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HOMOGENEOUS EXTENSIONS OF RANDOM MEASURES

by M. J. Sharpe

1. Introduction. Let S denote a terminal time for a Markov process

X. In questions concerning the decomposition of the process in terms

of the subprocess (X, S), one encounters problems of the following type:

being given some sort of functional of (X, S) which possesses some homo-

geneity relative to the shift operator, find a means of extending that

functional to one which is homogeneous for the entire process. For

examples, one may consult ~4’] and [7]. The same sort of problem arises

in a different framework in 

One of the main results of this paper, Theorem 4, was proved in j~4’].

A complete discussion of Theorems 1 and 3 may be found in [8*].

We suppose that the Markov process X= (~, 3~, ? , X , , 0 , , Px) takes

values in a separable metric space E. The family (3 t ) is defined by

the usual completion procedure. It is assumed that X is right continuous

and Markov relative to (~t), and that the family (3’.) is right continuous.

These conditions are certainly satisfied under the "hypotheses droites"

of Meyer, as extended by Getoor [5*].
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2. Projections and Shifts. We denote by h the family of evanescent

processes: ZEh if and only if )]=0 for all probabilities

 on (E, e). We write Z = W in case Let m denote the

measurable processes: m= (6~+ X 39 V h , where 63+ is the Borel Q - field

on [R + = [0, oo) .

We define a semigroup of operators on m by setting 

Z(s-t, If Z is adapted, so is 8 t Z. If Z E h, 8t Z E h also.

Let ~(resp. P) denote the a-field of processes generated by h

and the family of adapted processes whose trajectories are a.s. right-

continuous with left limits (resp. left continuous). These will be the

appropriate classes of well measurable (resp. previsible) processes for

the special theory of projections which is developed here. It is clear

that if (resp. p) then (resp. P). It is not a difficult

matter to prove, following ideas from [2J, that special versions of the

well measurable and previsible projections can be defined in such a way

as to commute with the operators pt. More precisely,

Theorem 1. There exist mappings Z-~1Z and Z-~3Z of bm onto bi~

and bp respectively such that

(i) For each initial law  , 1Z(resp. 3Z) is the well

measurable (resp. previsible) projection of Z relative to (Q, ~’, P ):
that is



498

= E~’(1ZT; (resp. E~’(3Z ; 

for all (~’) stopping times T (resp. previsible (~’) stopping

times T).

(ii) 8t(lZ) = 1(8tZ) (resp. 8t(3Z) = 3(~ t Z)), for z0.

A measurable process Z is called homogeneous on [0, oo) (resp. (0, oo))

in case for all t O, Zu(6tcu) = for all u >_ 0 (resp. u>0)

a.s.. This definition is equivalent to requiring that for all t O ,

~ = ~ = ’(t,~) - ~ - "

By Theorem 1, if Z is homogeneous and bounded (or positive) then Z

and 3Z are also homogeneous.

The most elementary problem of homogeneous extension can now be treated.

Let S denote a perfect terminal time for X. We call a measurable process

Z , which vanishes on [S, homogeneous on [0, S) (resp. (0, S))

in case 1 [t,s) . 0398tZ 
= 

1 [t,s) . Z (resp. 1 (t,s) = 1 (t,S) . Z) for all

That is to say that for all Z (9 oo) = Zu+t (w) for all

u E [0, S(w) -t) (resp. u E (0, S(w) -t)) a. s.. An obvious example is

Zt = which is homogeneous on [0, S).
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Theorem 1 shows that if Z is homogeneous on [0, S) (resp. (0, S))

then so is Z.

We let St = t + So gt, noting that 1[St] = @ 1 . Taking account

of perfection of S we see that for all and 03C9 ~ 03A9 ,

= Su (w) if Su(w) >u+t. This means that for all w , if

0 s t  u then either (t, St (w) ) (1 (u, Su(w)) is empty, or S t (W) = Su(w).

We define M to be the random set whose uj- section is the closure in (0, oo)

of (0, The complement in (0, oo) of this w-section

is U(t, St(w)), where the union may be taken over @ , the positive

rationals. It is easy to see that the indicator of M is homogeneous on

(0, oo), and it belongs to ~ . We let M denote the complement of M

in (0, oo).

We shall say that a measurable process Z is perfectly homogeneous

on (0, S) in case = 0 whenever and for all w, > for

all t Z 0 and u > 0 ,

Z ( cu) = Zu ( 9 t w) whenever t + u  S ( cu) .

One knows [6J that if Z is homogeneous on (0, S) and Z is a.s.

right continuous, there exists a perfect Z’ which is indistinguishable

from Z.
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Theorem 2. Let Z be perfectly homogeneous on (0, S). There exists a

unique process Z which is perfectly homogeneous on (0, vanishes

on M U and is such that 1(O,S) ’ Z - 1(p,S) ’ Z. Moreover, if Z

is bounded or positive and 1Z can be chosen to be perfectly homogeneous

on (0, S) then 1(Z) _ (1Z) .

Proof. For uniqueness, it will suffice to show that if W is homogeneous

on (0, o~) and W vanishes on both (0~ S) and M then W = 0. However,

we know that (t, St) , so 1 (0,S) . W 
= 0 implies 0 = Ot (1 (0,S) . W) 

=

1(t,St). ptW 
= consequently W = 0. To show existence, we

may suppose and that Z vanishes on (0, S). We define Zs(03C9) =
(s, ~u) : t E ~~. Obviously Z E m and Z vanishes on M ~ ~0~.

From the definition of perfect homogeneity on (0, S), we have, for all

t, 

Ou(1(t~S) ’ = Ou(1(t~S) ’ Z) ~ ’

from which we obtain

= @)uZ . ’

From the remarks preceding the definition of M we may conclude that
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0398t+uZ and @uZ are identical on (t +u, Su) _ (u, Su) (1 (t +u, 

Since p Z vanishes off (u, S ) it follows that Z = ~ Z on (u, S )
u u u u

for all real u z 0. The homogeneity of M shows that 0398tZ vanishes off

(t, U Su) : and so OtZ = on pt (u, Su) _ (u + t, Su+t).

Hence ptZ = 1 (t ~) ~ Z . .

Since M is well measurable, may be assumed to vanish identically

on M. In order to show that 1(Z) _ (1Z) it is sufficient, because of

the uniqueness result, to show them equal on (0, S). Since (0, S) is

well measurable, we have

(1 (O,S) ’ Z) = 1Z = 1 (O,S) 
’ (1Z) ,

completing the proof.

3. Random Measures.

A random measure x is defined to be a positive kernel from

+ + to (~, ~ satisfying

(i) w -~ B) E ~ for all B E ~+

(3.1) (ii) B) is a positive measure on (R+, ~+)
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(iii) There exists a strictly positive previsible

process Y such that

Ex Y 
t 
(.)(., dt)  ~ for all xEE .

0 ’

We denote the class of all random measures, and by ~~~ the

subclass of those which do not charge For any ZEm , is

defined by

(Z~~)((i), dt) .

0

If Z is bounded or previsible then if We denote by

* *

~ (resp. P ) the class of random measures ~, such that for some strictly

positive previsible Y, (t, w) [0, t~) belongs to w (resp. P)

and Ex(Y*(., [0, for all x E E . We set and

p*0 = p* ~ m*0 .

One defines a semigroup 0398t of operators by (t)(03C9, B) =

;t(8tw, B - t) , where it is supposed that ~,(cu, ~ ) is extended to a

measure on R which doesn’t charge (-00, 0). It is easy to see that ê t
preserves P , lll and One has the identity
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(3.2) t(Z*) = 0398tZ* t .

(3.3) Definition. Let S be a perfect terminal time and 

We say that ~ is homogeneous on [0, S) (resp. (0, S)) if a.s.

(i) .) doesn’t charge [0, S(w))c (resp. (0, S(w))c)

(ii) for all t  0

(resp. 1 (t ~ s} ’* = 1 (t ~S) %~ ~)

We say that )t is perfectly homogeneous on [0, S) or (0, S) if

(i) and (ii) are identities in wand t.

The simplest case arises when dt) = dAt(w) where A is a

finite increasing process with A~ = 0. One may check then that K is

homogeneous on (0, S) if and only if A is a not necessarily adapted

additive functional of (X, S). In the case where A~ is not necessarily

zero, one obtains that K is homogeneous on [0, S) if and only if A

is a left additive functional of (X, S) in the sense of Azema.

The same sort of method used in proving Theorem 1 can be applied

to give the following dual result.
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Theorem 3. There exist mappings and of m~~ onto to

*
and P respectively such that

(i) For each initial measure ~, , ~,3) is the

dual well measurable (resp. previsible) projection of ~, relative to

(03A9, F t, P ) : that is,

E ~0 Zt(.)(., dt) = E ~0 Zt(.)1 (., dt)

for all Z E w+ (resp. +).

0, (i =1, 3) . 

One obtains, in particular, that if ~, is homogeneous on [0, S)

(resp. (0, S)) then so is If S is previsible, the same is true

for 3.

The result which is dual to Theorem 2, and is perhaps more

interesting is

Theorem 4. Let be perfectly homogeneous on (0 S). There exists

a unique which is homogeneous on (0 ’ ~) and carried by Mc such

that ~c =1 
t~~S) 

~~ y~ . If may be chosen to be perfectly homogeneous on

(0, S ) , > then {~,l ) = (~,) 1. In particular, if ~, E I~ 0 then ’ E .
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Proof. Suppose Y and v are homogeneous on (0, and are both

carried by If 1 
0 S 

* ~ =1 0 S ~ v then for 0,

t 1 C0,5) .~ ~ - p t 1 (O,S) -%~ v = 

1 (t’St) * v . Since

(t, S ) it follows that ’y = v. This proves uniqueness of x.

t~ 

We define ~c by

(03C9, .) = V 

where V means supremum in the sense of measures. Properties (i) and

(ii) of (3.1) are then satisfied by ~c: Leaving aside (iii) for the

moment, we observe, as in the proof of Theorem 2, that we have (identically)

t 1 (u, S) ;~ y~ = 0 t ( 1 (u,S) ;; 

hence, using (3.2)

1 = 

1 (t+u,S ) ~ 

From this fact we obtain that and ~t~t(c~, ~ ) are identical

on (t +u, > St (w) ) - (t, > (t +u, > Consequently we have

w, ~ ) - on (t, St (cu) ) for all Since ~, is carried
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by the homogeneity of n is evident. Ve turn now to proving that

condition (iii) of (3.I) is satisfied by n . Let YEP be strictly
+

positive and satisfy Ex / m Y (.)n(. , dt)  m for all X EE. Ve set

0 
~

A (w) = It Y (w)n~(w, ds). Ve have E~A  m for all X E E, and A
t ~’ s m

is previsible. But

~~ / m ~~ / m 
0 0

showing that we may a s sume that Ex / m Y (w) n ( . , dt)  I for a l l x E E .
0 

Let (r ) be an enumeration of @ and define Z - 1 + 03A3 2-n1
S . o 

Y 8

n 
’ 

t M ~ r n ,S r ) "r n
n

Obviously, Z E P + i s strictly positive, and

E 
~ / ~ z t (.)n(. , _ dt)  £ 2 _n E x / ~ (e r Y)t @ . r n(. , dt)

 03A3 2-n Ex[rn (Y * n) (. , R+)]

iS £ 2 
~~ E~ [ (Y * K) ( ° > lI/) ]

 I .

- 1 1 -
To complete the proof we must show that ()1 = (1)-. In view of

uniqueness, it is sufficient to show that their restriction to (0, S)
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are equal. This holds since (0, S) E w implies that

1 (O,S) ~ {~,)1 - (1 (O,S) ~ ~,)1 - ~cl - 1 (O,S) ~ {~,1)~ .

Remark. The requirement in (3.1)(iii) that Y be previsible may be

weakened to the condition that if one is interested only in well

measurable projections. For sufficient conditions under which perfect

versions of a homogeneous random measure exist, the reader should

consult j~9].

4. The Previsible Case.

If S is not previsible, the results of Theorems 2 and 4 are not

valid for previsible projections. After a slight modification of the

notion of projection, though, we can obtain essentially the same results.

Suppose A is a measurable set in R+  03A9 which satisfies the

condition

(4.1) evanescence.

p and w~ denote the traces of , P and U3 

We interpret > for example, > to mean that where z E P.
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*

Similarly, b~n denotes the class of random measures of the form

~k

ln* yt , etc. We define, for Z ~ bm the previsible projection

of Z on A by

3Z = (1 /31 ) . 3Z
n n n

and the dual previsible projection of by

3 = (1 /31) * 3

In each case we set 0/0 = 0. The following assertions are then routine,

making use of (4.1):

(4.2) Proposition.

(a) For 3Z is the unique member of P 
A 

with the propertyn n n

that for every initial measure  ,

for every previsible stopping time T.

(b) For ~, n , n is the unique member of ~~ n satisfying

~c3 1~ (dt) - 
0 0

for all W E (~’n)+ and every initial measure p .
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The cases of interest here are those in which A = (0, S) and

(4.3) Lemma. The sets (0, S) and M c both satisfy the condition (4.1).

- Proof. -- We have 31 (o,S) - , so

~31 (o,s) = 0 ~ _ (S , = Since c ~ 

where {Tn} is a sequence of previsible stopping times which englobe the

accessible part of S, the set = where 

is a sequence of previsible stopping times. For all n,

n 
31 [S ~ (R ) n n 

S, R n -S o~~=

= hence It follows that = 

c [S, ~), and this shows that (0, S) satisfies (4.1). We know, on

the other hand, that ~(t, S ) : t and each (t, S ) satisfies
t t

(4 .1 ) by the above argument. Then ~31 
Mc 

> 0 ~ ~ ~31 (t,st) > 0 ~ ~ (t , 

for all t E (9 , and so Mc satisfies (4.1) ,

Remark. The ideas above permit one to explain the difference between the

previsible AF, A, generated by a natural potential u of (X, S) and

the "natural" AF, B, generated by that potential. The Meyer decomposition

gives the existence of the previsible AF A, which may charge S. The

procedure explained in [3~ determines a natural AF, B, of (X, S) which
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does not change S. It is not hard to check that A must be carried by

l~~(0>S) ~ ~~ and that ~~ ~~

Ve shall give only the dual projection version of the extension

theorem, the projection version being entirely analogous.

Theorem 5. Let n be a random measure which is homogeneous on (0, S)

Then 03B3 = 3(0,S) is homogeneous on 0, S>. If perfect versions of

n and y can be found, then y = ()3Mc . In particular, if 

- *
then .

M~

Proof. Ve start by showing that for all t>0,

~~~~~~ = ~~~~~~~ ~~~~~~

For each p and for each previsible stopping time T,

E [31(t,St)(T); 31 o,s>T) >°I = T) ; 31(0,S) T) >°I

~ ~~~~(t>S)~~~ ~~(0>S)~~’~ ~~~

Since On lT>tl. This last expression is equal to
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E [31(t,S)(T); 31(0,S)(T) > 0]

and so = 31(t,S) on {31(0,S) > 0} , hence on (O.S), by (4.3).

~e then have

~S) ’ ~~(0,S)~(0,S)J = ~(t,S) ’ ~(t,S~)~t(~(0,S))
" ~(t,S) ’ ~(t,S~)
" ~(t,S) ’ B0,S/ ~(0,S) ’

That is, 1 ~U ,b~ / 1 ~U ,b~ is homogeneous on (0, S). Observe now that if

K is any random measure carried by (0, S) then ~S(CD)))=~(6 (D~S(~) -t~).

If S((jo) > t, this last term equals K(e (D, = 0. Thus, if ~

is homogeneous on (0, S), = 

1(t,S]* for all t ~ 0.

Since (t, P , we have 1. t , S]* (@ n) 
3 

= 1(t ,S]*3, and from

Theorem 3, one concludes that

’(t,S~t~ ~(t,S~~ -

Since {31(t,S) > 0) c: (t, S] , we have then
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Bt,S) - [B0,S/B0,S)]~t~ = ’(t,S) - ’ 1 (o,s) I 31 (o,s) * x,3

and hence, in view of the homogeneity of 1 (o,S) /31 (o,S) on (0, S),

and formula (3.2), we obtain

= * Y .

We show next that 31 Mc = 31 (o,S) on (0, S). We have ~ =

~(0,S) ’ ~ ~(B0,S] ~ e) = ~(0,S) - . But (o, S~ E ~ , > and we obtain

therefore 3 ~- 
Mc 

- 31 (o,S) , from which the above assertion is

obvious. Since Mc is homogeneous on (0, 1 /31 is homogeneous
Mc MC

on (0, using Theorem 1. By construction, ~ is homogeneous on

(0, oo) and it is carried by M . Thus (yc) 3’ is homogeneous on (0, oe),

thanks to Theorem 3. Since  is carried by the previsible set

{31 .c > 0}, the same is true of ()3. We now see that
M

()3Mc = (1Mc/31 Mc)* ()
3 

is homogeneous on (0, and it is carried

by MC. In order to show that y = (K) , it will suffice to show that
Mc

their restrictions to (0, S) are equal. See the proof of Theorem 4.
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Ve have

1
(0 ,S ] 

* ()3Mc = [1 (0 ,S ] 1Mc/31Mc] * -3

= j i Mc /31Mc* ji  o , s j ,> - j3
= (I Mc/31Mc) * 3 .

3 is carried by {31(0,S) > (0, S] we have

~o,s> * " (~o,s> ° "’ ~~

" (~o,s>/~~o,s>) *~~
~ ~ = ~(0,S) * ~ ’

completing the proof.
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