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Université de Strasbourg
Séminaire de Probabilité

SKOROKHOD STOPPING TIMES OF MINIMAL VARIANCE

by H. Rost

4) Introduction.
One of the many possible ways of stopping one-dimensional Brown-
ian motion in such a form that the stopped process has a desired
distribution is due to ROOT(‘:S]) . In that article, the author
introduces the notion of a barrier as a subset B of Rx R+, for
which (x,t)eB , t">t implies (x,t”) €B , and establishes the
following theorem :

Let (Xt)t>o be Brownian motion on R , Xo =0 ; let V be a

probability measure on R satisfying jx v(dx) = O, xzv(dx)

Then there exists a closed barrier B such that the stopping

time T : = inf{t: t20, (Xt,t) eB} has the following properties:

X has distribution v and £r = szv(dx) .

The question of uniqueness Oof the barrier B given V has not
been treated by ROOT, but a theorem of LOYNES([3]) says that at
least the time T is uniquely determined by Vv (with probability
one, of course).

In a paper of KIEFER([2]) on Skorokhod embedding of a random
walk into Brownian motion the conjecture is made that among all
stopping times S satisfying

(1) Xs has distribution VvV and £S = x2 v(dx)

the time T constructed by ROOT has minimal second moment and
hence is the most appropriate candidate for Skorokhod embedding
(provided £1%< oo or, equivalently, jx‘lv(dx) <00),

The aim of the present paper is to prove that conjecture and to
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state the theorem in a general, merely potential theoretic,

form. The key notion thereby will be that of a stopping time

of minimal residual expectation, which in the discrete time

case has been introduced by DINGES([1]); the argument can be

summarized as follows:

a) suppose one has a stopping time which in the class of all
times satisfying (1) minimizes for each telg_the expecta-
tion

S N
j‘ du [ ps>wau ;
SAt t

then it minimizes for all p>1 the moments

[ - 00 *)
gsP =pp-1( P%at ( (P(s>waw ;
o t

b) such a time exists; call it stopping time of minimal resi
dual expectation with respect to v . It is obtained by a
construction like that of a réduite, from which it turnes

out that it even minimizes all integrals of the form

S oo
£SSAtfoXudu = {(E_foxuq{S)u?du , t&R,, £20 onR .

In this paper we will carry out the construction of those times
in a quite general framework in Theorem 1. The proof of the
theorem yields a possible potential theoretic interpretation

of the family of distributions of X , £20, for such a time

TAt

T . The main result of this article is contained in Theorem 2 ,

*) By the way, it maximizes for O< p<1 the moments
) Co
£sP = p(1-p) - j‘ tp'zdt( £s - fP(S>u)du) '
o t
in particular £S}i , the expected quadratic variation of the

martingale X t20.

SAt’
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which states that every first hitting time T to a barrier - in
an obvious generalization of ROOT”s definition - is of minimal
residual expectation (with respect to the distribution of XT)
and hence of minimal second moment if it exists; any time S
satisfying

S T
€ fox du = £ fox du for all t€&R,, £3> 0
S{t u Tit u + 7 -

is almost surely equal to T (Corallary to Th.2). This implies
that under the assumptions of ROOT’s theorem any stopping time
S satisfying (1) and of the same variance as ROOT s time T is
equal to T (if the variance is finite).

Conversely, any stopping time of minimal residual expectation
with respect to some measure is essentially of the ROOT type :
it can be included between the hitting times corresponding to
two barriers which differ only by a "graph" , i.e. a set of the
form {Sx}t(x)): X in the state space} (Theorem 3). It is easy
to see that in the Browﬁian motion case, more generally, if the
one-point sets are regular for the process, these two hitting
times coincide and hence any time of minimal residual expecta-
tion is the first hitting time to a barrier (Corollary to Th.3).

(Technical remark : in order to simplify notations we will for-

mulate and prove the results only for transient processes; so,
rigorously speaking, KIEFER’s conjecture will only be proved,

in the case of a measure V¥ of bounded support, because in this
case we pass to Brownian motion killed after leaving some finite
intervall. But it should be clear that all definitions and state-

ments make still sense in the recurrent case if we limit our-



197 4

selves to the class of stopping times T for which the measure

T
f—> &_(fexudu is g-finite.)
[e]

2) Basic assumptions and notations.

We consider a Borel set E in a compact metric space; denote
by 8+ the positive Borel measurable functions on E . (Xt)t,;o
is a Markov process on E which we assume to satisfy the "right
hypotheses" (right continuous paths, strong Markov pg:)perty); we
denote by (Pt) its transition semigroup and by U = ‘gPtdt its

potential kernel. On (the Borel sets of) E we are given a pro-

bability measure V— with &-finite potential WU .

The process (Xt) is defined on a fixed probability space (Q,?,Pr)
and Markovian with respect to a family (‘Tt) of 6-fields; the dis-
tribution of XO is B We assume that 3'— admits a random variable
with atomfree distribution and independent of the process. The
notion of stopping time is always understood with respect to (;;)5
all stopping times T are normalized so that T = oo on the set
{T >,§} , where § is the lifetime of the process.
The measure f“PT on E is defined as usual by

<r.PT,f> = S_PfeXT-1{T‘°°} , £ €&,
(= E“fox,r if we make the convention fcaxt =0 for t =00).

If A 1is an almost Borel set in E we denote by rA-HA the meas-

ure }&PD , where D, = inf {t: tz0 , XteA} .
A

A

We will use the following characterization of balayage order,

which holds under these assumptions (see e.g. [4]):

Every finite measure von E with vU g-finite admits a decom-

position V = U+v°° » where v U is the réduite of (v - ,M.)U and
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V is of the form tPp + T a stopping time. Further, there ex-

ists a finely closed set A which carries V, . and for which

o0

Voo™ (v-!,u)HA or (v-—y«.)HA=0. In the special case vUﬁrU one

has VN=O and V=‘.4PT for some T .

3) Stopping times of minimal residual expectation.

Definition 1. Let y be a measure on E with vU < r.U . We say

that a stopping time T is of minimal residual expectation (m.
r.e.) with respect to v , if r.PT =V and if for all S such

that rgPS = v one has

T S

8_‘;(( fox du < EFf fox du for all fe& , teRr

u - u + +
At SAt

(or, equivalently, r-PTAtU < t"‘PS,\tU for all teR, ).

Theorem 1. If a measure vy satisfies vyU< rU then there exists

a stopping time of minimal residual expectation with respect to v.

Proof. 1) One introduces in EXR the semigroup of the space-
time process (Pt)tz o
P, (x,r; AxB) = Pt(x,A)'1{r+teB), AcE, B¢R ;

on EXR one defines the measure M by

M = = ° .
(A x B) g’Mt(A)dt where M = WUl i wUST ooy
Let S be a stopping time with ‘*PS =V (such a time exists

under our assumptions); then the measure L on EXR is defined by

L(AxB) = !Lt(A)dt where L.= I"'U.1{t<0]+ \"PSAtU'1{t.>,O}‘
It is easy to see that L 2 M holds and that L is (;t)—exces—

——— e
sive. If one writes the (Pt)-réduite M of M in the form

M(AXB) = _fMt(A)dt with M, decreasing, right continuous
B

~
the theorem will be proved, because of M_< L

+ if we can show

t ’
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that there exists a stopping time T satisfying

~
(%) Y.,PT = v and “’PTAtU = M, for all teR_ .

2) As in [6] one sees that the second condition in (%) can be sa-

tisfied if there exists a family K ‘!:€R+ , of measures with

r”oﬁf" i t*st Pees ¢ EiS 20
U ﬁ S d t20
- = s .
s t ) Psds + t2
For then one chooses a T such that <f‘t’f>= Ehfoxtd(,r)t} for

all fe £+. Now, the existence of the family (P't) follows from

d 2

the following 1nequa11t1es, if we set ’J.t = -3 Mt :
/\
(a) t < Mt r £y 20 ;
(b) -MSersds , t2O;
A ~
(c) (M - M )P P4 Mt+u - Mt+u+s , t,u,s20 .

So the problem is reduced to make evident these inequalities.

(a) holds, since M is a decreasing family;

(b) is true because M is excessive, what implies

w2 ¥ d
M@ wUPL = pU - jor.,Ps s
(c) follows from a possible construction for a réduite :

A A
M, = ?lim M(k) , wWhere M(k) (k) and the sequence

t t [{2]
A
ngk) is recursely defined by
"(k) _ ak)  _ (k)
= r.U ' Mn+1 = yU v M PZ"‘ for n>0 .

The relation (c) follows in the limit k~»oo from

2(k) _ "(k) &(k) _ o(k)
n+1)P 2 Mn+1 Mn+2 '

(M
what is obviously true.
3) The proof is complete if we show that the second condition

A
in (%) implies the first one, or that vyU = ll&m.oMt . Let S be
-)
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the stopping time introduced in 1). Because of

2 N

PPsat! = Lt t
we get, passing to the limit ¢t —p 0o,
A~
pPgU = vU > dlim M .
t
t
The converse inequality follows from
Pa)
Mt > Mt = lel_;ant = vU for t>0.

Q—) ROOT stopping times.

Definition 2. A subset B of ExR, , which is nearly Borel

with respect to the space-time process t r—->(xt,t) is called

a barrier, if (x,t)e€B and t'>t implies (x,t")e&B (or, equi-

valently, if the family of its sections B, = {x: (x,t) eB}

is increasing in t ).

Definition 3. If B is a barrier, the time

T = inf {t : £20,(x,,t) €B} = inf {t: X, &B,,t> 0}

is called the ROOT stopping time defined by the barrier B.

A stopping time is called simply ROOT stopping time if it is

the ROOT time for some barrier.

Theorem 2. Every ROOT stopping time T is of minimal residual ex-

pectation (with respect to t«.PT) .

Proof. Let T be defined by the barrier B. We suppose without
loss of generality B to be finély closed for the space-time
process, what implies that the sections Bt are finely closed for
the original process. Set ‘
v=|.v.PT and Nt = l”U'1{t<O) + rPT/\tU'1(tzO}' teR ,

N(AxC) = N (A)-1.dt for ACE , CCR ;

Let M and /Iq be as in the proof of theorem 1. Then the asser-
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Pl
tion of theorem 2 is equivalent to M =N , or

A A
M 2 N ,or MtZ'Nt for t%0 .

The proof is carried out by proving three auxiliary results.

Proposition 1. For fixed teR+ define

t = . .
Mg = Ng 1{s<t} + VU 1(s>, t)’
ME(ax ) =SM§(A)-1cds for ACE , C<R ;

t ~t

St
and Ms defined by

let M° be the (P,)-réduite of M
ﬁ*(AxC) = Sﬁ:(A) -1cds ’ ﬁt right continous.

Then the following estimate is true
Ar ~
M < M + (N

~
t+s = Tt+s £~ M Pg » 520 .

Proof. The measure N , defined by
~ _‘j‘ (\ ~ 4
N(AXC) = C(Ns'1{s<t)+ M+ (Nt_Mt)Ps-t)'1Lszt§) s
t

is (;t)-excessive and greater than M~ ; hence it is also greater

A
than nt . The proposition follows by "desintegration" .

The following lemma is of some interest in itself and sounds
rather plausible; in the special case B = AXR, for some A CE

it is exactly the statement of the theorem.

Lemma. Let A be a finely closed subset of E and D = DA

(the first hitting time to A). If S is any stopping time

satisfying f"PSU > rPDU then S <D a.s. (Pr‘)‘

Proof. The inequality f"PSU zrgPDU implies uwnder our general
assumptions that there exists a stopping time D° with

D°> S and [fPpe = MPp -
(If necessary one has to enlarge for this the basic probabi-

lity space; but the wanted result S<D holds in Q if it is

true in the enlarged space.) Since XDeA a.s. r'PD and hence
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D
D°> D by definition of D . From equality of the potentials

V,PD. is carried by A ; this means X _.e¢A a.s. and therefore

"’PDU = r,PD,U follows that D° = D a.s. and so DS ar.s.

Proposition 2. lim t™'{pU - M, 1) £ lim t7'<pl - N, 1D .
t»0 r t oY) t

0)

PPT .

Proof. Apply the lemma with A = Bo (section of B at t

and S some stopping time of m.r.e. with respect to v
(The assumptions of the lemma are satisfied, because of
DZT , what implies ra.PDU < f"PTU = l"‘PSU .) The lemma gives us
’~

D>»S and therefore Mt = rLPSAtU > r’PDAtU for all t2>o0.
So it suffices to prove

i -1 . -1

Lim 7 0 FPpaclr 1Y € Lim €7 <pU - N, >.
But this follows from
-1 T P o
lim t <v, r.PDAtU,1> = 1ém t™' €'(pat - TAt) <
i t‘ = = = r =
li:m P (T<t, D>0) pt(r = 0, D>0) Pl(x €B_, xofBo)— 0

({D) 0} = {X°¢Bo.lj because By is finely closed .)
Only a notational generalization of Proposition 2 is
Proposition 27 For all te R, one has
Lo =1 At L =1
Lim b7 KNy = Mey 1€ in hTIKN = Nyt >

Proof of the theorem (continuation): We consider the two func-

tions on R+ ,m and n , defined as

~
m(t) =<pU - M, 1) | n(t) =LpU - N 1D
and show, that m <€ n . This will complete the proof.
Since both functions are Lipschitz-continuous and m(0) = n(0),

it is sufficient to compare the right derivatives

d+n

-1 -1 At
£l = limh <N - N 1) 2 1limh” &N, - M 1 2
ds |,o¢ there t- Tt+h’ >2 " £ Mg 1> 2
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=1 ~ ~

_ _ _ . -1, A
Lim b XN - M, - (- MR 1> > Lmh™ M- M, 1) =

where the first inequality holds by Prop.2”and the last by

Prop.1 . So the theorem is proved.

Corollary. (Uniqueness of the ROOT stopping time). Let T be

a ROOT stopping time and S of m.r.e with respect to ""PT .Then

one has S=T a.s.(P"”).

Proof. Since T 1is also of m.r.e. with respect to r_PT by the

theorem, we have for all t%»O

V.PSAtU = \"PTAtU .
It follows
rSSAt "fl\t P
g! o feX,du = g ) fox du , fe€, t>0

wcS T .
g SOF(Xu,u)du = S'TOF(xu,u)du , F20 on ExR, .
Now we apply the lemma to the space-time process (because T
is the first hitting time to a finely closed set) and obtain
S£€T a.s. (Pr'). But since r.PSU = pPp U one has S =T

Remark. If S and T are stopping times , r'PS = rPT =V,
and T is of m.r.e. then obviously S 1is of m.r.e., too, if
for some strictly positive £ 684, and all teRr,

- = > - oo
<pPpael = pPpU £> =pPg, (U - pPUED <
This holds, in particular,with £ = 1 if

2 P e ¢ T
efs2 = 2 (ar(E f du ) = 2 fdt(?l"f au) =¢'7?  ,because for
© Sat [+ S) Tat T™
each t the inequality E_hj du = irjd-’* is true by
Sat TAat

the m.r.e. property of T . So we get from the corollary the

final result : if a ROOT time T with VPT = VY exists and

$fr%< 00 , then any time S with pPs =V and eFs? = gkp® g
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equal to T a.s. (Pr).

S)The converse problem.

Under general hypotheses the following theorem does not yield
very strong estimates for a stopping time of m.r.e. It is easy
to construct examples of a deterministic process and a measure

vV where the upper and lower estimate for a m.r.e. time with

respect to Vv are +#©0 and O , respectively. The corollary, how-
ever, makes sure that for a nontrivial class of processes the

ROOT times are exactly the times of m.r.e.

Theorem 3. If T 1is of m.r.e. with respect to rPT then there

exists a barrier B (with sections Bt) such that

inf {t: t3o0, X €B JeT < inf {t: t2o0, XteBt} a.s.(Pl‘)/

where B = ‘ ]B
t+ ]
_— syt

Corollary. If the one-point sets are regular for the process

(Xt) any time T of m.r.e with respect to PP is a ROOT time.

Proof of the corollary. We apply the theorem to a given T of

m.r.e.; we assume that B 1is finely closed in space-time (pas-
sage to the fine closure of B does not change the upper bound
for T , whereas the lower bound can only decrease). If we show
that Bs+c Bs then we see that both estimates agree and that T
is defined by the barrier B.

Now let x be in Bs+ ; this means (x,h)e B for all s<h .
The regularity of the set {x} implies that almost all paths of
the space-time process starting from (x,s) in an arbitrary

small time intervall hit the set {(x,h): h‘>s} and hence B.

Since B is finely closed we have (x,s)&B or x eBs .
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Proof of the theorem. Let T be of m.r.e. with respect to F‘PT7

define the measures "\t and Pt for t €R, by
= gk . = steox -
<'>\£,f> 2 fOXT 1£T<t} ' <r~t,f>— g fOXt 1{T>/t} ’ fé£+.
(The idea of the proof is to show that lt and f"f are something
like disjoint; choose Bt as a carrier of 3\* which is not
charged by }Lt and B as the set with sections Bt ; B is

a barrier since 'l\t is increasing and f*t decreasing in t.)

First we prove two propositions.

Proposition 3. Let t e R+ be fixed; for any stopping time S

the measures f—> £Pf°xs'1{tsS<T} and Ag are disjoint.
Proof. 1) If the assertion is wrong then in a suitably enlarged
probability space thereexists a stopping time S with

0 # pPgs ), , t€S<T in {5 < oo}

t
and a time H with

PPy = pPg + H=TLt in (Ha o} ;
finally, by our interpretation of balayage order, a time K with
k(s (Yt

K>H , g Lfoxu'1fﬂ<t}du = € fsfcxu"l{S‘”}du , £ e£+.

Here the set A:= {H<K} & {H<t) is disjoint to B : =
{s<T) = {s<eo}, since T<t on A and T>t on B ; pl(a)
and pPM(B) are strictly positive. We define a new stopping
time T by setting

T"= K on A, T = S on B, T = T elsewhere.

= =

2) We shall show that luPT = rPT. and r'PTXtU - rPTM__U ¢
what contradicts the m.r.e. property of T . Let us suppose f

ei‘_ is r.U—integrable; then one has

T/ T
{{PpU - pPp U , £> = e Lfoxudu - £foxudu) =
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T
K
= grﬂA- J’H foxudu - 1B- 'rs foxudu) =0 ;

if in addition £ 1is strictly positive we have

Tit Tat
<r-PTAtU - r-PT;\tU ,f> = $H fo fox du - fo fox du) =
Kat Tat
= EPH . f foX du - 1 f feX du) = (since Sat = Tat =t
A Hat u B Sat u

Kat
on B) = EF’“A' j foxudu) > 0 , since H<KAt on A and

H

p¥a)Do .

Proposition 4. Let (a ,V be finite measures on E and W a

stopping time, for every stopping time S (even in a enlarged

S
to V . Then there exists a finely closed carrier A of v for

probability space) the measure fl——bEPfox '1{S<W} be disjoint

which w<pD, a.s. (P®) .

A

Proof. 1) Let A CE be a finely closed set for which

S s = é - . = -
3¢) Vool ¢ Réd (v - s i )U (v st)HAsU
for each fixed s €(0,1) .

S
Since v”is carried by As and vitends to v as s tends to

O , V is carried by A’ := \ ) A and hence by A , the
s rational

fine closure of A". Since DA = DA’= inf {DAS: s ratlonal}

it is sufficient to prove that We DA , for every 55(0,1).
s
2) Fix s and choose a time R so that vS: = v—V:o= s.(aPR;

. s _ .. X .

it follows VHAs voo- s PPRHAS , hence, in virtue of (),

s- @P_H = s*PH . This leads to @EP.U > pH, U and finally
PR A °ag PPr A

by our lemma to R<D a.s. (P®.

Ag

3) To conclude the proof we show that W <R a.s.

From V> s- (’PR it follows

-1 (
s -(v 'f>>’£f°XR.1{R<WS , £ e?.“_,
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and, by hypothesis on W ,

4 . _ . . ©
& £oXy 1£R<W} 0 for all ch*, i.e. W<R a.s.(P').

Proof of the theorem (continuat{on). From the propositions we get

by setting @ =W vV = 'At:

there exists a finely closed set At such that

carries :\’t , (i) T < t + DAzgt a.s. (pt.

If one defines B by B:= \ ’ Atx[t,”) then B 1is a barrier
t rational

(i) AL

and (ii) implies
T < inf {t : tz0, X, eB.} a.s.
Conversely, by (i) we have for almost all (Pr') we_Q:

X () (W) & AL for all t rational, t>T (w)

and, because of AtQBt for t rational,

)(w)eBu if Tw) =u ;

XT(l.: +
this means T » inf {t tt>o0, xteBt+}

as was to be proved.
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