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ABSOLUTE CONTINUITY OF MARKOV PROCESSES

by Hiroshi Kunita

Université de Strasbourg
Seminaire de Probabilites

Introduction and summary.

A great deal of attentions has been devoted to multiplicative functionals

of Markov processes and its transformations, and the absolute continuity of

Markov processes. The problem we are concerned in this paper is this : Given

two Markov processes which are equivalent on the germ field, find a criterion

that they are equivalent up to the lifetime. As an earlier result for this

direction, we refer to Dawson [2].

After introducing Levy systems of Hunt process in §1, we get the

representation of a terminal time ; the terminal time consists of a hitting

time and a first jumping time for a suitable set. The result is very close to

Walsh-Weil [18].

§3 is devoted to the representation of a multiplicative functional (MF).

Then we study the relation of Levy systems between the given Markov process

and the one transformed by MF. These are generalizations of the work by

Kunita-Watanabe [19]. The Lebesgue decomposition of two Markov processes

is discussed in §5. The Radon-Nikodym derivative is defined as a MF.

Our central problem is discussed in §6. Assuming that two Hunt processes

satisfy Hunt’s hypothesis (K), we show that the equivalence on the germ

field implies the equivalence up to the lifetime if and only if corresponding

Levy measures are equivalent.

Three examples are discussed in §7..
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gl. Notations and definitions. Levy system.

In this section, we introduce the basic notation and terminology of

Hunt process, and then introduce a Levy system. For a more information

of the standard material, refer to the book of Blumenthal-Getoor [1].

Let (~, F, ~t, X et, Px) be a Hunt process with state space E.

Let F~ = 6(Xs , s _ t). Recall that F 
t 

is the "completed" a-field of F .
We denote by ~ the lifetime of the process as usual. Throughout this

paper, we assume Meyer’s hypothesis (L) . i.e., there exists a measure y

on E such that any a-excessive function with is identically

0. Also, the following Hunt’s hypothesis (K) is often our basic assumption

(Hunt [5]).

Hypothesis (K). If u is an a-excessive function, u(Xt) is continuous

in t E (0, ~) where Xt is continuous.

The event which is valid with Px-probability 1 for all x c E is denoted

as "a.s." (almost surely).

A right continuous Ft-adapted process At is called an additive functional

(AF) if AQ = 0, At = A for t ~ 03B6 a.s. and satisfies At+s = At + As°03B8t
a.s. for each t, s > 0. If the exceptional set Nt s that the above is

not valid satisfies P ( u Nt s) - 0 for all x, At is called a perfect" 
t,s 

~" " 20142014201420142014

AF. In the sequel, we consider perfect AF’s only.

Let At be a continuous increasing AF. A measure p on E is called

a canonical measure of At of (t B 1F(Xs)dAs = 0 a.s. is equivalent to

u(F) - 0. The existence of the canonical measure is known. Let and

At be continuous increasing AF’s with canonical measures ~ and u2.
Then p « u2 (absolutely continuous) if and only if there exists a E-measurable
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function f such that Al - (We write A1 « A2 in such a case).

Following S.Watanabe [18], we shall introduce a Levy system. Let

f(x, y) ? 0 be a bounded E E0394-measurable function such that f(x,x) = 0

on E. Set

_ 

E 

If Pt(f) is integrable, there exists a continuous increasing AF 

such that ~t(f) is a P x -martingale. A pair of a kernel n(x, dy)

on E E0394 and a continuous increasing AF is called a Levy system if

t

~t(f) - = JO B °°

holds for all f such that is integrable. Here

n°f(x) = E0394 n(x, dy)f(x, y).

Define

(1.1) Qt(f) = Pt(f) - t0 n°f(Xs)d03C6s.
It is a martingale AF.

The Levy system of a given process is not unique. Let (n, y) be an

another Levy system with the canonical measure u of y~. Then the measures

on 

dy) and dy)

are equivalent (mutually absolutely continuous). In fact, if Pt(f) - 0 a.s.,

then ~t(f) - 0 aos.. This implies
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dy)f(x, y) = 0.

The same is valid for dy). Thus the null sets of the measure

dy) does not depend on the choice of Levy system. We call it

the canonical measure.

Now let At be a discontinuous increasing AF. It is called quasi-

left continuous if for any increasing sequence of stopping times Tn with

limit T, it holds lim A = Ar a.s.. The following representation
n-xo n

theorem is due to Motoo and S. Watanabe [18].

Representation theorem. Let At be a discontinuous increasing quasi-

left continuous AF. Suppose that At is locally integrable. Then there

exists a nonnegative E E0394-measurable function f such that At = Pt(f)
a.s.. The function f is unique except for the null set of the measure

~u (dx)n (x, dy)).

In several points of later discussions, the classification of stopping

times due to Meyer [12] is often used. Here we review it. A stopping time

T is called totally inaccessible if for any increasing sequence of stopping

times Sn with limit S less than T, it holds

for all n) = 0

for all x. A stopping time T is called accessible (or predictable)

if for each x there exists an increasing sequence of stopping times Tn .

with limit T such that T  T for all n a.s. P on the set 0  T.

An important characterization is that T is totally inaccessible if and

only if XT- on 0  T a.s. and T is accessible if and only

if XT = XT- (Xo = Xo- by convention). Let now T be a stopping time. , 
,



48

Define Ta by T if XT = XT- and by ~ if then Ta is accessible

On the other hand, Ti defined by T if XT ~ X and ~ if X - X is

totally inaccessible. We have the decomposition T = Ta A Ti.

§2. Representation of terminal times.

In this section, we review some properties of terminal time and then

obtain a representation of exact terminal time, that will play a basic role

in § 6 .

A stopping time T is called a terminal time if Toe + t = T holds

on the set T > t a.s. for each t. The exceptional set may depend on t.

If the exceptional set does not depend on t, it is called a perfect terminal

time.

Let T be a terminal time. It holds T06t + t ~ T a.s, for each t

and T06t + t > T06s + s a.s. for each s _ t. Define T = lim (To6s+S)~ ~ 
.. s~0 ~ 

(s : rationals). Then T z T a.s. and T = T on T > 0. If T = T a.s.,

T is called exact. It is easy to see that T defined above is exact.

Walsh [17] and Meyer [13] proved that the exact terminal time is perfect.

Suppose now T is an exact terminal time. Then the function u(x) =

Ex (e-T) is 1-excessive. In fact,

-(t+T°03B8t)e - t Ptu(x) = Ex (e 
~ 

; ç > t)

and the right hand side increases to u as t decreases to 0. Let F

be the set of regular points of T ;

F = {x E E~ ; Px (T = 0) = 1}.

Then F is finely closed nearly Borel set, since F coincides with the
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set of x such that u(x) = 1.

Let TF be the hitting time for the set F. Then it holds T S TF
a.s.. In fact, note that T°03B8T

F 

> 0 on T > T : Then

TF) - 0, T > 

= 

Ex(EX TF (T 
> 0) ; T > Tp) 

.

T > TF).

Here we used the 0-1 law : Px(T > 0) = 0 or 1. Since F is finely closed,

XTF E F a.s. on This proves Px(T> TF) = 0.

The following representation of the terminal time was obtained by Walsh-

Weil [18], under a different assumption.

Theorem 2.1. Assume hypothesis (K). Let T be an exact terminal

time and let F be the set of regular points of T. Then there exists a

ExE-measurable set A included in x) j x E E} such that

(2.1) T = inf{t > 0 : (Xt-, Xt) E A or Xt E F} a.s.

on T  ~ .

Before going to the proof, we prepare two lemmas.

Lemma 2.1. Define iterates of T as 0, = T, 

To6T 
n _ 1 

and T = lim T . Then T = TF a.s. on T  03B6.

Proof. The stopping time Too is a terminal time. In fact, it is

easy to see that Tno6t + t = if Tk+l. Letting n tend to

infinity, we obtain + t = Moreover, it holds = 0} = {T = 0},

which can be checked easily by induction. This implies that T is exact
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and the set of regular points of Too coincides with F. Therefore it holds

a.so. °

We shall prove Tp a.s.. Recall u(x) = By the strong

Markov property,

Ex (e-Tn) = Ex (e-Tn-1u(XTn-1 )).

Making n tend to we see that lim u(XT ) - 1 on T  oo. Hypothesis
n 

°°

(K) implies lim u(XT ) - u(X ) on T~  ~. ° Therefore, on

n oo oo

Too  ~ a.s., i.e. TF on Too  ~.

Define now

S = inf {Tn; XT = XT -},
n n

= Too if { } _ ~.

(As a convention, ’ we put XQ = XQ-.) Then S is a terminal time. In fact,

if t  S, there exists a nonnegative integer k such that t  

Note the relation Tn03B8t + t = Tn+k. Then

s°et + t = = 

= XT 
n+k 

- XT 

= S.

The exactness of S will be obvious.

Lemma 2.2. It holds S = Tp a.s. on S  ~.

Proof. Let us define the accessible part of S as

Sa = S if XS = 
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If holds Sa = S on S  Too = TF. Then for each Px, there exists an

increasing sequence of stopping times S with limit Sa such that S  Sa

for all n on the set Sa > 0 Set Sn = S A S.
Then u(S 

= S) c(S = a.s.. We shall show that So6S 
n 

+ Sn = S a.s.

for each n. ° If S  S, ’ the relation is clear since S is a perfect

terminal time. If Sn = S, then Soe~ ~n =0. In fact
n

Px(S°03B8Sn > 0, Sn = S) = Ex(PXSn 
(S > 0) ; Sn = S)

~ Ex(PXTF (S 
> 0) ; S = TF).

Note that T s S s TF, then the set of regular points of S coincides

with F. Then it holds PX 
T 

(S > 0) = 0 a.s. Px, proving that the last member

of the above is 0. 
T F 

x

Define now v(x) = E x (e-S). It is a I-excessive function. It holds

Ex(e S) - 
n

= Ex(e - S lim 
n n

Therefore, lim v(XS ) - 1 a.s. on S  co. Then we have XS E F a.s. on
n-m n 

"

S  ~, since the regular points of S coincides with F. We thus have

S > T on S  ~ .

Proof of Theorem. From the previous lemma, it holds XT- ~ XT a.s.

Set

At = 03A3 1E-F(XTn).
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It is easy to see At + As03B8t = At+s if t+s  It is quasi-left

continuous since it jumps at the discontinuous time of Xt. Then by the

representation theorem of Motoo and Watanabe [18], there exists a ~x~~
measurable function such that At = Pt(f) on t  Tp a.s.. Since ðAt =

0 or 1, f takes values 0 and 1 a.s. p(dx)n(x, dy). Set A = {(x, y) ;

f(x, y) = 1}. Then At = Let R be the first jump time of At.
Then

R = inf{t > 0; (Xt-, Xt) E A}.

Since R = T on T  TF, we obtain the representation (2.1). The set A

is included in (E-F)x(E-F) because XtEE-F for t  Tp. The proof is

complete.

§3. Representation of regular MF.

A Ft-adapted process at is called a multiplicative functional (MF)

if for each t, s ~ 0, it holds ataS°6t - at+s a.s.. In this paper,

we assume that MF at is nonnegative, right continuous and 1

for each x and t. Thus at is a supermartingale.

A MF at is called perfect if exceptional sets Nt s that 03B1t03B1s°03B8t =

at are not valid satisfy P ( u Nt s) - 1 for all x. MF is not
+s ~ 

t,s 
’

perfect in general, but we may modify it to a perfect one by Walsh [16] and

Meyer [13]. Given a MF at, we define a new functional at by

a = ess lim 03B1t-s°03B8s if t > 0
" 

sy0 
20142014 ~

a,. = ess lim a ," 
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where ess lim is taken with respect to the Lebesgue measure of the time

interval. Then at is perfect MF. It holds at = at if a~ > 0.
A MF a is called exact if for each t > 0, x E E and 0,

06 
~n 

converges to at a.s. P. x If at is exact, at a.s.

so that at is perfect.

Now, let at be a MF. Set

Ta = inf{t > 0 ; at = 0}

_ ~ if { } _ ~,

It is not difficult to see that Ta is a terminal time. If at is perfect,

Ta is perfect. If at is exact, Ta is exact.

A MF at is called regular if for each x there exists an increasing

sequence of stopping times T such that lim Tn ~ T and that is
n n a 

n

a martingale with respect to P . The following factorization of MF is

due to Ito-Watanabe [7].

Factorization theorem of MF. Let at be a perfect MF. Then there

exists a regular perfect MF and a decreasing perfect MF which

has no common jumps with Xt on [0, T ), such that at 
= and

that Ta = The factorization is unique.

In order to state our theorem, we need a slight modification of the

definition of a local martingale. Let T be an accessible stopping time.

A right continuous Ft-adapted process Mt defined for t E [0, T) is

called a local martingale, if for each x, there exists an increasing sequence

of stopping times T such that Tn  T on T > 0 a.s. for all n and

’with limit T
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that 
~ 

is a Px-martingale for each n. For notations and basic properties of

n

stochastic integral by local martingales, refer to Kunita-Watanabe [10].

Theorem 3.1. Let at be a regular perfect MF. Let Ta03B1 be the

accessible part of Ta (Ta = 0 if Ta = 0). Then there exists a unique

continuous local martingale Mt, t E [0, Ta) such that Mt + Mcs03B8t = Mt+s
for t+s  Ta a.s., and a unique nonnegative ExE-measurable function

g(x, y) with g(x, x) = 0 on E such that

(3.1) t0 n(|g-1|2 1+|g-1|)(Xs)d03C6s  ~ for t  T03B1 a.s.,

and at is represented as

(3.2) 03B1t = exp[Mct - 1 2Mc>t + Qt(g-1)].03A0 g(Xs-, Xs)e-(g(Xs-,Xs)-1) if t  Ta03B1

= 0 if t ~ Ta.
a

Proof. In case where at is strictly positive, the proof is found

in Kunita-Watanabe [10] and Deleans [3]. Also, a similar representation of

a nonnegative supermartingale is in Kunita [8]. We give here a quick proof,

leaving some details to the above references.

Given a positive number e, let us define

T~ = inf{t  T03B1 ; |039403B1t 03B1t-| > ~}

= T if { } = 03C6,

where 039403B1t = 

at - at-. It is a perfect terminal time. Since at is regular,

T£ is totally inaccessible. Define iterates of TE by T~ = T£,

T~n = T~n-1 + . Then T~n are totally inaccessible. Set
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Act

~ 
~ TE

AE t = E .

’ 

n

It is a quasi-left continuous AF, which is then written as At = 

Now the local martingale AF Qt(f ) (defined by (1.1)) is the

compensated sum of sa s la s- such that /a ! ] > e for t  T . a
It turns out that

(03A3|039403B1s 03B1s-| 2)1/2, 
t ~ [0, Ta03B1)

is locally integrable. Then it implies that Qt(fE) converges in Px-
probability to a local martingale as E .+ 0. (See [8]). Then we can find

a E E0394-measurable function f(x, y) with f(x, ’ x) = 0 on E such that

Qt(f) = lim in Px-probability.
It holds f-1 > 0 a. e. p(dx)n(x, dy), since

0394Qs(f)=039403B1s 03B1s- ~ -1.
Set now fl = and f2 = Then

t 0  0 t n°|f2|(XS)d03C6S  ~ a. s. 

.

(See [10]). The above is equivalent to

t0 n°(|f|2 1+|f|)(Xs)d03C6s  ~ a.s..

Setting g = f+1, we get the condition (3.1)

We shall next define the continuous local martingale M~. The stochastic

integral

Nt = t003B1s-dQs(f), t E [0, Ta03B1)
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is well defined as a local martingale. It holds = Then

at - Nt, t E [0, is a continuous local martingale. Define

now

t 

t E [0, t a

It is a continuous local martingale.

Set now Mt = Mt + Qt(f). Then it holds

t

at - 1 = t0 03B1S-dMS, t ~ [0, Ta03B1).

This functional equation has a unique solution. The solution is in fact

represented as (3.2) by Doléans [3].

It remains to prove the additivity of Mt. Let s, t >_ 0 and let

s = {p = ...  Sn = S  
...  s+t}

be a p artition of [0, s+t] such that = ~. Set

= 

s 03A3 03B1-1sn1Tg>sn (03B1sn -03B1sn-1).
snu 

n ann n-l

Then Mu converges to Mt in probability as £ + 0. On the other hand,

since

M~u = E IT >s ’
n a n

n

it holds ME + Mc 
t 

for s, t E 8 such that s, t  T .
s t s s+t a

Letting c + 0, one has the additivety of Mt. The proof is complete.

Remark 1. Assume hypothesis (K). If at is exact, then Ta
has the representation of Theorem 2.1. The set A then coincides with

y) ; g(x, y) = 0}. In fact, the totally inaccessible part T1
a
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coincides on the set T1  T 
a 

with the first time that
a a

n Xs)e 
- (g(Xs-~ 

sst

becomes 0. The above infinite product is convergent, since E (1-g(Xs-, Xs))2
, s~t 

~ 

is finite. Hence coincides with the first time that g(Xt-, Xt) = 0

on the set Ti  T .
a a

Remark 2. Assume hypothesis (K). Then any potential is regular.

Hence natural increasing AF’s are continuous. (See Meyer [11]). Let

a = a a be the factorization of Ito-Watanabe. Then log 

t E [0, T ) is a natural increasing AF (up to t  T ) so that it is

continuous. We can assume log for t  T. Then one has

the representation

(3.3) 03B1(1)t = exp- 
t0 

c(Xs )d03C6s,

where c(x) is a nonnegative function, unique up to the null set of the

canonical measure p of 03C6t,

The following example will be used in section 6.

Example. Assume hypothesis (K). Let T be an exact terminal

time and let F and A be sets of Theorem 2.1. Let at 
= 1 . It

is an exact MF. The factorization of Ito-Wanatabe is

03B1(0)t = expt0n°lA(Xs) d03C6s lT03B1>t,

03B1(1)t = exp-t0n°lA(Xs)d03C6s1T03B1>t.
The representation (3.2) corresponds to
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at ( 0) - - exp ’’~A~"T’ T-~ 
’ ~ 

A

§4. Transformation by MF and the Levy system.

Let at be a perfect MF such that a - 0 for t > ~ a.s.. Set

Qt(x, A) = Xt~A 03B1tdPX if Ac=E

Qt(x, 0394) = 1 - Qt(x, E).
It is well known that Q is a transition probability. We shall define

a family of probability measures Q ~ x e E on F. as

At’...’ 

" J" 
Then Q is a standard Markov process. It satisfies

(4.1) n ~ > T) = ’B) ~ B 6 F~

for any stopping time T (see [9]).

The purpose of this section is to prove

Theorem 4.1. Assume hypothesis (K). Let at 
= be the

decomposition of Itô-Watanabe, and let (3.2) and (3.3) be the representations

of and a~. Set

(4.2) dy) = n(x, dy)g(x, y) on E x E

A) = c(x).
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Then (nn, ~t) is a Levy system of the process Qx.
We shall consider the case where at is regular and is decreasing

separately, and next combine two cases. We assume Ta > 0 a.s.. Detailed

discussion for the case T >_ 0 is omitted.
a

Lemma 4.2. The assertion of the theorem is valid if at is regular.

Proof. We shall first observe that the lifetime of Q is accessible.

Let Tn be an increasing sequence of stopping times with limit ~ Ta such

that 03B1t^T. is a Px-martingale. Then
n X

Qx(~ > 
- n

> Ta) - Ex(aT ) - 0,
a

proving that ~ is accessible.

Now, set Mt = Mct + Qt(g-l) as before. Then it holds at - 1 =

0 03B1s-dMs. Let Zt be a Px-local martingale and let Yt = Zt - Z, M>t.
We shall prove that Yt, t E [0, ~) is a Qx-local martingale. By Ito’s

formula ([10]).

03B1tYt = (1 + 0 as-dMs)(Zt - Z, M>t)
= Zt - Z, M>t + t0 03B1s- (Zs- - Z, M>s- )dMs

t rs- t rs- t

+ 0 ( 0 03B1u-dMu)dZs - 0 (003B1u-dMu)dZ, M>s + 0 03B1s-dZ, M>s,

The 1st, 3rd and 4-th terms are local martingales. The sum of the remaining

terms is 0. Hence 03B1tYt is a local martingale.

Now, let be an increasing sequence of stopping times such that

lim Ta and that 03B1t^T 
n 

and 03B1t^Tn Yt^Tn are Px-martingale for each n. .
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Then Tn  03B6 and lim Tn ~ 03B6 a.s. Qx as before. It holds

n

= 

n n n n

for any B Denote the expectation by Q as EQ. Then the above is

equivalent to

EQx(Yt039BTn ; B) = EQx(Ys039BTn 
. B)

by (4.1). Therefore Y t E [0, 03B6) is a Q -local martingale.

Now, let f be a bounded ExE-measurable function such that f(x, x) = 0

and t0n°|f|(Xs)d03C6s is integrable. Set Zt = Qt (f). Then

Q(f), M>t = Q(f), Q(g-1)>t = 

t0 n°(f(g-1))(Xs)d03C6s.
Therefore,

Qt(f) - Q(f), M>t = Pt(f) - t0n°(fg)Xs)d03C6s, t ~ [0, 03B6),

is a Qx-local martingale. Recall the definition of the Levy system ; we

obtain the assertion.

Lemma 4.3. The assertion of the theorem is valid if ~ is accessible

(Px) and at is decreasing.

Proof. Suppose that (3.3) is the representation of at 
= Set

03B2t = exp t0 c(Xs)d03C6s.

Then = on Ft. Therefore, [4, 03B6) is a

Qx-local martingale. We shall prove that

Pt(10394) - t0c(Xs)d03C6s=103B6~t - t0c(Xs)d03C6s

(4.3) 
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is a Qx-local martingale, where y) is 0 or 1 according as d or

y = 0394. It holds

t003B2s-d103B6>s = 103B6>t03B2t - t0 103B6>sd03B2s = 103B6>t03B2t - 03B2t
and

- o = St - 1.

Therefore,

’t t

0 = -1 = Qx-local martingale.

This implies that (4.3) is a local martingale. We then see that d) -

cCx).

We shall next show that Qt(f), t E [0, ~) is a Qx-local martingale.
Set ~Zt = Then is a Qx-local martingale ’ because

Bj - > t~ ~

for any stopping time T such that both are well defined. Since Z and

Qt(f) are processes with bounded variation ’ it holds

ZtQt (f) = 
t0 

Zs dQs (f) + 
t0 

Qs- ( f) dZs.

Denote the first term of the right hand as Yt. Then Yt is a Qx-local
martingale. Since Zt and have no common jumps, we can write

as Yt = 
,t 

Now, consider the stochastic integral 
t 

0 ~ s 

Obviously, it equals Qt(f), proving that Qt(f) is a Qx-local martingale.
The proof is complete.

Proof of Theorem. Let be the standard process such that
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= 03B1(0)t dPx an Ft. Then (n(x, dy) g(x,Y) lExF (x, Y) , > y’t) is a

Levy system of by Lemma 4.2. Note the relation 1 dQ - x ~>t x t x

Then Lemma 4.3 proves the theorem.

§5. Lebesgue decomposition and Radon-Nikodym density of Markov processes..

Let us consider two Hunt processes Px, Qx defined on the same state

space E and the same sample space (S~, ~~, Xt, 6t). Recall that

F~ = Q(X , s s t) and F~ = n F~ . The purpose of this section is
t s t+ 

~>~ 
t+E 

,

to prove

Theorem 5.1. There exists a terminal time T (unique up to the measures

P x + Q x for all x) and a right continuous MF at relative to P x such that

(I) ~) - 1 dx

(ii) t) is singular to Px on ~~+

(iii) Qx(.~T > t) is absolutely continuous with respect to Px and

(5.1) Q
x
(B ~ T > t) = 

B 
03B1tdPx ~B ~ F0t+.

(iv) The Lebesgue decomposition is written as

(5.2) = B 03B1tdPx + Qx(B n T ~ t).

The proof is divided to 4 lemmas.

Lemma 5.2. There exists a stopping time T and a right continuous

~~+-adapted process at which satisfy (i) ~ (iv) of Theorem 5.1.

Proof. Since Q on F0t for each x, there exists a

density function such that
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~=~~x~-
For each t ~ 0, we can define h(x)t(03C9) as a E F0t-measurable function by
a standard argument. Set ht(03C9) = h(X0(03C9))t (03C9). It is a 1 2(Px +Qx)-martingale
such that 0  h  2 a.s.. Denote the right continuous modification as F .
Then (h~, F~) ° Let

T = inf{t > 0 ; 2-h = 0}.

Then T is a F -stopping time. It holds 2-F = 0 for t > T a.s.

~-(P~+Q ), 
Remark now the relation htdPx = (2-ht)dQx. Then

Px(T ~ t) = T~t htdx = T~t (2-ht)dQx = 0.

On the other hand, it holds 1 (2-ht) =1 on T > t. Hence for B e F ,
2-h 

" 

"’ "" ~.T.. ~-~
= B~T>t 1 2-hthtdPx.

Define

a. = 20142014 if t  T
’ 

~t
=0 if t > T.

Then

n T > t) = ( B 
We have thus the Lebesgue decomposition (5.2). The proof is complete.
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Two a-fields F~ and ~~+ are different in general. Hence it may

occur that ht with positive probability. We denote as Nt = {ht = 2}

and f = on Nc, Then the Lebesgue decomposition on F0t is written as

ftdPx + Q x (B n Nt) B E F0t.

f is a (F~, P )-supermartingale (See Neveu [14]). It holds lim f = att t x £.~0 
~~~ 

a.s. P ,x
Lemma 5.3. The process ft is a MF.

Proof. We follow the discussion of Dynkin [4]. Let Qt(x, dy) and

Pt(x, dy) be transition probabilities of Qx and Px, respectively.

Consider the Lebesgue decomposition

Qt(x, dy) = qt(x, y)Pt(x, dy) + Qt(x, dy)1N(x)t(y).

We can assume that 1 Nt (x)(y) 
is E0394 E0394-measurable.

Let 03B4 ; 0 = t0  t - t1 ...  tn = t be a partition. Let B03B4t =

03C3(Xt0, Xt1 ,..., Xtn). Define 

N03B4t = {03C9 ; Xti(03C9) ~ N(Xti-1(03C9)) ti-ti-1 for some 1 ~ i ~ n}

and

f03B4t = II qti-ti-1(Xti-1, Xti).

Then the Lebesgue decomposition on the a-field B03B4t is written as

Qx(B) = B f03B4tdPx + Qx(B ~ N03B4t), B ~ B03B4t.

Consider now a sequence of partitions 03B41 ~ 03B42 ~ ... ~ 03B4n ~ ... (03B4n-1 is
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a subpartion of 8 n ), such that |03B4n| (= tends to 0.

Then 
... 

is a supermatingale for each t. It converges

to ft a.s. Px. (Neveu [14, Proposition III-2-7]).

Now let 6’;0=s~"’s = s be a partion of [0, s] and let

a u a’ ; 0 = t0  ...  tn = t  tn+sl  "’  tn+sm be a partion of L [0, ~ t+s]. j

Then it holds

f03B4~03B4’t+s = f03B4tf03B4’so03B8t

Letting |03B4| ~ 0 and |03B4’| ~ 0, we have f = ft.fs oet a. s. Px.
The proof is complete.

The set {T > 0} belongs to the germ field ~~+. It holds Qx(T > 0) - 1

or 0 by the 0-1 law. Also, a.. 
= f0+ is F00+-measurable, so that a.. 

=

const a.s. Px by the 0-1 law. Since E (a..) = Qx(T > 0), we see that

= 1) - 1 (~ Qx (T > 0) - 1

= 0) - 1 ~ = 0) - 1.

Define

E = {x ; Qx(T > 0) - 1}.

Then E is ~-measurable. It holds a.. 
= a.s..

Lemma 5.4. The process at is a MF. It holds

(5.3) at 
= a.s..

Proof. Letting ~ ~ 0 in the equality f = ftf~o03B8t, we have
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at 
= ft03B10o03B8t. Let B E Then

B) - Ex(EXt (03B10) ; B) = B).

This implies 03B10o03B8t = lE(Xt) a.s. Px, proving (5.3).

We shall next prove that at is a MF. Let t, s >_ 0. If s = 0,

03B1t03B10 
= 

at is obvious since 03B10 
= If s > 0 and at 

= 0, then

03B1t+s 
= 03B1t03B1so03B8t holds because both are 0. If s > 0 and at > 0, then

at 
= ft. Therefore,

03B1t+s 
= ftfso03B8t1Ê(Xt+s) = 03B1t03B1so03B8t.

The proof is complete.

Lemma 5.5o T is a terminal time.

Proof. Let Qx be the standard process defined by the relation

Qx(B ~ 03B6 > t) - Ex(03B1t ; B), B E where at is the MF of the Radon-

Nikodym density. Then Qx _ Qx on F0t+ ~ 03B6 > t. The Radon-Nikodym density

03B2t = dQx/dQx equals 1T>t obviously. The multiplicatively of St implies

1T>t+s = 1T>t1To03B8. >s’ 
This proves Ta6t+t = T if t  T, i.e., T is a

t

terminal time.

Theorem 5.1 follows immediately from Lemmas 5.2 ~ 5.5.

A simple consequence of theorem is

Proposition 5.6. It holds

x E E C~ P x = Qx on 0+
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x ~ E ~ Px (singular) on ~p+’
Proof. If x E E then Px » Qx on ~~+ and dQx = Since

a~ 
= 1 a.s. Px, we have Qx = Px on ~a+. The converse is obvious.

If x  E, then there is no absolute consinuous part. Hence Qx on

~0+. Then converse is also clear.

~6. Absolute continuity of Markov process.

The preceding theorem shows that Qx « Px on ~~+ n {T > t}. We shall

study the terminal time T in details and find a criterion that T > ~ a.s.

Qx. We assume for simplicity that T > 0 a.s. Qx for x E E except for

the last remark in this section. Hence T is an exact terminal time and

hence it has the representation.

(6.1) T = inf{t > 0 ; (Xt-, Xt) E A} a.s. Qx on T  03B6.

Observe that the Radon-Nikodym density at is an exact and is a perfect MF.

We shall denote by and uQnQ
(= ExE (x,y)) canonical measures of the processes P 

x 
and Q , x

respectively. Note that PnP and QnQ are measures restricted to E E.

Theorem b.l. Assume hypothesis (K) for Px and Qx, Then 1A QnQ
and PnP are mutually singular and 1 Ac QnQ is absolutely continuous

with respect to PnP.

Remark. Let Qx be the standard process defined by

Qx (B > t) - 03B1tdPx = Qx (B n T 039B 03B6 > t) .
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Then ~t) and (1 are Levy systems of Q 
~ 

(restricted to E)

by Theorem 4.1 and Example in §4. We can choose canonical measures of P
x

and Qx such that Then the assertion of the theorem is

equivalent to that

= 

is the Lebesgue decomposition of canonical measures.

The theorem states that the terminal time T is just the hitting time

for the support of the singular part of with respect to Hence

uQnQ « if and only if T is greater than ~ a.s. Qx. This implies

our main result.

Theorem 6.2. Assume hypothesis (K) for P and Q. Then P = Q
on ~D+ t for each x implies Q x « P x on n {~ > t} for each t and

x if and only if « on ~x~.

Remark 1. An immediate consequence of the theorem is Px = Qx on ~p+
for each x implies Px (equivalent) on ~~+ n {~ > t} if and only if

on In particular, if Px and Qx are diffusions (up

to ~), then P~ = Qx on ~~+ implies Qx on ~~+ n {; > t},

since = This fact was proved by Dawson [2] under a stronger

condition.

Remark 2. Of course, it can occur that Qx « Px on F. n {; > t}

but Px « Qx on F n {~ > t} fails. Such examples are given in §7. What

we can show is that Px « Qx on iS > t}, where

S = inf{t > 0 ; (Xt_, K}, K = {(x, y) ; g(x, y) = 0}.
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In fact ’ 1 is the singular part of with respect to 

The idea of the proof is as follows. Let y) be the 

density of the absolute continuous part of with respact to 

here and are chosen so that = 1 Then it holds

A

’g>:g a , s , PnP and g = g on Ac. Theorem 6.1 is equivalent to that

g = g a , s , P nP.

For the proof of this fact, let us define a prefact MF

03B1t = 1 2MC>t + Qt(g-1)] II 
- (g(Xs-, Xs)-1)

Xs ~Xs-

.exp - B Jo " "

where M is the continuous local martingale defined in the representation of

a’ . We can extend M so that it has the additive property for t  ~.

c(x) is the function defined in the representation of a’ . Then it holds

a. t = for t  T a and a. t > a.. t a.s.. ° have further.

Lemma 6.2. E (a.)  1 for and x.

Proof, a. has the factorization a = , where

03B1(0)t = 1 2MC>t + Qt(g-1)] 03A0. g(Xs-, Xs)e 
-(g(Xs-, Xs)-1)

Xs~Xs-

03B1(1)t = {nP(g-g)(Xs) - c(Xs)}d03C6Pt.
The first one is a regular MF. The killing rate n(x, 0394) of the process

x 
is c (x) = 

E 
nQ(x, dy)1A(x, y) by Theorem 4.1. Therefore  c (x) ,
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proving that decreasing. Then is a supermartingale for

each P . The proof is complete.

Let us now define an another standard process Qx as

Q x (B n ~ > B 6 ~~+. 
_

Then Q on Ft+ n {~ > t} and Qx = Q~ on ~~+ n {T n ~ > t}. The

next lemma shows that Q is again a subprocess of Q. But since Q is

the maximal subprocess among absolutely continuous ones, we get Q = Q .
This proves g = g a.s. and then the theorem is established.

Lemma 6.3. It holds Q x on Ft+ n {~ > t}. -

proof. We may assume T  ~ without loss of generality. (Consider

T 039B 03B6 instead of T, if necessary). Define iterates of T as T1 = T,

Tn = Tn-1 + To03B8T
n-1 

and T 
~ 

= lim T. n It holds Tl  TZ  ... a.s.,

so that T~ is an accessible terminal time. The regular points of T is

empty. Therefore a.s. Qx by Theorem 2.1. Hence it suffices to

prove Qx on p n {Tn> t} for each n. We shall prove the case

T2 only since the discussion for the general Tn is similar.

Let, ~T- be the o-field generated by the sets B n {T > t}, where

B E F0t+. Let 03A6(t, w) be a bounded positive left continuous F... -adapted
process. Then 03A6(T) is F0T--measurable. Let 03A8 be a bounded positive

p -measurable function. We shall prove

(6.2) i T 2  ~)  i T~  ~) .

Set f(x) = T  ~). Then the right hand of the above equals
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Note that the Q -expectation of

is 0. Then the right hand of (6.2) equals

(6.3) 
X JQ ASS

Similarly, the left hand of (6.2) equals

(6.4) 
EQX[ TQ03A6(s)nQ(1 Af)(Xs)d03C6Qs],

since f(x) = EQx(03C8 ; T  03B6). Furthermore, we can choose a Levy system

(nQ, 03C6Q) such that dy) = dy)g(x, y) and 03C6Qt = 03C6Qt for t  T.

Then nQ. Therefore (6.3) is larger than (6.4), proving (6.2).

Now, the a-field F i~- is generated by elements of F~ T- and 6 T F~ T-
The inequality (6.2) shows that Q~  Q~ on F~ n {T  ~} i.e., Q ~ Q

on F0t+ n {T2 > > T} for each x. While on the set 03B6 = T, it holds

~ = T~ = T, so that {T~ > = T} = ~ = T > t}. Hence Q = Q on

{T~ > t, ~ = T}. ° This proves Qx on (T~ > t}. ° The

proof is complete.

Remark. In case where E, the terminal time T may not be exact.

Let T be the exact modification of T defined at the beginning of §2.

T is represented as (2.1) with sets F and A. Since T ~ T, the sets

of regular points of T is included in the sets of regular points of T,

i.e., one has E c E-F. ° The set (E-F) - E is of Q -potential 0. ’ One

can show similarly that if on (E-F) x (E-F) , then P « Q
on F. n {T > t} for x 6 E.

t+ gc



72

§7. Examples.

7.1. Additive processes.

Let Px and Qx be temporollary homogeneous additive processes.

Let Xt = X + X be the decomposition of continuous additive process

and the discontinuous one. We assume for simplicity that the laws of X~
relative to Px and Q x are the same. We denote Levy measures of Px
and Q x by 6P and 

. 

respectively. Then

Proposition 7.1. Px » Q -x on F for all x E R1 if and only if

and the density function satisfies

(7.1) ~  -

Further, P ~ x = Qx on ~~ t+ if and only if g(x) > 0 a.s. aP.

Proof. A Levy system of Px is defined as

n P (x, dy) = = t.

A Levy system of Qx is defined similarly. If Px » Qx on F for

all x, then there exists a RxR-measurable function g(x, y) such that

nQ(x, dy) = g(x, y)nP(x, dy). Then g(x, y) must be a function of x-y

a.s. nQ. We shall write g(x-y) = g(x, y). This g satisfies (7.1)

in view of (3.1).

Conversely, let g be a function satisfying (7.1). We define a MF at

by the right hand of (3.2) setting M~ = 0. Define the process Qx by

Q = Then Q is an additive process with the Levy measure

03C3Q (See Skorohod [16]). Hence Qx = Q holds, i.e. Px » Qx.
The last assertion will be obvious.
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It should be noted that o » oQ does not imply P » Q on F0t+.
Actually the mass aP(K) of the set K = {x ; g(x) = 0} has to be finite

if P » Qx. In fact, since

|g(x)-1|2 1+|g(x)-1| ~ 1 2 1K(x).
The relation (7.1) implies  oo.

Conversely, if K is a set such that aP(K) and aQ(dx) =
1 Kc(x)03C3P(dx), then Px» Qx on because

|1Kc-1|2 1+|1Kc-1|=1 2 1K

and the left hand side is integrable relative to aP.

Corollary. Let P be a Wiener process and let Px be an additive

process of the form "Wiener process + discontinuous additive process".

Let a be its Levy measure. Then P » P on dt if and only if

03C3(R1)  ~. The Radon-Nikodym density is at 
= where T is the

first jumping time of the process Qx ; T = inf{t > 0 : IXt-Xt.1 ( > 0}.

7.2. One dimensional diffusion.

Let P, x E R1 be a one dimensional regular diffusion and let

(7.2) u(03BE)m(d03BE) = dDsu(03BE) - u(03BE)k(d03BE),

be its generator, where s(x) is the canonical scale and is the

derivative relative to s(x). m is the speed measure and k is the

killing measure. (Ito-McKean [6]).

Proposition 7.2. on F 0 n {~ > t} for all x if and only
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if there exists a function f E such that dm = ds = e-Bd,
where B(ç) = 03BE f(y)dy. The Radon-Nikodym density 03B1tPWx = Px is represented

as

(7.3) at 
= 2 1 t 4 I f(Xs) x)k(dx),

where x) is the local time at the point x.

Proof. Consider the case where P has no killing, i.e. k = 0.

If P W on F~+ n {~ > t} for all x, at is a regular MF. Hence

there exists a continuous local martingale AF M~ such that at 
=

exp(M~ - It is well known that M~ is represented as M~ =

f(Xs)dXs with If(X )12dS a.s. Also, it holds

t 0  co a.s. (PWx), if and only if f e (Orey [15]).

Then the generator of Px is

u(03BE) = 1 2 d2 d03BE2 u(03BE) + f(03BE)d d03BE.
This proves the "only if" part. "If" part is well known.

It is easy to prove the case with killing. We omit the detail.

The process PW x is conservative. Hence P » P on F ( dx) under

the condition of the proposition. But Px « PX on F is not true

if P 
x 

is not conservative. It holds P on Ft + if and only if

k = 0, f E L2loc(R1) and that P 
x 

is conservative. (Orey [15]).

7.3. Markov chain.

Let P and Q be Markov chains on a countable set E and let

= inf{t > 0 ; Xp}.. ] and Y) - - Y).
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Then

np (x, dy) = qpx03C0p (x, y)

and ~t = t is a Levy system of Px. Levy system of Q is defined

similarly. Then Px » Qx on F~+ n ~~ > t} if and only if nP(x, ’ dy) »
nQ(x, dy). In fact, since n and nQ are finite measures, condition

(3.1) is always satisfied.

Nagoya university
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