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0. Introduction: In recent years, interest has grown in the study of

Markov property for multiparameter stochastic processes ([12], [8], [9], [3])

motivated by work on the Markov property for the so-called Levy Brownian motion

([5], [7], [1], [2]). Unfortunately the general theory is not unified in

the sense that various definitions are proposed without showing their equi-

valence. In view of this situation, it seems natural to show equivalences

of these various definitions. In [4], F. Knight showed that in one-dimension

various other equivalent definitions of "germ-f ield" Markov Property are _

possible if such property is presumed to hold on each set of the class of

intervals {(O,t); t real}. In section 2 we give an extension of the work in

[4]. We show that in Gaussian case all definitions of Markov property coincide

with the one presented in [3].

We need the following definition and Lemma throughout the paper.

0.1 Definition ([6], p. 30 ). Let be a probability space and

A,B,G be sub-a-fields of F. Then A and B are said to be conditionally

independent G if P(A n B~G) = P(AIG)P(BIG) for all A E A and B E B.

0.2 Lemma ([4]). Let A and B be sub-a-fields of F conditionally in-

dependent given G.

(a) If G is a sub-6-f ield satisfying G ~ G ~ G v B then A and Bare

conditionally independent given G.

(b) G’ c (G v B) then A and G’ are conditionally independent given G.

1. Markov Property on an open set: Let be a probability space

and T be an open subset of Rn. Let {X, t E T} be a family of real (or

complex)-valued random variables on (5~,~,P). We associate the following

a-algebras with {Xt, t E T};

F(X:A) = for T;

1)Q{ } denotes a-algebra generated by { }.
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EX(A) _ F(X:A) if A is open subset of T;

E (A) = nZ (0) if A is a closed subset of A.

Here intersection is over all open subsets 0 ~ T containing A.

1.1 Definition (Markov Property). Let t E T} be a stochastic process 
.

defined on (S~,F,P). We say that it has Markov property on a subset A of

T if EX(A) and are conditionally independent given EX(aA), where

3A is (topological) boundary of A.

1.2 Theorem: Let {Xt, t E T} be a stochastic process and D is an open

subset of T. Then the following are equivalent;

(a) {Xt, t E T} has Markov property on D;

(b) F(X:D) and F(X:Dc) are conditionally independent given 

(c) F(X :D) and EX(Dc) are conditionally independent given EX(aD).
Proof: (a) implies (b) and (c). We observe that (b) is equivalent to

and F(X:Dc) are conditionally independent given

(1.3) for all open sets 0 containing 3D.

By Martingale convergence theorem we get (1.3) implies (b). To see the con-

verse implication we use Lemma 0.2(a) with G = F(X :0 n D),

B = F(X :D) and A = F(X:Dc) to get F(X :D) and F(X:Dc) are conditionally

independent given F(x:0 n D). Now choose G = F(x: 0 n D), G = 

and B = F(X:Dc) in Lemma 0.2(a) to get (b). Similar arguments show that

(a) is equivalent to

rE (D) and EX(Dc) are conditionally independent given 

(1.4) ~ for all open 0 containing aD

and (c) is equivalent to

and are conditionally independent given 

(1.5) ~ for all open 0 containing 3D.
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Now (1.3), by Lemma 0.2(b) with G = F(X :0), G’ = EX(D), B = F(X :D)
and A = F(X:Dc), we get EX(D) and F(X:Dc) are conditionally independent

given F(X :0) for each 0 containing 3D. Another use of Lemma 0.2(b) with

G’ = EX{Dc), $ _ F(X:D ), G = and A = EX(D) gives (1.4). To show

(1.5) implies (1.4) we use G’ = B = F(X:D), G = and

A = EX(Dc) in Lemma 0.2(b).

1.6 Remark: Condition (b) was used by Pitt [12] in his definition of Markov

property and condition (c) was used by Nelson [9].

2. Markov property on relatively compact open sets: We associate with a

stochastic process {Xt’ t E T} on the following family of sub-o-

fields of F. Let O~ denote the family of all open subsets of T con-

taining the boundary aD of an open subset D of T. Gl(aD) = n F(X :0 n D),

G2(aD) = D~), G3(aD) = n D), G4(aD) = n D~),
OEOa 

" 

OEOa 
" 

OEOa
G5(aD) = EX(aD). Also we introduce "past" and "future" fields 

F(X :D) and Fi(D) = F(X :D) (2  i  5), F~(D) = F(X:D) and F (D) =
F(X:Dc) (i = 1,3,4,5).

2.1 Definition: We say that {Xt, t E T} has "germ-field" Markov property (i)

(for short, GFMP(i)) if F.(D) and FBD) are conditionally independent givwn

Gi(D) {1  i  5).

We note that GFMP(5) is equivalent to the Markov property over each D.

2.2 Theorem. Let C denote the family of relatively compact open sets. Then

the following are equivalent

(i) t E T} has GFMP(i) on each D ~ C (i = 1,2,3,4,5).

Proof: (1) implies conditional independence F(X :D) and F(X:Dc) given

F(X :0 n D) for all open sets 0 containing aD by Lemma 0.2(a). Since for

all open sets 0 containing 3D, n D) ~ n D) ~ 
a(F(X:0 n D) u F(X:Dc), by Lemma 0.2(a) and Martingale convergence theorem
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we get F(X:D) and are conditionally independent given 

and G5(aD). Using Lemma 0.2(b) we get that and are

conditionally independent, i.e. (1) ~ (3) or (5). Now (3) implies 

and are conditionally indpeendent given G3(0 n D) for all open

0 ? aD and hence by Lemma 0.2(a) and Martingale convergence theorem (5)

follows. Similarly, we can prove that (2) ~ (4) ~ (5). We now prove (5) ~

(1). Suppose (5) holds. As in the proof of Theorem (1.2) we observe that

F(X:D) and are conditionally independent given for all

0 containing aD where 0 = E} for all D ~ C (c > 0)

where p denotes the Euclidean distance. Denote by D = D n (Dc u OE)c.
Then D lies in C for E  e0 and hence F(X:D ) and are

conditionally independent given where 0 = {x:p(x,aDc)  E}.

Since F5(D ) this gives F5(D~) and F5(D) are conditionally

independent given FX(0~) e > 0. Hence F5(D~) and F5(D) are condi-

tionally independent given 8  e since F.,(D ) c F5(DS). But

n F(X:OS) = Gl(aD) giving ~5(D~) and ~5(D) conditionally independent
aE c

given Gl(aD). Therefore Q(u and F5(D) are conditionally in-
c

dependent given Gl(aD) giving the result.

3. Markov Property for Gaussian Processes: Let t E T} be a

Gaussian stochastic process 2) ([10]) defined on a complete probability

space. Throughout this section we assume all o-fields involved contain all

sets of measure zero. We denote by H(X:0) the linear subspace of

L2(52,~,P) generated by {Xt, t E T} for an open subset 0. For a closed

subset C of T, H(X:C) = nH(X:0) where the intersection is over all open

subsets 0 containing C. In [3], Markov property for {Xt, t E T} on D

was def ined by

2)See [10] for definition of Gaussian subspace also.
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(3.1) = 

where Q denotes the orthogonal projection on H(X:T) onto its subspace M.

In view of Lemma 5 ([2], p. 69) we get that the condition (4.1) is equi-

valent to conditional independence of 6{H(X:D)} and given

a(H(X:3D)). However our Markov property on D is equivalent to

(3.2) and are conditionally independent given EX(aD). °

In this case, EX(D) = no{H(X:0)} where intersection is over all open subsets

containing D. Similar expressions are possible for EX(Dc) and EX(aD).
Thus (3.1) and (3.2) are equivalent if EX(D) = o(H(X:~)), = o(H(X:Dc))
and EX(aD) = a(H(X:aD)). We achieve this through the following Lemma. °

3.3 Lemma: Let be a complete probability space.

(a) If Hl,H2 are two subspaces of a Gaussian subspace H of 

then a(Hl n H2) = a(Hl) n a(H2).
(b) If {Hi, i E I} are Gaussian subspaces of a Gaussian subspace H of

L2(03A9,F,P) then a(n H.) = na(H.). °

Proof: (a) Let Y E H then = lim where p. is
n-~o

the projection onto (i = 1,2) by alternating projection

theorem ([13], p. 56). But for each i, piY = QH.Y by ([10], p. 24-25). Hence

= lim (Q .QH )ny = Q Y E H by alternating projection
~i 2 ~ 

theorem.

Now it suffices to prove that for each g bounded a(H)-measurable

is measurable a(H n H2). Since g is bounded

g E In view of Wiener’s chaos expansion g = lim
of polynomials in elements of H. It therefore suffices to show that
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... Y03B3nn is a(H1 n H2) measurable. Let Yi = Xi + Z.

with Xi = E o{H1)no{H2) Yi and Zi independent of o{H1) n o(H2). Then

Y03B311...Y03B3nn = 1I (X. + Z,)yl, i.e. sum of polynomials in g- ... X with

coefficients in Zl ... Zn. Hence E Yl ... Yn = polynomial in
X1 ... Xn. Thus completing the proof of (a).

(b) In view of (a) we can assume I is directed set. Hence for Y E H,

n6(H.) o(H.)
E1 Y = lim E 1 Y = Q Y=limQ~H, Y ~ ~ H.. Repeating argument a.s in (a)

we get E 
i Y- ... Y03B3nn is n a(H.) measurable.

i

4.4 Remarks. In [12], equality G.(3D) (Section 2) was assumed for

i = 1,2,5 for validity of Markov property. In stationary case this condition

is always satisfied by simple adaptation of the proof in [11]. In most of

the standard examples ([3]) it can be shown that this condition is satisfied.

In fact equality of these three fields in necessary and sufficient for

G (3D) being a minimal splitting field in the sense of [12] for F(X:D) and

In a subsequent paper we shall present a class of (not necessarily)

stationary processes for which this happens.
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