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INTERVAL PARTITIONS AND PAIR INTERACTIONS

Wilhelm von Waldenfels

Introduction.

The paper has two different objects, only the second one appears in the title.

§ 1, 2, 3 treat the algebraic aspect of cluster expansions. A cluster expansion is

related to a hierarchy of functions, i.e., a sequence fo , f1(X1) > X ) 2. ,... .
These functions may be connected in different ways. The most known example is

,~ (x^,... , x~, ) - :f~ -~~(~....x~
if dist ( ~,Xn,...~ ~~ is large. Then new functions ~~x~,.~., X,a
which are polynomials in the old ones may be formed, with the property f [X~" ~ ~~’=(~
if ’~ ~~,...~ may be divided into two subsets whose distance is large. This

kind of condition determines f [X1,..., xn J in a unique way. This fact is of

order theoretic character and is explained in § 1. In § 2 three different orderings are

presented which are related to three different kinds of hierarchies in § 3.

In § 4 the results of the preceding sections are applied to the problem of cluster

expansion of pair interaction. We deal with a variant of Ursell-Maier’s treatment of

pair interaction in statistical mechanics. The essential difference is that interval

partition instead of general partitions and linear graphs instead of general graphs

come in. The result is somewhat weaker than the results in statistical mechanics. I

have to assume that the function c. ~ ~~.) -- ~ I is exponentially bounded.

§ 1. General algebraic considerations

We assume that P is a partially ordered set with the property that for any

given there exist only finitely many Jj with ~t~x . Call A the lower

triangel of i. e. , the set ~(~~ X ) : ~ ~ X E ~ ~  X ~ , , A convolution can

be defined for real functions on 0394 by

03C6*03C8(y,x) =  03C6(y,z)03C8(z,x)
The algebra of all real functions on 0394 with convolution as product is called the

incidence algebra of P. Distinguished elements are the unity (~(~ ~~ {Kronecker’s~)
and the! -function ~ ~~~ ~( ~ = 4 and its inverse the Moebius function .~C. The

existence of ~(,(, can be easily proved by using induction and one of the defining

relations
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~ ~ (~~) ~ 

(z,x) = 03B4(y,x),
Hence (x, x) and (y, x) = - (z,x) for y x.

If d is a function P ~ V where V is some real vector space, then the

elements 03C6 of the incidence algebra may be applied to 03B1 by the formula

~ ~ q? (~) = ZL ~ ~ ~p ~ ~
~~X 

So

/g _ u x j j g ~(~- Z. o(~;’ 
~ 

" ’ 

and hence

c= 03B2*
or

03B1(x) = L 03B2(y) (y,x) .

~~
Define the vector space all formal real linear combinations of elements

of r . For any X define in an inductive way the elements by

X = Z: [y]
Hence [x] = X if X is minimal and = X- 2- if X is not minimal.

The considerations above show that 
~

M. I 
This is another way of defining  .

Assume now that two elements x,y in P have a lowest upper bound x/By

and extend this operation to V(P).

Theorem 1: The element M C V(~) satisfies the relation

= ~~~? L 0 

and this relation determines up to a factor.

Consider the subset ?, = (~ ~P .- ~ XJ . By the function f pp 
the set I is mapped onto Q={tL~.T~:~A~=~~
Hence 

= L (z,x) (z ^ y)

= [ (z,x )]u,
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If equals x 039B y the maximal element of Q then {z : z ~ x, z 039B y = x 039B y jf "
= ~~ ; I Xn ~ ~ ~ X ~’ and the coefficient of XAU vanishes if ~X .
Assume now that the coefficient of ’U’ E U( ~ ~U’ ~ ~Ll vanishes. Then the sum (~,~~()
over the set ’~~ ~ ~ ~ X ~ ?: A ~ -~ ~ ~ equals the sum over the 

~/B~~tt.j; =- ~ ’ ~ ~ ~ ~ ~ and this sum vanishes by the definition

of/i So CX ~ /1 ~ _ ~ if This part of the proof is nothing else than

a special case of |1|, theorem 2.

If k X then one (z039B x) 039B y = z and hence
° 

- X then for 2  X one has % ’ = ([ A X ) A ’ - % and hence

We have still to prove the uniqueness. The relation [)(1 ~B ~( ~ [x] shows that
[X) is a linear combination of elements ~ ~ X hence ~X ~ _ ~ J (~) X .

If y  f then the coefficient of y in y is equal 03B1(z)=0.
Hence 03B1 (z) -=? (z,x) 03B1 (x) where o( (X) may be chosen arbitrarily. 

§ 2. Applications to three different partially ordered sets

First example: Subsets. Consider the partially ordered set of all finite subsets

of IN .It is well-known (cf. |1|) that the Mobius function (S’,S)= (-1)|S-S’|
for 5’~S.
So ~~ )

~ ~ (~) - (~; >

[~z ~ ~ C~z) - t~ ~ - (1) + (~~
and generally

L (-~’"’’ ~ 7 

It is easily checked that

S ~ ~ 0’

if p . This establishes by § 1, theorem 1 again a proof for the values

of the Mobius function.

Second example: Partitions. The partially ordered set consists of all finite

subsets S C ~ and of all their partitions ’~5~~..~~ = ° ~~
for short. Two partitions ~"’~ ~ ~ ~ 1 ’’ ° ~C 

I 
are in the relation

’~~ L ’~’ if S,~u... u S~ = S,~’U ~ ~ , U and if every set ~~ ’~)~~,’~e.
is a union of sets s’

We introduce a product 

in V(P) 
by the definition 0’ ’ (S^~...~ S )~ ~S~..~S~)

03A0 = S1... Sk, 03A0’ = S1’...Se’ ~ 03A0 03A0’ I = -oF O 
1 

... Sk SA ~ ... $e 
r 

otherwise.
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With this product the set of all final linear combinations of elements of P gets

an associative and commutative algebra called A(P).

If IT -= ~"’ S~ then the partially ordered set {~~ is the

product of the partially ordered sets ~ ?.’ ~ I 77, ~ o. j for ~"’~ 
By proposition 5, p. 345 of (1~ [ one gets immediately

f~ ° ~3- Cs.3 . ° 

and by proposition 3, p. 359 of )1) [ 

~ ~ ~ ~ [S] -= S - 

/  S1 S2 S3- 3! S1 S2 S3 S4 + ...

The last equation can be easily derived by some algebraic considerations. If

A is an associative algebra and f and ) are functions of the set of all

finite subsets S into A , then a convolution can be defined by

f * g (S) = f(S1)g (S2)

where S1 + S2 means disjoint union. The identity with respect to convolution is

03B403C6 : 03B4

03C6 (S
) = {1 if s = 03C60 if S ~ 03C6.

Take now for u4 the algebra A (*P.) and define
s for S ~ 03C6

l : l(S) =  S for S ~ 03C60 for S = 03C3

and 

7 ~ ~ y~~ ( o 
Then by definition of one has

s = r i:~
S

= Z: z: t:s~..- ° 
k~1 s1 sk ~ s

= 1 k! [s1] ... [sk]
so 

+ c = 

and

qy = Zj, (~ +~ ) - - - i ~ -~ ~~~ -...
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Taking on both sides the values on the one gets L 5J and hence X~-.
~ (s,- ’ its) = (-~)~ ~-,)’. ’. ~ s," ~ 

Third example: Interval partitions. Here ’ is the set of all finite intervals

1~: j~/ and all partitions ~ of intervals into subintervals. If J.~= {~-~~..~J
then a partition I1...Im has the elements Ij = {kj-1,.., kj-1} with

 k1  ...   km = l +1.
Remark that the order of the in 03A0 is fixed by the order of If

03A0’ = I’1... Ie’ then 03A0 ~ 03A0’ if u Im = I’1u... u Il’ I 
and any

subinterval JL~ ~=~~’’’3~~ is a union of subintervals of . We define the

algebra A (P) of formal linear combinations of elements of "P by the product

n, ... i~i/- -i/
03A0 = I1 ... Im, 03A0’ = I’1 ... I’l ’ 

~ 03A003A0’ = if I1’ follows directly to j C?~ otherwise.

With this definition /4 gets an associative non-commutative algebra.

As in the second example

CI, - 1~ - LIJ -- 
and one has

[I] = I - 03A3 I1I2 + 03A3 I1I2I3 - 03A3 I1I2I3 I4
For the ordered set of interval partitions of {1,2, ...,n} is isomorphic to

the ordered set of subsets of ~~ ~ ’’) ~* ~ J With respect to inclusion.

We prove again this last formula by algebraic methods which show the connection

between interval partitions and the inverse function.

If .1.... Im are finite intervals one following the other we write

1~... ~ L~’= 11 0 1~0’- The empty interval has the property

T* Define a convolution on the set of all functions of the

finite subintervals of N to an associative algebra A by

f~ (i) - ~ I, = T °

Take for ~T the algebra A (?~ and consider

(. : L (JJ = I , 1~ ; ~ (/) ~ (~

~ -. ~(D = m, 1~.~; j ~(0)= ~
Then by the definition of ~ [
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I = r M

= 

° Lk = Ii Ij ~ 03C6 
M-.- ° 

HenceHence 

Ciy + .  03B403C6 + 03B3 -t- * + ** -to.

.(~-~)~-~ ~ 
and 

 = l 03B403C6 + l = l - l*l + l*l*l 

This yields immediately the expression for [j].

§ 3. Hierarchies

We are going to apply the results of § 1 and § 2 to three examples of hierarchies

correspondeing to the three examples of § 2. A hierarchy of functions is given by two

sets X and Y (where Y carries usually an algebraic structure, say Y= tH
or ~ is a real associative algebra) and a sequence of functions

jo = const ~ 03B3

- f~’. ’. 
Assume furthermore a sequence of variables )~ _. taking values in ~( and

define ~ (~J = ~p and for a finite subsequence (~ ...~ ~ ~ the function

~(t’~.-~~~y -~(~)- ~~)~)--f~(~) ~ X,~) where X-(~~,...~
So -~(L~.-) ~"h ~ is a function on X ’~ depending only on X’,’ .. X’ .

and f appears as an application of the set of finite subsequences of  into the

set of all functions X 2014) V . Between the elements j-~ of a hierarchy diffe-

rent relations may hold.

First example: Assume the functions ~~ to be symmetric and to have the property:

there exists Kd X such that ~ ~. ~~)- ~-~ ~ )X~ ) if

~. If 5-= {C~ ..;, ~. N is a finite set define

~(S) - ~ (’~-.~).
Assume that T~ is the partially ordered set of all finite subsets of ~ . .

Then f can be considered as a function of ~P to the set of all functions X 

Assume Y to be a real vector space and extend -~ in a linear way to 
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Then

f[s] = 03A3 (-1)|s-s’| f(s’)
has the property

f ~S~ (x) = (J
if there exists L E S such that X~ ~, K, Call T = ~ ~ E S ; X~ E, K ~ ,
Then for any S one has .F (S J) ( X ) = -(" (Xj and thus

(CS~ 1 Cx) ~ 
As S ~B S one has by theorem 1 of § 1 that [ S ] /~ T = (7~ and so

.~ 
These developments may explain why the functions f play such an important

role in the Taylor expression of a Poisson measure (5~. There one was looking for

functions with the related property .~,~ ~ x~~",~ = ~ X~~ "~ Xh"~ ~
if -~ oo . , So the functions .~ [ S ~ have the greatest chance of all linear

combinations of f to be integrable as -F C S ~ ~ X ~ -~ ~ if one of the X~ 
goes to infinity.

Second example. We are commenting the algebraic method of deriving cluster ex-

pansions in statistical mechanics as stated in Ruelle’s book ~2~. Assume again the

functions ~ ~, to be symmetric. So "f can be considered as a function of finite

subsets in M . . Assume that Y-== 1R that X is a metric space and that there

exists a constant 0 such that

= 

if ’~S,~ ~ St ~ ~ f,~ is a partition of S such that >/0
with X S ~ . 

~ 
> s 

Let ~ be the set of all finite subsets S c hJ and all their partitions

- ~-~ S ’" -S*t- Extend f from all finite subsets of fN to A (~P~ as an

algebra homomorphism by

- ~ ~ S~ ~ ....~ ( S~ ) .
Then

f[S] = f(S) - 1!i’ Z. 
S 

~ i’. " L ~(s,)~~)~(~~_~.
S
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has the property

~t:S3(o- o
if there exists a partition 1T == S~ S of S such that dist ( Xc ~
The proof is based again on the theorem 1 of § 1.

Assume a real symmetric function ~ ~ X 2014*> W~ and define

- f(~ ~
fn(x1,..,xn) = exp - 03B2 03A3 03A6(xi,xj).

The famous theorem of Ursell and Maier j2j [ states

{~~..~](~~ ~ TT [~to-~~~~~~]
y 

where the sum runs over all connected graphs 03B3 with vertices 1, 2, ...,n.

So -j~[~)~. ~) vanishes if $(~~ vanishes for dist (~~)~~0
and if ~~ ~~ ’’ 

-) J can be split into two subsets ~ S such that

dist (Xs1, Xs2) ~ P ’ The condition for 03A6 can be weakened in various ways,
$()( ~B-~ ~ if dist ()~) -, - or X ~~~ ~ ) is integrable, etc.

Third example. This example is quite similar to the preceding one, the main

difference is that X = TR and that the linear ordering of ~~ is heavily

utilized. The use of interval partitions has been used in the theory of pressure

broadening of spectral lines J3), , ~.
Denote the variables *t.~ ’L . , . instead of X~ X.. ~ , and assume that Y

is an associative real algebra and that the -~~ are symmetric and that

~(~.. > ~) - -r~~..~~) ~~(~~..~)
if -~ ~ ... > ~ ~.~ and ~ ~ ~ where 27 is a constant Zo

Let T be the set of all finite intervals in N and all their interval par-

ti tions tT-= L~ "’ -L~~ Extend § from all finite subintervals to an algebra

homomorphism A (~P) 2014=) Y by

~(~~ ~ ~(1.) - ~ (1~). °
Then

ftn-fm-l- 
Ii"-’-~-’- ’

and ~’ [I] has as in the preceding two examples the property 
2014 *r ’ ’ ’
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if there exists a partition I, = In o such that "~ ~ ~ ~~ ~ > ~~-(’~~ ~~~
where ~ is the last element of 1~ the first element of I 

i,

Assume now that Y = C

~(~~ - ~
~ ~)~
fn(t1,.., tn) = exp ; 03A3 03A6(tk-tj)

where 03A6 (-t) "= 03A6(t) Then a theorem similar to the theorem of Ursell and Maier

of the preceding example holds.

Theorem. One has

f[1,...,n](t) I = 

(4> .. , na > ey 
where A is the set of all linearly connected graphs with vertices 1,..,n.

~~~ ~L ~ ~

We say that a graph ~y with vertices linearly connected if there does not exist

a partition 1~ o 1~.~- ~t~- ) ~ ) into intervals JE~ ) ]I- such that In
and T- are not connected by  or, in other words, if there does not exist a k,
~) ~ -~ ~B such that any interval C’~j’*] ’)J ~ ~ is contained either in

[~~ or in ~-~~~
proof. The proof is quite similar to that of Ursell and Maier’s theorem. Write

~..~)(~ =~(i)~)
= 

03A0 

[1+(expi03A6(tj-tk)-1)]
= L IT (expi03C6(tj-tb)-1 = Z 

y y 
’

where the sum runs over all graphs with vertices ~~..~~j -.~.over all sets of
pairs (j,k),j  k.
- 

If 03B3 decomposes into its linear components 03B3 1, 03B32,, 03B3m then

03A8(03B3) = 03A8(03B31)...03A8(03B3m). To corresponds a decomposition

of I into 1~ o ... o T~. and ~. is a linearly connected graph on I.
for ( = ~~. --~ 1~. On the other hand every graph on J_ can be obtained by

choosing a partition L-= I~o .’ - o and then by choosing a linearly con-

nected graph ~/. on Ij for every ~~~)"~ ~ ’ Thus
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M1

CI) = 
o I _ = 

with 

q(I) = 03A3 03A8(03B3).~ ~ ~ = Q e A ~ ( I ) 
Y .

As this system of equations determines in a recursive way by the 

and as this system is formally the same as that combining I and one gets ( it] = j (I
§ 4. An analytical problem related with interval partitions

Throughout this section we assume a hierarchy (fn)n=0, 1 Z , r , 
of complex-

valued symmetric Borel functios on R bounded in modulus by 1 and j o = 4 .
We assume translational invariance, i, e. , ~rn ~~~+ ~~ .. ~ ~"~ -~ .~ ) is independent

of h , so f1(t) = const = f1. Define

(1) F(T) = e-cT (1 + 
03A3 

cn fn(t1, ..,tn)dt1 ... dtn)

This formula has a probabilistic interpretation. If z,~~ ",~ ~ N are the jumping

points of a Poisson process with parameter C in the interval [0) T J
then

= E f N (~,, ...,z~ )
We are interested in the Laplace transform of ~( T~)

c2) F C p) _ ~o e-pT F (T) d T

, for 0 .

A simple case is clearly (t1,.., tn) = f1n, Then F’ (T) = ,eX c(f1-1) T
and A 

qjq j " (p) = 
1 p-c(f1-1)

.

As is symmetric
( ’ .. j = ,~, ~ ...° 

o ~ ~1  . ’ ~. ’E ,~ G T
One introduces the new variables r~o~ ... ~ by

~ 3 ) ’ = ’lA 
o

- ~Z = + 

~,~ _ t M,~ ~ . , . , + ~t q

T = u0 + u1 + 
... + u n-1 + un



575

and obtains 

_~ 

(4) P(p)- 1 c + p [1 + cn duo ... dun-1

e-(c+p)(us+...+un-1) fn(uo,uo+u1,u0+...+uu-1).
We generalize and introduce a complex Borel measure p on 1R~. with j~~ I (1R~-) 
Define the formal power series in the indeterminate ~ by

o~

(5) > ~,~~~) > = -f- ~ ~~ ~.-;~(~.)... >

~(~.~.-t~~...~~...~ ~-J.
As the -f are bounded by 1 this power series converges for ~ ~1R~-)/ ~ J
hence in a neighborhood of the closed circle )~)-~ ~ Using the translational in-

variance of ~.~ and remembering the convolution defined in § 2, third example, one

obtains

P~ ~~ ~ = ~,~~~~
if Q is a hierarchy similar to f.

Remind the definition of the A(T)- valued functions ( and 03B3 of § 2, third

example. As ~(((f)) - ~ (I) and ~(~(D) for I ~~ one gets

setting g (1) = f [I] for I ~ 03C6, g (03C6) = 0 the equation

(7) ~ - ( ~-. ~ )’~’
As -~- t2014~ is a homomorphism with respect to convolution

(8) ~JC ~ ~ 20142014201420142014~20142014201420142014 . ,
~-~~~

If ~p 0 ~ (%) converges = ~ then

(9) P.~~) = 20142014201420142014-’20142014201420142014201420142014-
for For the equation ~Pj~~> for

~~:~ (~ by Abel’s lemma.

We apply this formalism to equation (4) and put

(10) > p(~~~)~ ~ 
So A ~
(10a) > = ~ P~~~(~.
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Then i ~ 11~+) = C~ ~C+ ~~ ~ y
Now using translational invariance

( 11 ) .. (~p~dMo)... ~(~~pIM~_^~ 1’U~~..,Mn+...+,~,~_^ ) > =  o 
G, p >

(12) ~~ = ~ " .~1

G’Yl ( r > " I ’ ’ ’ I t ~,,,,~ ~ " ~ ~ p, ~ ~,~,_^ ~ ,~, ~ ~, ... , M~ + ~ ~ .~ ~ ~,,_
for M7/2. .

Proposition 1, If p,g> (z) converges and Re p > o

(13) (p) = 
p -  ( G (p > - q )

where

G ( to) = ~~ + ~Z C ~ ~ . G~ ( ~ ) + ..
converges and is holomorphic in ~,~ > p,

Of course, formula (13) is a generalization of formula (1a). For in the simple

case ~M = one has G ~ ) _
Proof, For any p with > p one has by (9)

(h ) _ 1 c+p 1 1-t c+pG(p) 
_ 

p +  - 4  c (p> .

The next lemma shows a special case in converges /,

Let us assume for the moment that  obeys only the general condition )fJ ’ I l’i#+)  4 .
Lemma 1, . If there exists a constant L ~, 0 such that

~’~1~ ~ ~ ~ ~’~ ~ ’ ~’~~, .., ~, ~ ~ ~~_~ ~ ~~~.~ ~ ", ’~h ~
if ’~1 ~ ... ~ ~ ~,, and ’~ ~~,^ - ~ ~ > ~ and if I ~,D~t~ ~ ~
then ~ ~~ $ 7 ~~ ~ converges. 

Z

Proof. By the discussions of § 3, third example, the function ((, >’°I £ ) h
- .~ ~~(~ 2~.. ~ M’ ~~~ has the property of vanishing if ’~,,~ ~ ... ~, .~k and if

there exists a ~Q ~ ~ ~ ’~  M such that ’~P~+^- ’~~ ~ L . Hence Q ~ t~,~~, _ ,
u0 -to "’+ un-1) vanishes unless uk ~ Z for k = 1,..., n-1 .

On the other hand ,~ consists terms of modulus ~~(, Therefore

j" ° ’ ( fi ) ... p (o(’l,c,~_ 1 ) j, ~ M p~ ... ~ M o + .. ~ f ~l~t 1,, _,~ ) I

is bounded in modulus by .~ ~ P ~ I ~o~ 
’~’ ~ 

This proves the lemma.

Theorem 1. . If there exists a constant t ~~ p such that

M (6a> - , > - (’~1~... ~ ~rn_ ~ > 
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if -~ - - ’ ~ and ~~~~ and if CU ( log 2, then for

any to with ~ ~ ~ 0 the equation

A 4
’ 

(o- c.(G(~)-~)
holds where G (~o) is holomorphic in ~~o ~o and is given by

G = 6~ +6~(~)~ G~(~)~~.

G.(,~ ~ ( ~(~. ~)

G, (~ = ~ ~ . - ~~ I ~ 3 (., .~ ~ .~) )

- ~ ~(0;~)- ~(o,~)~ + ~~J
Proof. After the preparations one has only to prove that ( fOtTi  ’- for

0(1~) given by (10). But this is immediate.

We treat now a more natural example. Assume a real Borel function 9? on ~~.
with ~~)-=~ ~~~) and define

f(03C6)= 1, f1 = 1, J (t1,..., tn) = exp i
4  m 

03A6(tj-tk)
Then, as has been pointed out in § 3, third example, one has

(~) > ~~..~.) - A ~ (If, i~ ... j na ) 
where is the set of all linearly connected graphs with 

and

(15) 03A8(03B3)(t1,...,tn) -= 

a (exp i 03A6(tj-tk) - 1)
In the following we identify a graph 03B3 on an interval I with the set of inter-

vals {. [j, k] ~ I ’’ (j, k) ~ 03B3} . Then I= (1,2,..,n) is linearly con-

nected with respect if there does not exist a -~~~-~~~ such that any

interval of 03B3 is a subinterval of one of the intervals [1, k ] or [k+1,n] .

We say that a graph ~ with vertices ~... ~) has a (linear) knot

~ ~) ~ ~  ~ if every interval is contained either in ~ ~J or

in , We call y twice linearly connected of it does not contain a knot.
We define the hierarchy g° on by

(~) > ~(~-..~.)= ~..(~~,~~.,...~~...+~~)
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of course

j ° ( §* ) = I  ( r J - 4 .

Proposition 2. Define the hierarchy h on R+ by ( (§§ ) = .g’ and

h (I) = l] for 1+ j25 . Then

(17) hn (u1,..., un) = 03A803B3 (0, u1, ..., u1 + 
... + un)

where 03A803B3 was defined in (15) and 039B cc 
signifies the set of all twice connected

linear graphs with vertices Oj 4,... ~ /h .
Proof. Let ’§/ be a connected graph on Oj 1,..., n, let O£ l1  ...  lk-1  oq

be the knots of 03B3 and 

g 
be the restrictions of /§/ to 1j. = [lj-1, lj ]

for j = 4 , ..., -k wi th o = 0 and lk = ’tl . The graphs yj 
° 

are twice

connected. Any interval [ f> i ] G 03B3 is contained in one of the I ’ , So

03A803B3 = [exp i 03C6(tp-tq)-1]
wi th t0 = 0, .., tn = u1+...+ un The product 03A0 .. 

depends only on the

(P> I ) G ) j
differences tp - tq > r’ i  Ij hence only °n /tN.. > . , , > ulj. 

AS in

the proof of Prop. 1 one concludes

( 1 8) g° ( 1, 2, .. , n) = h ( I1) ... h ( I k)and hence the proposition. = - ..L 1 L 0 ow. 0 L - {c -= (1) Z) ..’ ) n) 

-{ (I1) ." .t. (I k)

and hence the proposition.

Define the formal power series

 1 9 > j 
° 

( r> + 1 = 4 + £ z " j , , . j p ( p, I ... p ( p, J, ~ j j ’n ° jq~ 4 > ... > , j v
’h ?, 4

If it converges for z - 4 then

 20 > j 
° ( pj i > = G ( p >

Defining in an analogous way

(21) h ( p,z) = z n ...  P ( p, du1)... P (p, dun) hn (n1,...un)

then by (18) one gets

( 22 ) ) ~ ( ~’j % ) = /
fl - 

and a s
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(23) P~~ ~(~ ~ ~ ~"(~ ~
one gets

~  p~~~ (.) =_ ~- ~ ~201420142014
~~~ (c~~)(~--~(~,H)-~

Theorem 2. If -~(~,t:) converges for ~-~) to -~(~/))=r 

~ p~~ ~ "~ J
and W~) is holomorphis for > 0.

Proof. For~~(~ one has

~- ?~~~~~ [C+~)~-~(~t))-~] -=~-~(~~) 
Going to the limit z ~ 1 on both sides one gets (25) by Abel’s lemma. As F’
is holomorphic in ~- ~ "~ 0 one concludes that H(p) is holomorphic where it is finite,

hence W B~) is holomorphic everywhere.

In the rest of the section we discuss the convergency .

We considered a graph  on (1,2,... , n) as set of subintervals of 

These intervals are ordered by inclusion. Denote by V (, Y ~ the maximal elements

of this partial ordering. V(~~ is called the characteristic of ~/ . Clearly 7
is connected iff V (03B3) is connected and 03B3 is twice connected iff is

twice connected. Denote by A~O~... B ~) the set of all graphs on (~~)---~~)
Lemma 2. . Be ~ ~. m) such that J( (~o) ~ Yo ° 

Then

(26) 03A803B3 = 03A803B3o 
exp i 03A6jh

where

~, = { (T~) ’.0~j~~~, , ~ : [’T~~ 
an. ~) ~(~20142014~~.
Proof. Every ~ with V~V)-== ~/~ contains ~/~ and a subset of ~/ . Hence

03A803B3 = 03A803B3o  03A803B3 .

Now for any graph A on 0, 1, ..., n one has 
"

03A803B3 =  exp i 03A6jk
as one proves easily by induction.
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Assume a 0, 1, > ..., fit and X (03B3) = {[03B1j, 03B2j]; j=1,...,l}.
Consider the set and order it with respect to the

natural order, so /!- : ~= ~ ~ ~ 3 = t Jj > J"= C~..~ and

0 ~ ~. ~ ~  - ’ - ~ and/~~.2.(~-~). . Then

03B1j = 03B1j, 03B2j = bj and we call the graph

03C9(03B3) = {[a1, b1], ..., [al, bl]}
on 0, 1, .., m the reduced characteristic of 03B3 . 03B3 is connected iff 0 = 0
and and is connected. The same holds for 03B3 being twice con-

nected. We draw some simple reduced characteristics for a) twice connected and b) con-
nected but not twice connected graphs.

a) 

b) 

A graph which is equal to its reduced characteristic is said to be reduced.

Lemma 3. Let ~y~ = be a reduced characteristic and denote by

A(0).--)~) (~o ~ the set of graphs y with vertices 0~.. ~ It) such that

0 and = n and that Co (y) = 03B30. Then

(27) | ... P (p, du1) ... P ( p, dun)

03A803B3(0,u1,..., u1 + ... + un )|
CO

~  ... (p, du1) ... (p, dum) 03C803B3o(0, u1, .., u1 + ... + um)
with

(p, du) = c e-Re p 
u du

and

03C803B3o = 03C6ij

and03C6ij(t) = 03C6(ti-tj), 

03C6(u) = | ei03A6(u) - 1|
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with 

~) .~ 4 = ... ~ 
’~ M = M ~ + -- ’ ~- M M ~ l ’~ _ ~ ’~ o~ i:...)..) t~~ ,

Proof. Let ’~o - ~ CQ^~ b~~ ~ , , . ~ , Ca~, b,~ ~ ~ with A~. = o and 

Then the characteristic 03B31 of graph ð’ with 03C9 (03B3) = d’o can be obtained by

choosing intergers 0 = Jo  03B61  03B62  . _ ,  03B6m = n . Then by lemma 2

| 03A803B3| ~ 03C803B31 =  03C603B6i03B6j.

and

~ ~A(o,...~)(y.)..~(~)~~ ~ ~2014 (o,. ’ J I>O ) ~ £ lg> ° ~ (h, r~M~) ~~~ 
03A803B3(0, u1, ..., u1 + ... + un) |

~ ~o cn1 u1n1-1 (n1-1)! e-(c + Rep)u1 du1... ~cnm-1
. ~ . 

’1 . 

o ~m~..~~1 1

e-(c
+ Re p) umdum 

 03C6(vi+1 + ... + vj)
wi th

03BE1 = n1

~~ ~~... 
and

~ ~ ..

vm = u03BEm-1 +1 + ... + u03BEm
Summing up over all values of M,~ 7~ ~ ~ .. , ~ M ~ one obtains the right side

of (27).

Proposition 3. A sufficient condition in order that -~, ~h~ ~ ) converge for

~~~ is that

(28)  ... (p, du1)... (p, dum)03C803B3 (0, u1,.., u1+...+um)
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converges where the second sum runs over all reduced twice connected graphs ~ ~ L L~)~ J >
...,!:~.~~ with a~ = d’ ~ 6~ :. ~’I~t.
Proof. Immediate consequence of lemma 3.

It was impossible for me to prove the convergence if one assumes that Cp is

t-integrable. The Kirkwood-Salsburgh technique fails in this case. I was only able to

prove convergence in the case

(29) ~ 
with 7B"? 0 We begin with some topological lemmata.

Lemma 4. Let ?t = i (03B3) = { 03B21], .., [03B1e, 03B2e]} with L 03B12 G . ,. ~ qJ e .

Then
 ~~  .  ~~ e

and ~ 1 ~ /(L ~ .. ~ e ,
Proof. Assume (~.~ -= Assume ~’ /~j~~ ’ ~ Then

C and is not a maximal element

of the partially ordered set 03B3 . By the same kind of reasoning one excludes 03B2j+1 ~ 03B2j.
Lemma 5. Be ~ = x (,~~ .., ~ 

G o(2  . ,. 
j .

twice connected on 0~ . - -~ /Y1 Then ~ A’2  ~,~ and

~~ I /~~ ~ ~ is twice connected on o(~ ", ~ rh
and )(~~-== 
Proof. Assume ~,~ then between ~,~ and there is a gap in the

graph and 03B3 is not connected. If 03B12 = then p(2 is knot and 03B3 is not

twice connected. Thus ~~  ~,~ Assume there is a knot in ~~ ~ say = 

for one ’~Q ~ ’~? = 2~ .. ~ ~’ ’~ . As «~  o~ and ~,~  there follows

that ~ ~ - ~~~ ^ is a knot for ~J too. The same reasoning applies to gaps. Hence ~ ~
is twice connected.

Theorem 3. Assume

c~9~ ~ e~’~’-, ~ ~ /..-"’’"
and 

~_

( 30) c 03BB (1 + c 03BB)2  1

Then h(p, z) converges for z = 1 and any p, Rep ~ 0 , 
Hence the

hypotheses of theorem 2 are fulfilled.

Proof. Denote by G the set of all reduced twice connected graphs. If ’~ is a

graph on 0~ ~~ . , ~ ~Y1 denote

00 

~ _

A( 03B3) =  cnd u1...dun 03B3 ( 0, u1,.. ., u1+...+un )
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with

03C803B3(t0, t1..., tn) = e
-03BB |ti - tj |

It is enough to prove

I. 0 00
We finish the proof in several steps.

(i) ~, b~~ ... ~ y b.~~~ is a graph on 0~ ~I~ , , .~ > Then

At)’)-= It: 1B1 ~-~ ~ . ~
where is the number of intervals ~ ~ ~ 

~1B1 
such 

.

The proof of this statement follows right away from the definition 

(ii) Denote by the subset of G consisting of all graphs of the form

_ ~ Ca~, b~~ > ... > C a~ , b t
Then

l ~~y) - ~ (f~~~,.--, > ~~~-B~
is a mapping from G. into 6~~

This is an immediate consequence of lemma 5.

(iii) Denote by ~~ 
the subset of (~ of all graphs of the form

Then G ~~,~,~ _ ~ for ~ ~ ~’YY~ and one has: 6 consists only of the graph

6 consists only of the graph ’~ ~0~2~~ 3 ~ 3 , 
So of all 

only G1,1 and of all G2,m only are non-void. Denote by Gl, m,m,
the subset of G of all graphs of the form

03B3 = {[0,m],[1,m’+1],[a1,b2],...,[ae,be]}
and by G’l,m,m’ the subset of Gl,m,m’ where m ~ {a2, b2,..., al, bl}
and G"l,m,m’ the subact m ~ {a2, b2,..., al, bl} Then Gl,m,

m’ = 03C6
for m>m’ 

I and the restriction of ~e to , is a one-to-one mapping

onto /L.’ , and the restriction to a one-to-one

mapping onto Ge-1, m’-1.
We illustrate a graph y on 0, 1,..., > m by a scheme of three lines. Write

in the top the numbers 0~~1~.,.~  ’t1 into the second line under each number the

index Qj which is equal to that number and into the third line the numbers bJ
So, e.g., ~ _ ~ ~0~2~ ~ ~1, 3~ ~ gets 

o ’I 2 3

Q~ Q.2
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Then the typical example of an element of G ~ ~,~I is
0 ’I 2 - .. rn^ - ~t ~,,,,, M,, + ~ ... 

I 
M,, ~+ ~I ..

(a) a1 a2 A3 Q "" am+1 am+2 am ’+1 
2 

b~ b , .
The reason for this scheme is easily explained. As b,~ G b~ G ~ . one has

~ ~ %’ and in the interval ~~ ~ ~ ~h~1 ~ no 
J J~ >, 3 can occur. As ’~ is

reduced, under each number 2~ , , . there has to stay either an index qy or

an index or both. As there are only b,~ and ~Z under ~~ ...~ ~ ~t~ the

rest has to be filled up by aJ’ in increasing order. As m E t J b-z) -."} ’It) J
one has am +1 

under m. Skipping away the interval. [0,m] from 1> one gets’

) 
- 1 ... ~,, - ~ ~w, ~w, + ~ ... iYt~ ’ ~r,,,’ +~ ~ . . ,

a z. Q 3 
’ ’ ’ am am+1 am+2 ... am’a 

""" 
I 
... ’" 

Z 2 
...

bZ ...

As reduction means only changing of numeration 
by one, one gets ~ e ( 03B3) ~ G l-1, m’.This application is one-to-one, as any graph 03B3 1 ~ Gl-1, m, can . I be written into 

.

form (a) and then ~~,~~ ~ ~,y~ ~ can be constructed for any 
A typical element of G "~~,y,,~~,~,~ l has the form

0 1 2 ... 1 Mn m +1 .. , 

I m’+1...(c) a1 a2 a3 . .. am am+1 ... am’ 2 ...

b~ b Z ...
Skipping away the first interval one gets

(d) 1 2 . , , - 1 nM 1 ... m’ 

i m’+1 ...

’l. .. , ~ A ~,,,, ~,~ a ,~,,,~ .. , ,

bz .. ,
Reduction means here not only changing of numeration by one,but loosing one 
These considerations easily prove the statements of step (iii).
(iv) If E G ~~ ~,,~~,yy I then A ~ ~ _ A (’t ()’)) and if ~~ *’) fh,,1
then A (03B3) = c2  03BB2m(m-1) A(~l(03B3)).

For the proof write the values of the qj into the fourth line of the schemes,
Then one gets for E G~)~) ~ I

(a’) 0 1 2 ... m-
1 m m +1 ... m’ m ’+1 .. ,

a1 a2 a3 
am a m +1 am +2 .. am ’+1 2 

...

b1~ 
b .1 2 . 

- - ,_ Mn ~ .. ’~ - ^ ~,,~, ’ ..
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and taking away the first interval one gets the graph ~~ :
A 2 - ~ - ~ + ~1 ... itM’ .~ ~ ...

( b’ ) ~~. - ’ ’ ’ ~ ~’~+~ ~~M+2 R-_ ’_ _~ 1 , , , ,

Hence by step (i) one has

A (03B3) = 
c 03BBm A(03B3’).

Similarly for ) E ~ ~~~~ ~ ~ , 
~’) C? ~I 2 ... ~-~ ~ ~ + ~ ~ + 2 ... 

’ 
’~l .,.

~ ~ ~~ - - ° Q~+, ~~,,’+L aM,,~ 2 . , .

b-1 b ... ,
~, _ ,, - % - ’1 ~.. ~ ’-1. ’

(d’) 
1 2 ... m-1 m m+1 m+2 ... m’ m’+1...
a2 a3 ... am 

am+1 am +2 ... am’ 2 ...

b2 ...1 . .
. 

m-2 m-1 m m ’-2 m’-1...
Hence

A(03B3) = c2  03BB2m(m-1) A(03B3’)
(v) Denote

Cl,m =  
A(03B3)

Then

C1,1 = c  03BB ; C1,m = 0 for m ~ 1

~~i - ’- 3 , C Z~’"~ ‘ ~ -~~~~ ~
and generally for .J. ~l 2.

~~ = z- --~ ~ ,~~ ~ ~~ .~~~I, i

~ ~ ~ I

i ~~ ~IM ~2~ ~ Mn _ ~I ~ ~_~~ W_ ~I .
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For following step (iii) and (iv)

Cl,m -  A(03B3) + [L AI..

_ W > [ i 
A C ~ ) -~

= 

m03BB A(03B3’) +
c2  m(m-1)03BB2 03A303B3’~Gl-1,m’-1 A(03B3 ’)]

(vi) Define the operator ’T’ on the space of all sequences (xm) m2 by

CTx ~- 
-. 

I

’~, ~ ~,,w, ’Y~ T

+ L 
IC ’2.?- 

1. i+ 

M,,~ ~ M,,.. ~ -1 ~n (m~-~ ) r~ L

Th en

(a)  A (03B3 ) = c1, 1 
+ 03C4

l,m

= c1,1 + (T lXo) (m)

_ :011’1 + 1, T x

_ C 
A, A + ¿ x0 , cT t) 

£ 
i >

where 1 is the vector (1,1,...) and Tt the transposed operator and

L

(xo)m = 03B42, m c 2 203BB3
.

The adjoint T 
t 

is given by

~m = Tt 03B6)m =  p m’ 03B6m’ 
+ q m’(m’-1) 

03B6’m
L’ 1 ~I ~’’ R 

f J= 

m’ m + 
m

’ (m’-1) m’

= (S 03B6 )m
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wi th p = c  03BB, q= c2  03BB2, provided all 03BEm’ are  o , As this is the case

in (a) we have

(a ’ ) 1 /l ( ) )   ~ ~ + i 
G 

~ 

J >, o 
’ 

.

As there is a one-to-one correspondence between sequences 03BE = (03BE2, 03BE3,... )
and holomorphic functions f ( £ ) = 1 03BEm z m-2 we introduce for o  «  q

the norm

I( j I( = ~~i° (4 - ) + [ ) ~ ~ ~ ( ( ( + ) )~ O  ] # ( £ 4 .

Then

’ l

the norm of the functional X0 is

11 x0 ~
d 

  3 2 03BB-3/ z
and the corresponding operator norm of S is

~ S ~ 03B1 ~ p 03B1 + q 1 - 03B1 with 03B1 = (1+ p q)-1
Hence 11 S 11 03B1 

 A if £% ( /l , c 03BB )
2 

 1.
This proves the theorem.

One has

S03BE(z) = p m’ 03BEm’ zm-1 + 1 1-z  q m ’(m ’-1) 03BEm’

= 1 1-z [P z2 zn t 03BE(t) dt + 9 
10

(1- t) 03BE (t) dt]’= 

I - * %’ ~O t f(i)olt + ~ ~ J (i.) glt ~
If

I [ I + > I s ( q - i * j > - 4 . a >

then

# - I z 1 ) ~ ’ ~ Is f (i > ) I  
.L 

~ (1- |z|)
03B1 [ p |z | 2 o t dt (1-t) 1 +d 

+ q 10 dt (1-t )03B1 ]
~ p + q

oL 4- «
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after some straightforward estimates. So I S ~~ a( ~ 1!- -~- ,
eX ,If -a

The right side takes its minimum for p( _ C~( + 9 ~ _ For this value of o(

If S II 
01 

~ ~ + ~ 2 _ . ~ (-1 + ~ )q 
a 

~+ 
~.
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