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PEDAGOGIC NOTES ON THE BARRIER THEOREM

by Kai Lai Chung*

Université de Strasbourg
Séminaire de Probabilités 1975/76

Let D be an open bounded set in Rd, d > 1; 3D its boundary.

Given z E 3D, a function f defined in D is called a barrier at z iff

(i) f is superharmonic and > 0 in D;

(ii) lim f(x)=0.
D D x - z

Let {Xt, t > 0} be the standard Brownian motion in Rd. For any Borel

subset B of Rd, let SB denote the first exit time from B: ,

SB = inf{t > 0: B}. °

D being fixed, we write S for SD below. A point x is regular iff

Px{S = 0} = 1; otherwise Px{S > 0} = 1 by the zero-one law.

Proposition 1. Let f be superharmonic in D and > 0 in D.

Extend f to D (= closure of D) as follows: for each z E 3D,

(1) f(z) = lim f(x).

Then for each xED we have

(2) f(x) ~ 

Proof. Let Kn be compact, Kn C (= interior of 

such that UK = D. Then
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(3) SK  S, 
n n

For each n, the process

(4) 

is a supermartingale for each Px, x E Kon (see Doob’s lecture notes1 for

the latest proof of this result ) . Letting t - oo and using Fatou’s

lemma, we deduce that

(5) )) } ~ x E K". .n "

Letting n -~ X(S~) -~ X(S) E hence by the extended definition of f

we have 
’

lim f(X(S)).
noo n

Since f > 0 in D, it follows from Fatou’s lemma that

f(x) ~ EX{ 1im f (X(SK ) ) } > 
noo n

This is true if x E KO, for every n; hence it is also true if x E D.

Proposition 2. Let Bl and B2 be two open subsets of Rd, Bl C B2’
Then for every z E D,

(6) f(X(SB 2 ))} "  
1 

 S; f (X(SBI)) } .

1. See p.7 below for an alternative proof that doesn’t use this result.
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Proof. Writing S. for S- , S2 for w-e have

 S;  S; f(X(S2))]}

(7) 

 S; AS))]}

because A S) ~ ~ and f ~ 0 in F. Now e B~ n D on {S~  S},

hence we may apply Prop. 1 with D replaced by D to obtain

= A S))].

Substituting this into the last term of (7), we obtain (6).

Theorem 1. . If there exists a barrier at z 6 3D, then z is regular.

Proof. Let f be the barrier, extend it to D as in (1). Apply

Prop. 2 with B, and B~ two balls centered at z. Suppose z is not

regular, so that > 0} = 1. Since as shrinks to z,

we may choose B~ so that

Since e D on  S}, and f > 0 in D, we have
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(8) EZ{SB2  S; > ~ .

Now fix B2 and let Bl shrink to z. Then z, and on SL

E D; hence 0 by property (ii) of a barrier. Replacing

f by f A 1, which preserves (i) and (ii), we may assume that f is bounded.

Hence by bounded convergence,

(9)  S; f (X(SB2) ) } -~ 0 .

The relations (6), (8) and (9) are incompatible. Hence z must be regular.

Remark. Theorem 1 is true for any continuous, strongly Marxovian

process in a nice topological space, provided that the definition of a

"superharmonic function" will imply (5) above. This is essentially Dynkin’s

generalization (see [1], p. 35 ff.). The observation that Prop. 2 follows

from Prop. 1 is due to R. Durrett.

Next, we define f in Rd as follows:

(10) f(x) = 

Proposition 3. f is bounded in Rd and continuous in D.

d
Proof. dt, t > 0} is a martingale, where IIxll2 = 2 x~.

Hence for any x E Rd and n > 1, 
.
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since is bounded we obtain

(11) = ~x~2.

The first term in (11) is the stochastic solution to the Dirichlet problem

for the domain D and the boundary function x ; Hence it is harmonic

in D and therefore is in C~(D); hence so is f.

Let B be an open ball with center 0 and radius r. Apply (11) to

SB we obtain

Ex{S } = 

Choose r so large that D C B. It ,follows that f  r2/d in 0, hence

in Rd because f = 0 in Rd - D.

Proposition 4. The f in (10) is upper semi-continuous in Rd.

Proof. Let Dn be open bounded such that D D D and ~Dn = D. °
Then for each x E Rd, we have

(12) Px -a.s.

For each n, define fn in Rd as follows:

}.
n

By Prop. 3, fn is continuous in Dn. It follows from (12) and the boundedness

of fl (by Prop. 3) that
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(13) f (x) , x E Rd.

The continuity of fn in Dn, the fact that Dn is an open neighborhood

of D, and the relation (13) together imply that

(14) f (x) _> lim f(y), x E Rd.
y~x

Theorem 2. Let z E aD and z be regular. Then the function f

in (10), restricted to D, is a bounded continuous barrier at z.

Proof. This function is superaveraging over surfaces of closed balls

in D, by a standard argument. It is bounded and continuous in D by Prop. 3.

Hence it is superharmonic in D by the usual definition. It is clearly > 0

in D. Since z is regular, f(z) = 0. By Prop. 4, we have

Tun f (x)  f (z) - 0
’ 

even if x is not restricted to D. Hence f is a barrier at z.

Remark. To generalize Theorem 2 to a continuous, strongly Markovian

process we need only to have Prop. 4. As its proof shows, it is sufficient

to have the function f in (10) upper semi-continuous in D. (This will

force f to be continuous in D if by "superharmonic!’ we include "lower

semi-continuous" as habitually done.) If X has the strong Feller property,

then at} is continuous in D. Since

xED,



33

the left member is upper semi-continuous. This is Dynkin’s generalization.

Here is the alternative proof mentioned on p.2 ( communicated by J.L.Doob ).

Let B(x) be the open ball with center x and radius half the distance
from x to bD . . Define T - 0 and let be the hitting time after Tn
of . Then T is optional and (X(Tn) ~ ~(Tn), n~0} is a Markov

process with stationary transition probabilities. The transition distribu-

tion from x is the uniform distribution on It follows trivially
that if f is positive and superharmonic the prooess {f(x(T )),~(T )} is
a positive supermartingale and that Tn--~ S a.s.. Hence 

By (1) this f is lower semicontinuous on D and so Fatou’s lemma gives (2).


