 A crucial lemma

(2a) TREE-LABELLING

I is said to be tree-labelled if I is labelled as the set of vertices

I = ~0~ U 11 U 12 U ... (where In = ... in : ’ il,i2,...,in E IN~~

of the tree shown in Figure 0. Figure 0 also illustrates a certain identification
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(described in a moment) of I with a certain subset of [0,1]. .

In Theorem 2, it is always possible to label I as this tree and to take

for E the ’compactified’ tree E = I 
, where

h : ... : ~ il,i2,... E °

Topology of E. . For i E I, , take K(i) to be the ’compactified’ sub-tree

(K(i) C E) with vertex i in the obvious way. We obtain the topology on E

(as in KENDALL [3]) by making the sets K(i) and their complements a sub-base

for open setso Then each K(i) is truly compact (and open).

For us, it is best to think of this compactif ication in a more down-to-earth

way. We shall regard the vertices of the tree as identified with a subset of

[0,1] via the identification

(1) Oili2 0.. in -> 03A3 2-(i1+i2+...+ik+k)

which preserves (reverses?!) lexicographic order. Then E is the compact

completion of I under the Euclidean metric p . . The identification (1) transfers

p to the tree.

Throughout Parts 2 and 3, we shall assume that I is already tree-labelled

as described. The symbols E, P , have the significance described above

and we write D(i) for the ’finite’ subtree with vertex i : D( i) == I U K(i). o

Note that i E D(i) . .

Note. The problem of how to label I is difficulto SEYMOUR’s labelling is

no longer suitable, though SEYMOUR’s lemma (Lemma 4 below) is essential as a

first step. The required perturbation of SEYMOUR’s labelling is very complicated,

and it is just as well that, for the time being, the manner in which I is

labelled does not concern us.

(2b) A USE OF RAY RESOLVENTS

We now come to the "crucial" lemma. 0 We write for the characteristic

(indicator) function of a set F.
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LEMMA 1 Suppose that is an honest transition function on I with

resolvent satisfying

(2) B(I~ ~ C(E)

Suppose also that for each i , , we can find a function fl in B(I) such that

(3.i) 

(3.ii) 1 on .

Then

(I) is a RAY resolvent on E ; ;

(II) E has no branch points, so that is strongly continuous on C(E~ ; ;

(III) if X is an (E-valued, HUNT) process with transition function ,

then, almost surely,

Vi , Vt , ’ E K(i) , E EBK(i)) => = i~ ~ 0

proof (I) Let fi = f+ - fl be the decomposition of fl into its positive

and negative parts. From (30i) we see that the family

: i E IJ

of continuous 1-super-median functions separates points of E. This fact

(together with (2)) implies that is a RAY resolvent on E. .

(II) Let be the RAY transition function on E associated with 

as described in Theorem (3.6) of GETOOR [2]. Since = R(l, it follows

f rom (3.i) that

~) xK(il (di~ . °

It is an immediate consequence of (4) that P is the identity operator. Hence

E is free from branch points, and for f E C(E~ , ,

XR(B)f - f (B too)

both in the pointwise sense and, by a well-known argument, in the norm of C(E). .

The classic al HILLE-YOSIDA theorem now implies that

Pt : C(E)

and that is strongly continuous on C(E~ . . Since P(t) : : B(I) - C(E) for
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t > 0, , we c an now conclude that in the obvious sense and that

(therefore) £P(t~~ is strongly continuous on C(E). .

(III) Let X be an (E-valued, HUNT) chain with transition function ~P(t~~ . .

Let ~ E K(i)B , and set

inf f t > 0: X(t) E i U (EB K(i)) 1 . .

By DYNKIN’s formula,

1 = = )

= E03BE UO e-tfi ° x(t)dt + E03BE [e-U;R(1)f1o X(U)]

= E 1- e ] + E03BE[e-U;~K(i) ° 
,

f rom (3). . It is therefore obvious that

P~ ~U  i] = 0 . .

I t is now straightf orward to f inish the proof of ( I I I } . .

Part 3 Establishing the strong FELLER property.

(3a) ) A ’PRACTICABLE’ ’ SUFFICIENT CONDITION

In Part 3, we concentrate on I and E as subsets of [0, 1]. . Statements

like " i > j" ref er to the natural order of [0,1]. .

If ~P(t)~ is a transition function on I, , we write or for

the resolvent of ~P(t~~ . . We write X for an associated chain and T. J . (j E I)

for t he hitting time of j by X. . (Technically, it is best to choose X to be

a RAY chain, but as we are interested only in behaviour on I, , we can, if we wish,

choose X to be (say) a right-lower-semicontinuous chain of the type found in

CHUNG’s book.) )

LEMMA 2 Let fp(t)l be a transition function on I such that

(5) EiTj ~ 03C1(i,j) (~i,j ~ I : i > j) .

Then

R~ : B(I~ -~ C(E). .

Proof For f E B(l), , DYNKIN’s formula gives
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T

(6) R~f(i) - = o x(t)dt - I

so that

2X"~[l-E’-e 
-X 

2!!f!)E~(T.).
Hence, by (5), R.f(’) is uniformly continuous on I and so extends to a

continuous function on E .

(3b) A PERTURBATION RESULT

LEMMA 3 Let Q be an I  I matrix satisfying (DK) , (TIS) and (N) . Assume

that the conclusion of Theorem 2 is valid for Q with E the given compactification

o~ I , and let and X be appropriate entities satisfying this conclusion.

Let V = (v..) be an I  I matrix satisfying the conditions:

0 ~ v  oo (V i ,j : i 4= j) ,

v( i) = -v.. = Z v..  oo (Vi) .
~ 

Assume that

(7) RB~) ~ ~ (~ ~ ~)

(recall that 0 ~ l) and that

(8) 03A3iTjo v (xs) ds ~ 03C1 (i,j) (~ i ,j : i > j) .

Then the conclusion of Theorem 2 (with the same E and with appropriate

{P(t)~ and X) is valid for Q.

Proof We construct X by extending the LEVY kernel of X by V in the usual

way. Expand the sample space so that in particular it carries a variable cr
(the first ’new* jump time) such that

(9.i) P[d- >t!x] = exp [- Jo vo x(s)ds].
Let X agree with X up to and arrange that

(9.ii) P[X(~)= j t X(~-) = i] = (j =H) ;

and so on. That the right-hand-side of (9.i) makes proper sense is easily checked

from (?) and (s), as is implicit in the analysis below. The analysis also implies
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that the ’new’ jump times ~’1,~2, ... of X satisfy o- __ limo- = oo (almost

surely). .

It is clear that we must make precise sense of the f ormal equation

(10) ,~ - ~ + V .

The operator V on B(I) ) induced by the matrix V is generally unbounded.

However, hypotheses (7~ and (8) imply that R~V extends to a bounded operator

on B( I ~ ) and that

( 11) 0 a s ~. -~ oo . .

To begin the proof of (11), , look at the matrix R~V and estimate (the

notation is self-explanatory)

I = 
’

whence

(12) ~ S = 2R~v(i~ . °

From (6) (with f = v ~ 0) and (8), , we see that

(13) > > + p(i,j) > (Vi,j: t i > j). .

It now f ollows from (7), , (12~, (13} and the well-known DUNFORD-PETTIS result

i

that

(14) ~R03BBV~ ~ 2 sup R03BB v(i) ~ 2R03BB v(o) + 2  ~

By monotone convergence, as , for each i. . There is obviously

enough ’equi-uniform-continuity’ in property (13) to allow us to deduce that

sup R03BBv(i) ~ o (03BB ~ ~).

Because of (l4), , property ) is therefore proved . .

Set 
OO

R-v03BB
f ( i) ~Ei0 [exp {- 03BB

t-tov o X ( s) d s} f o X( t)] dt
and let {R03BB} be the resolvent of N X . . If we regard v both as a function on

I and as the operation of multiplication by that function, then the FEYNMAN-KAC

formula gives (see, for example, Theorem 9.5 of DYNKIN [1]) )
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( 15) RÀf = R~f - 
By (14) and FUBINI’s theorem, , interpretation of R).vR.. f is unambiguous. . Next, ,

there is an obvious probabilistic interpretation of the formula

(16) 

where V denotes the positive off-diagonal part of V. . Again, (14) makes

interpretation unambiguous. . From (15) ) and (16), ,

[I + = R~ + R~V+ R~ , ’
or equivalently,

(17) ) _ _A _ R~ _ ,

which is the precise interpretation of the formal equation (10). . If X is so

large that ~R03BBV~  1 (see (11)), , then equation (17) ) has the unique solution

03BB = R03BB + R03BBVR03BB + R03BBVR03BB VR03BB + ....

As a minor consequence, we see that (for large X) 03BB03BB1 = 1 , , so that 03C3~ =00

almost surely.

A more significant consequence of ( 11) and 17) is that

(X - oo) . .

Hence, , for f E B(I), , the statements

( 18. i ) f (~, -~ oo)

( 18 . i i ) f (X -~ oo)

are equivalent. However, since fp(t)l is assumed to satisfy the conclusions

(i) and (ii) of Theorem 2, , property (18.i) is equivalent to the statement

(18. iii) f E C(E). .

Hence C(E) is the closure of for each ~., , and it is now clear that

{P(t)} satisfies conclusions (i) and (ii) of Theorem 2.

That X inherits the FLK property f rom X is obvious.

Part 4 Proof of Theorem 2

(4a) SEYMOUR’ s LEMMA

We wish to reduce the problem of proving Theorem 2 for a general matrix Q

satisfying (DK), , (TIE ) ) and (N) to that of proving a somewhat stronger result
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for a special type of matrix Q ’near’ to Q. . The ’strengthening’ of Theorem 2

for Q is of course exactly that needed to allow us to transfer Theorem 2 from

Q to Q via (a slight extension of) Lemma 3. .

LEMMA 4 (P.D. SEYMOUR, . Suppose that Q I x I matrix satisfying

(DK), (TI03A3) and (N) . . Then I may be tree-labelled in such a way that

Q = Q + V,

where

O ~ vij  ~ (~i,j: i ~ j) ,

v(i) ~ -vii = 03A3 vij  ~ (~i) ,

and Q satisfies (DK) , (TIZ) (N) and

(Q E S I) : . q.. > 0 => j ~ S(i)
where S(i) denotes the set of immediate successors of i in the tree.

(4b) BASIC STRATEGY

We may now consider that our basic ’data’ are represented by the following

set-up:

(i) a fixed tree-labelling of I for which denotes the set of

immediate successors of i ; ;

(ii) a matrix Q satisfying (DK~ , , (N~ and

(Q ~S~): qij > o => j ~ S(i) ;

(iii) a function v : : I ~ [O,~).

The point is that the perturbation Q ~ Q = Q + V will be justified by criteria

which depend on V only via the function v. . See Lemma 3. .

We must construct a chain X which will settle Theorem 2 for Q and also

allow the Q -~ Q perturbation. As in [QMP2] we shall obtain the desired

chain X as a time-projective limit of chains ’ being a chain on

{0~ U I 1 U 12 U ... ° U In U In+1
for which states in are instantaneous and states in In+1 are stable. °
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The time-projective property of the sequence n = 0,1,2, ...~ is the

following: represents observed only while is in I[n," .
The martingale-problem method explains why this property translates neatly into the

language of inf initesimal generators.

(4c) DIFFICULTIES

We have carefully prepared the topology of I and E, , and also the

’combinatorics’ of labelling via SEYMOUR’s lemma. However, a moment’s thought

about the totally disconnected character of E will convince the reader that if

I is compactified to E via the given labelling for which (Q E S~~ holds, then

no right-continuous E-valued chain with A C ~, can satisfy (FLK~ . .

We are forced to relabel I, , and this will involve us in some heavy notation.

The new labelling will be obtained by making a very slight perturbation of the old

labelling. For the time being, we shall use ’stars’ to differentiate between the

labellings, but when the new labelling is firmly established the stars will be

dropped.

From now on, you should f rom time to time glance at Figure 1. . The labelling

in Figure 1 is the new labelling. You can see that certain old successors of the

new 01 have become new successors of the new 02. (It is obvious f rom the last

sentence that we have to give some thought to problems of notation. I hope that

what follows is reasonably clear.)

(4d) (TEMPORARY) NOTATION FOR THE RELABELLING

We shall use i* to denote the new label for the point originally labelled

as i. We shall write i for the old label of the point which is labelled as i

in the new labelling. (Thus *(i*) = (*i)* = i.) When a function is ’starred’,

it is to be understood that its argument is to be interpreted in the new labelling.

Let Q* and v~ be the descriptions of Q and v in the new labelling so

that

Q*(i,j) = Q(~i~~j)~ v~(i) - v(*i).

We must be careful however because sensible usage leads to

p*(i,j) = p(i,j);
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an equation = P(~i,~j~ would be absurd.

Let S~(i~ denote the set of immediate successors in the new labelling of

the point with new label i. . Since we are going to change the successor relation,

it will not be true in general that S*(i) = ~S(~i~~~,
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The new labelling will preserve 0 and will also ’preserve but permute

each level I . .
. 

n

(4e) THE MECHANICS OF RELABELLING

The kindest thing to do is to present the reader with the complete new labelling

as a f ait accompli and explain the motivation afterwards. Figure 1 is a helpful

guide to the (H~: 4) conditions.

It will be convenient (and it will cause no problems of ’circular’ arguments)

if we introduce the function the newly-labelled I as follows:

1 + v~(i) - 1 + v(~i) . .

We now proceed via a rather involved inductive method.

Take 0 = 0.

S(o) (= the old I ) ) is already labelled as ~01,02,03,...~. . Let I1
become S~(0) and hence be relabelled as ~01,02,03,...~ . . The only constraint

on the new labelling is that 
.

(HO ; l) > 0 .

Pick a function a on S~ (0) such that

’

(H*O : 3) (a*On)-103B3*On 03A3 Q*(O,Ok)  2-(n+2)

and also such that there exists a finite subset of such that

(H~ : 4) a~ = Q(~~~j) ~ ’

Now define

and f or m 2 2 , , define

W*(dm~]’) U .

For each m 6 IN , perform the following operations: choose a labelling of

S*(Om) as subject to the sole restraint:

(H~ ; l) > 0 ;

pick a function a on S (Om) so that
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( Hom ’ 2 ) 
(H*Om : 3)  2-(n+2) ,
and such that there exists a finite subset W(*Omn) of S(*Omn) such that

(H*Om : 4) a*Omn = 03A3 Q(*Omn,j) .
Proceed inductively in the obvious way.

(4f) DROPPING THE STARS

Let us now forget that the old labelling ever existed, drop the stars

(including those in Figure 1), , and summarise things as they stand in the new

notation.

We have the following properties:

(HO : ~ 1) > 0 ; 

(HO : 2)

(HO : 3) a-1On03B3On 03A3 Q(O,Ok)  2-(n+2) . ’

4) a0n = ~ 
- 

§
jE S(On+1)

and the condition which replaces the old (Q E S~) : :

(HO: 5) Q(0n,j) > o => j E s(on) U o

The general form of k) (i E I ; ; 1 ~ k ~ 5) is (I hope!) ) now obvious.

(4g) THE CHAINS .

(E,p) is the compactification of I derived from the new labelling. Let

I[n] = ~0~ 

("in the new labelling’ is now understood). . Then is a compact subset of E .

Figure 1 suggests that we choose for Xr i a strong FELLER, stochastically

cont inuous chain on -j with natural generator i def ined as follows:

( 19. i) J~ E 1 i E 

f(i)]
for i E In+1 ’ ; the domain D(N[n]) of is exactly the set

of those f in such that
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for each i in I[n-1, , the series at (19.i~ converges absolutely,

(19.iv) 

That the choice of parameters guarantees the existence’ of such an Xn is

implicit in Sections (4i~, (4j~. That -. is an extension of the natural

generator of the chain described by the general form of Figure 1 follows f rom

results in [QMP2] . That i is exactly the natural generator then follows

because i satisfies the minimum principle:

0 at a global minimum of f.

(See Theorem 5.5 of DYNKIN (1~.~ Of course is obtained by restricting the

range of to fall in 

Note the intuitive idea that ’in the limit’ as (19.i~ takes the form

while help provide the boundary conditions.

(4h) TIME-PROJECT IVE PROPERTY

Suppose throughout (4h) that for some n, the function f in (19~ depends

only on the first n coordinates: that is, f is constant on i U for each

i in I. Then
n

0 on In+1 ’
on I~n-2] ~

and for i = Oil i2.. in ~ In’

because of (H: 5) and the consistency condition (H: 4). Thus, in an obvious

sense,

0 on 

= on 

That these conditions correspond to the time-projective property has long been

known. The reader might care to provide himself with a martingale-problem

explanation.

That we can arrange the time-projective property in the sample-path sense is

perhaps best seen by utilising excursion theory in the manner described in [QMP2].
We assume this done.
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(4i) PROJECTIVE LIMIT

We can establish the existence of a projective limit chain X which ’time-

projects’ onto each by FR,EEDMAN’s method. 0 The point is that conditions

(H : 1) and (H : 3) (and the fact that 03B3 ~ 1) imply that X is irreducible,

positive recurrent with totally-finite invariant measure ~ satisfying

2-(n+2~,
Similar arguments abound in (Q,MP1,2~.

(4j) USE OF LEMMAS 2 AND 3

For j E I, define

= T02 0 ~~ ° ° X(s)ds = o 

Then

~j > 0 => j E DOl U (D~B~02D.
Recall that Di is the subtree of i with vertex i. If jn denotes a typical

element of S( j~ , then elementary calcul’ations (performed in show that

~i. J 2 (n+2~
from (H : 3) and the fact that ~y J 1 S 1 . Hence, for j in D U (D02~ ~ 02~ ~ ,

2 ~ j , whenc e 2 a j .

Thus

EO1TO2O 03B3 o X(s)ds ~ 203B2O1 + 2 03A3 03B2O2n ~ 203B3O1a-1O1 + 2 03A3 a-1O2n ~ 403C1(O1,O2)

by (H : 2~ . The same argument clearly gives for every i in I,

(20) Ein
Tin+1O 

03B3 o X(s)ds ~ 403C1(in,in+ 1).

Now let i, j E I with i > j in the [0,1] identification. Then (20) and

some obvious additive properties imply that

EiTj003B3 o X(s)ds ~ 403C1(i,j)

if i is not higher than j in the tree. If (i > j in the [0,1] identifi-

cation i is higher than j in the tree, let k be the unique element level

with i such that j E D(k) ; then
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. Tk . Tk

E1Tk0 03B3 ° X(s)ds + EjTk0 03B3 o X(s)ds ~ 1603C1(i,j)

by simple geometry.

Since , the proof of Lemma 2 applies with trivial modif ications to

show that the resolvent of X satisfies

B(I~ -~ C(E~ . .

Since v, , the proof of Lemma 3 applies with trivial modif ications to show

that once we have proved Theorem 2 for Q, , we can deduce Theorem 2 f or Q. .

(Condition (7~ is easily verif ied in the present situation.)

(4k) USE OF LEMMA 1

The resolvent of X has already been shown to satisf y condition (2). o

To show that condition (3~ is satisfied, we must show that f or each i in

I there exists f~ in B(I) with

R(1~f1 - on I : 1 on .

Write > 
for the restriction of . Then ( see ( 19 ~ ~ > for

n ~ m , X~)~~(~) ~ and

R[n](1)fi[n] = ~[n]D(i), where fi[n] ~ (1-N[n])~[n]D(i) .

Note that for n ~ m, ,

" ( ~ 1 on n (D(i~ ~ ~ i~ ~ ~ ’

Set fi(j) ~ lim fi[n](j) so that fi = 1 on D(i) ~ {i} .

If we extend R[n] to B(I) via

= ,

then 
(dn~ . ’

However, it is standard (and very easy to prove from (32), , page 518 of [QMP2] and

SCHEFFE’s Lemma) ) that

lim 03A3 | R[n] (1;j;k) - R(1;j;k)| = o, ~j.

Hence condition (3) of Lemma 1 is satisfied:

(21) R(1)fi = 
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that f 1 - 1 on D( i~ ~ ~ , we already know. The conclusions of Lemma 1

therefore apply to X. .

The argument of [QMP2] shows that X satisfies (KBE). . All that remains

is to show that X satisfies (FLK). . Suppose that (FLK) fails, so that (for

some initial law)

~ I X I~ > 0 .

Then (by (KBE) and obvious topology) for some i, ,

P!3t: E K(i)B I ; E EB > 0,

so that 3 j E D ( i ~ ~ ~ i ~ such that

hits before i~ > 0 .

Conclusion (III) of Lemma 2 rules this out.

Theorem 2 is finally proved.

Note that the main point of the approximation argument leading to (21~ is to

show that XD(i) E ~(N~ , , whence (recall that N C$~~

X(t~ - 0 ~~D(i) ~ X( s)ds

is a martingale. One can use this f act to rephrase the proof of part (III) of

Lemma 1. .

(41~ THE BOUNDARY CONDITIONS FOR A

The coup de grace for our chain X is delivered by the very simple exact

formula for its strong generator A .

For f ) and i E I, , we must have

(22.i) (Af)(i) = E 1 q..[f(j)-f(i)]
If 03BE = Oili2... ~ I~, ’ write 03BE(n) = Oili2... in . ° Then, for f E D(A), ’ DYNKIN’s

formula and condition (III) of Lemma 1 imply that

(22.ii) (~f~(~~ - ° ~- f ° ~(n)] , ,
n

where bn(~~ _ (which may be explicitly computed without too much trouble).

It is clear that for f E 2)(~) , ,

(22.iii) the series defining Af(i) converges absolutely f or every i, ,
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(22.iv) the limit at (22.ii) exists for each ~ in 1~,

(22.v) ~f E C(E~. .

Rec all that we must have

(22.vi) ~(~~ C C(E~ . .

Conditions (22) may be regarded as specif ying a certain extension ,~ + (say)

of .A . . However, this operator ~ + satisfies the minimum principle. Since

{P(t)} is FELLER and E is compact, it therefore f ollows (Theorem 505. of

DYNKIN ( 1~ again) that A + = ~ . . Thus

(THEOREM 3) conditions (22) exactly specify the strong generator A (and its

domain) .
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