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ON A STOPPED BROWNIAN MOTION FORMULA OF H.M. TAYLOR

by DAVID WILLIAMS

University College, Swansea

1. This note illustrates the usefulness of local time theory and the

Cameron-Martin formula by giving two very short proof s of a stopped Brownian

motion formula obtained in H.M. Taylor’ s paper 8~ and applied there to problems

in process control and in playing the stock market. The reader will easily find

in the literature other applied problems for which local time theory may be

effectively employed.

Let f2 be the space of continuous functions w : O,oo~ -~ .s . . For t 2 0 , ,

let Xt be the t-th coordinate f unction so that = w(t) . Let

~0 = : t ~ 0~ be the smallest ~-algebra on Q which ’measures’ each Xt . .

Define
M - max X .

(As usual , we suppress the 0)’s.) Fix a > 0 and define

T = ,

so that T is the first time that the process X drops a units below its

maximum-to-date. We make the usual convention that inf~~~ - 00. . Note that

X~ = MT - a on the set T  ooj .

On (~,30~ introduce the measures:

W : : Wiener measure, the law of standard Brownian motion starting at 0; ;

D : : the law of a Brownian motion starting at 0 with drift constant  and

variance coeff icient 1, , so that D = w and

~ t~~~!~~ ~ ’
t’N" denoting "is identical in law to’ . .

If P denotes any probability measure on (~1,~0~ and ~ is (say) a

positive random variable on (~,~0~, , we write

P{03BE} = 03BEdP = 
for the P-expectation of ~ . . We use E for expection when the appropriate 

is obvious.
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Taylor’s f ormula characterises the joint D -distribution of XT and T

as follows:

(1.1i) D {exp(03B1XT-03B2T)} = 

03B4exp[-(03B1+ )a] 03B4cosh(03B4a)-(03B1+ )sinh(03B4a)

whic h ho ld s f or a > 0 and 03B2  6 , , where

( 1. 1ii) 8 = ~~,2 + 2~i~ Z , , 8 = b > 0 . .

(Note. The discussion in Section 3 of Taylor’s paper misses the f act that

= XT + a is exactly exponentially distributed. This f ollows either by an

obvious "lack of memory’ argument or directly from 1.1(i).) )

Notice that bec ause of the Cameron-Martin formula:

(1.2) ~,2T)~

(see §3.7 of McKean ~5~ ) , it is enough to establish the "~, = d’ case of (1.1)

in the form:

(l.3i) 03B4[03B4 cosh (8a) - a sinh (03B4a)]-1

for p > 0 and a  8 , where, from now on,

(1.3ii) s - (2p )z , , e - 03B4 coth (sa) . .

For rigorous justification of (1.2), , it is necessary to check that

(1.4) W{T~} = D {T~} = 1.

The validity of (1.4) will become clear in a moment.

Levy tells us that under W , , the process Y = M - X is standard

reflecting Brownian motion starting at 0 and M is the local time

L(’,0) at 0 for Y:

Mt = L(t,0) . °

Recall that local time L(t,y) at y before t for Y may be defined as

follows:

L(t,y) = lim t: Y E .

s

(We are not bothering about " almost surely", , etc..) ) See McKean [6] for a recent

expository article on Brownian local time which contains all of the results which

we shall need.
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Since M~ = , we need only prove

(l.5) 

for 03B2 > 0 and a  8 . .

Note. Of course, under D , , M - X is a reflecting Brownian motion with drift

constant (- ) and M is again local time at 0. . Result (1.4) is absolutely

obvious if (JL  0 while for 0 it is obvious on the grounds that "what can

happen eventually will happen’ (after an exponentially distributed local time .

But now to return to the c ase when (J. = 0, , ...

2. First proof of (1.5~. . Let Y be a stand ard reflecting Brownian motion.

In the c ase which concerns us, Y starts at 0 but we are entitled to consider

other starting points. Suppose that a  0. . Consider the function h on

[O,a] where

i YO = yl y ~ a)

where T is still defined by T = inf : Yt= a~ . . Then, according to the theory

of elastic Brownian motion (sketched below - see §2.3 of Itô-McKean [2] f or more

information) ,

(2.1i) h" = , so h(y) = K1 cosh (5y) + K sinh (8y) ; ;

(2.1ii) h + (0~ _ - ah(0~ , so 8K2 and K1 = K2 = - K«; ;

(2.1iii) h(a) = 1 , , so 1. .

(We have written h+(0~ f or the right-hand derivative of h at 0.) ) Hence

) = h(o) = K = K5W 

= 8[5cosh (03B4a)-03B1sinh(03B4a)]-1, 
K 8

= 8 [03B4 cosh (b a)- a sinh (b a)]- 1,
as required. That the f ormula extends to the range a  8 is just (Abel-Dirichlet)

analysis.

Sketched proof of (2.1~. . The f ormula (2.1i~ is well-known and depends on the

fact that for ,

h(y) = ,

the term sech(5e) arising because ( see Problem 2.3.2(a) of McKean [5]for

instantaneous proof)
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- sech (8E ~ - W ~~ , , inf ~t : ~ ) = s~ ) .

Formula (2.liii) is obvious. Formula is true because  -a 1~ , ,

h(0~ - h (c; ~W ,0~ - ~T£~ ~ )
. = ~1 + ,0~ - fiT + ... )

= h(e ~~ i + aE - pe2 + 0(E2~~ )
= h(O) + c;[ah(O) + h+(0~~ + 0(~2~ ,

because W ,0~~ - c . See Theorem 4.2 of Williams for a simple proof

that under w , is exponentially distributed with mean c . (In particular

under!, , MT is exponentially distributed with mean a.~ )

3. Second proof of (1.5~. . The most profound results on Brownian local time

are the Markov properties discovered by Ray (~7~~ ) and Knight (~3~~. . The basic

Markov property which they discovered is the following:

(3.1~ ~L(T,a- y~ : 0 S y S a ~ W~ N ~zR2 : 0 S y S ,

where R is a "2-dimensional" Bessel process starting at 0. . Thus R is a

continuous process identical in law to the radial part of standard 2-dimensional

Brownian motion starting at 0. . Williams (~9~~ ) gave a simple proof of (3.1~ and

(~10,11~~ ) showed that all the other Ray-Knight properties follow from (3.1~ via

time-reversal, , time-substitution, etc.. See also McKean [6].

We now calculate

W{exp[03B1L(T,O)-03B2T]} = W{exp[03B1L(T,O)- 203B2a0L(T, a-y)dy]}

= E{exp[ 03B1R2a-03B2 a0 R2ydy]} (by (3.1))

= W {exp[1 2 03B1X2a - fi dy]}2 (Pythagoras)

= E {exp[1 2 (03B1+ 03B4)U2a- 03B4]}2 (Cameron-Mart in)

where U is an Ornstein-Uhlenbeck process with generator ~D2 - $xU (D = d/dx)

and starting at 0. . Now (see Chapter 16 of Breiman ) U is Gaussian with
a

mean 0 and variance (28~ 1~1- e ~a . . Let Ya be a variable independent of

Ua and with the same distribution as U . . Then
a a
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1 )

= 8 [5 cosh (S a) - a sinh (6 a)]
because ) is exponentially distributed with mean (2S ~ 1~ 1- a, , .

That the range of validity of (l.5) extends to a  6 is now obvious.

Notes (i). . The Ray-Knight theorems and Cameron-Martin formula have been used in

conjunction before. See for example Knight [4] , Williams [10].

(ii) It is no accident that the proof of the Ray-Knight theorm in [9]

depends on the theory of elastic Brownian motion.
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