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MULTIPLICATIVE EXCESSIVE MEASURES AND DUALITY BETWEEN
EQUATIONS OF BOLTZMANN AND OF BRANCHING PROCESSES

by Masao NAGASAWA |

Duality between Boltzmann's equations (corresponding Markov
processes) and so-called S-equations of branching Markov processes
(branching Markov processes) was discovered by H.Tanaka[ll,12],
Y.Takahashi[10] and the author (unpublished). This will be explained
in the following sections. To make the duality to be realistic,
existence of a special class of excessive measures of branching
Markov processes will be discussed in the later sections.

I. Boltzmann's equation

Suppose we are observing the distribution of speed of a gas
molecule. The speed is assumed to stay constant until collision
occurs. Suppose after some time interval of the exponential

distribution, two particles with speeds a; and a, collide and

the speed of the first particle will be distribuied in db with
a probability distribution Ez(al,az;db) depending on a; and a.
Then', if the initial distribution of speed of each particle is
f (da), the speed distribution ut(da) at t satisfies

u, = et + fg as e~ (t7s) [/ us(dal)us(daz)ﬁz(al,az;-).
This is the so-called Boltzmann's equation of gas in a simple
form. McKean[3,4,5] discussed probabilistic aspects of the
equation and gave a model as a temporally inhomogeneous Markov
processes( with non-constant transition mechanism in his
terminology) .

Let's generalize the equation allowing; (a) the speed before

collision not to be constant but varrying as a right continuous

1 The paper was prepared during the author's stay in Erlangen
in 73/74 under the support of Deutche Forschungsgemeinschaft.
This is gratefully acknowledged here.
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Markov process it on a state space S with a collision time of

the distribution exp(—ct) where Cy is the Kac's additive functional
of a non-negative function ¢, and (b) n-particle collision
(n=2,3,---) with a distribution En(al,az,---,an;db). Let
d,(a;s*++sa)) be a weight of n-collision and P} be the transition
probability of the Markov process, then a generalized Boltzmann's
equation is

n
=%+ [tas § a 7 0 .
(1) uy fpt"fodsnﬁz fs“ jglus,(daj)qn.(é)fs T (2,dc)PY__(c,+),

where a = (a;,s---,a.).

This equation was treated by H.Tanaka[ll,12] and T.Ueno[13,14].

Tanaka constructed a Markov process on a large state space

S =Li{ s™ such that: Let Ht be the transition probability of
n=

the Markov process and f be the measure on § whose restriction
on s™ is the n-fold product of f£. Then the solution of (1) is
given by

ug(B) = [g £(da)H,(g,B), BCS.

Moreover he characterized the Markov process in terms of the
following convolution property: Let ¢ =(¢1,¢2,°-+) and
= (Y1,Y2,-++) be defined on S where ¢n is the restriction of

¥
¢ on s". Define a convolution ¢*y by

(¢*y) = sym. bX . (ay,---,a.)y. (a, cee,al).
A i+j=n il 1Y YTi+1’ n
i, 321

Then the transition probability satisfies
Ht(i*i) = (Hti)*(Hti)'

Let's call it Tanaka's collision property. He also proved that
if we put
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pf(t,a,B) = [ £(ap)H,(a-b,B), aes, BC s,!

s

then it is a temporally inhomogeneous transition probability
of McKean's non-constant transition mechanism, i.e.

u
pf(t+s,a,B) = [pf(t,a,ap)P E(s,b,B),
_ £
u, (B) = [f(da)P” (t,a,B).

2. Duality between Boltzmann's and S-equations

To have the duality, we need assumptions on existence of
density functions with respect to a finite(or o-finite) measure
p(da) on S.

Assumption.

(A.1l) There exists a density function Fn(al,---,an;b) with
respect to u such that

mo(ayse--,ap;db) = 7 (aj,--+,a ;b)u(db).
Set
q) (b) = fsn u(da)q (a) (a,b)
and
cb) = I q'(b) < .
n=2 1

(A.2) There exists a transition density function Pg(a,b) with
respect to u, and

Pg(a,db) P%(a,b)u(db), and

ﬁ%(a,db) u(db)P%(b,a)

are transition probabilities of exp(—ct) -subprocesses of
right continuous Markov processes in duality with respect to yu.
Put

[l

qa, (b) q,(b)/c(b), if c(b) > 0,

0, if c(b) = 0.

-—
[
o'

\

(@y,++sa,,by,++-,b ) when a=(a;,---,ay) and b=(by,---,b ).
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ﬂn(b,dg) = &n(g)ﬁn(g,b)ﬁ(dg)/qﬁ(b), if qf (b)>0,
= any probability measure on Sn, if qﬁ(b)= 0,
n
where a = (a;,---a )€ES".

Then we can write the Boltzmann's equation (1) in terms of
density functions, i.e. if f(da) = f(a)u(da) (l| £]l < 1), then
ut(da) has a density function ut(a) with respect to u, and it
satisfies

t A !
u (a) = Pif(a) + jods p{c nzzqn fsnnn(-,dg)u(g)}(a),

Clearly this is the so-called S-equation for a branching
Markov process determined by {Pg,qn,nn}, 9y =49 =0 in the
present case (cf. [2,8]), and the solution ut(a) of the
S-equation is given in terms of the branching Markov process
(Xt'Pg' a e:ga) on éa = %:é s?, s% = {3}, an extra point;
u (a) = E_[£(X)], a€ s,

(cf.[2,81).
PROPOSITION 1. There exists a transition density T, (a,b) of
the branching Markov process with respect to ﬁ, and it satisfies

the branching property in density form:

2
Tt(vl*“zr') = Tt(vlr')*Tt(Vzr‘)-

PROOF. Put

m
I P%(ai,bi), when a and b are in s,
i=1

=]
teo
i
i
]

and define

1
T

]

T: (gl )

[{eg

n-
E [ Ty

a (X /D)1, > 1,

where T is the first branching time of the process Xt.

T oGm = R um), when b = (b, e b))
- j=1 J = n
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Then

- n
T,(a,D) = I Th(a,b)

Il ™8

n=0

provides a desired transition density. For the branching property
refer to ([8], where the property is proved not in the density form).

Put

H (2,db) = n(dR)T, (B,2) .

A

Then if {I is an excessive measure for Tt’ H, is a transition

t
probability.

PROPOSITION 2. Ht satisfies Tanaka's collision property.

PROOF. Because of the branching property of Tt(g,g)

]
[

H (0x¥) (@)= [o*yii(dR)T, (B,2) = [ (o) *(¥ii) (dR) T (b, 2)
N ~ 1
(GUT ) » (YUT,) () = H ¢*H ¥ (a).

3.Excessive measures

This is a preparatory remark on excessive measures of Markov
processes. Let Tt be the transition probability of a right
continuous Markov process on a locally compact Hausdorf space
with a countable open base.

PROPOSITION 3. Let u be a measure which is finite on every
compact sets. Then the following statements are equivalent
(1) wis anexcessive measure for the Markov process,

(ii) wT £ < uf for every f€ C,

(iii) u(aGaf) < uf for every a > 0 and £ e‘C;,

(iv) wAu < 0 for every u in {G f; a > 0, £E C;},

where C; is the space of non-negative continuous functions with
compact supports, Ga is the resolvent of Tt’ and A is the
generator of Tt.

PROOF. Clearly (i) <= (ii) =+ (iii)j. (iii) -+ (ii) is proved
in Nagasawa-Sato ([6] lemma 3.3). Since AGaf = aGaf - £,
(iii) «» (iv) is clear.

1 wWhen d, # 0, this convolution property must be modified as

we see in the later section.
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4. Multiplicative excessive measures of CGW

In the theory of branching Markov processes the state space
(-]
is éa = J s™. However, since d is a trap, there is no excessive
n=0

measure on S~ in general. Therefore we exclude 3 and consider

©
the process on 8 = _J s™.

n=1 N
Let us call an excessive measure of the form p to be

multiplicative. We will first prove the existence of m-excessive

measures for continuous parameter Galton-Watson processes
(abbreviated as CGW). We don't assume qy = 0 in this section
(q0 = 0 for the dual of collision processes). The existence of
the unique invariant measure for CGW is proved in Harris([1l] ,
p.111l) under the assumption 9y > 0, but the invariant measure
is not multiplicative except when 9y =9, = 1/2.

The CGW process is a Markov chain on Z+={o,1,2,---} satisfying
(1) Pn[t < 1] = exp(-nct),

(i1) Pn[ XT =m]= Im-n+1’ PO[ xt =01=1

where ¢ is a non-negative constant, T is the first jumping time,
o]
and q, 20, nEO a, = 1 (ql = 0).
As mentioned above we exclude {0} from the state space in
the following. Since the generator of the transition semi-group

of the CGW process is

Af(n) =en{ % q £ -£1}, n=1,2,---,
m=n-1 In-n+1'm n

and since ﬁ is excessive if and only if ﬁAf < 0, we have

LEMMA 1. Take u > 0. u = {un; n=1,2,--+.} is m-excessive

measure for CGW process if and only if

n -k -1
(2) z (m+l-k)qku - mu 20, form=1,2,3,°"".

k=0
PROOF. For g = G f, £ € c;, we have

0> I uwAag(n) =:upwen{ I _ g - g}
n=1 n=1 m=n-1qm n+l°m n
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© m+l

=c¢c I { I nqg__ un - mu? lg_.
n=1 n=1 qm n+l m

Since we can find £ € C; such that I > 0 form=1,2,3,---,

we have
m+l n n
T ngp_ ™ - 5 0,
multiplying ™1 .nd putting m-n+l = k,
? (m+l--k)qku_k - mu-l L 0.
k=0

LEMMA 2. Q1 is m-excessive measure if and only if

(a) 2q, 2w

(b) h(u

where h(u) = I qnun is the probability generating function of q .
n=o0

REMARK. The lemma implies q < u_l < r, where q and r are non-

negative roots of h(u) - u 0.

PROOF OF LEMMA 2. If ﬁ is excessive, Lemma 1 implies, putting

m=1,

2q, < Wt
and

© - -

I arqg.m ko my 1/(m+l) L0,

k=0 k2k =
where

ag = 1 = k/(m+l), k <m,

=0, k > m.

Since az increases to 1 when m tends to infinity, we have

-1

h(p ™) = uw ™ 0.

Conversely, suppose (a) and (b) are satisfied. Then (2)
follows by induction; assuming (2) for m > 1,
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m+1l

z (m+2—k)qku_k - (m+l)u-1
k=0
m m+1
= I (mtl-k)q.u L qyH k -mul - U
k=0 k=0
m+1
2 I oqu oyt < h(u by -
k=0

-1

<

=

0.

-1

THEOREM 1. M-excessive measures for a CGW process exist

(i) if critical (h'(l) = 1) when and only when qy =9, = 1/2

and 4 = 1,

(ii) if supercritical (h'(l) > 1) when and only when 9, <172

and 1 < u < 1/2q0.

(iii) if subcritical (h'(l) < 1) when and only when 1/2 < 9, 2x/2

and 1/r < u £ 1/2q,,

where 0 < g < r are two roots of h(u) ~u

0.

PROOF. (i) When the process is critical, g = r = 1. Therefore

we have u = 1 by (b) of lemma 2. Suppose 2q0 < 1, then

©0
Zn=2 a, > 1/2, and

0

Zn=2 ng, 2 2Zn=2 q, > 2.(1/2) =

©

which contradicts to h'(l) = En=2

1,

by (a) of lemma 2. Because 2q0 = 1, we have

b > 21° =1
n=2 My = ‘4= 9y T *-

ng, = 1. Thus we have 2q0 =1

However, since the equality must be held, we have 93 =gy =+ =

Hence, 99 = 95 = 1/2.

(ii) When 0 < u < 1, we have

(3) h(u)

ug gt (l-qo)u2 -

If the process is supercritical, 0 < g < r
the remark, we have 2q,; < 1. Then by (3)

h(2q,) - 29, =< —qo(l-2q0)

This implies gq < 2q0 and hence 2q0 2w

-1

2

<

u.

1. By lemma 2 and
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(iii) When subcritical, g = 1 < r. Let us prove 1 < 2q0.
Suppose 2q0 < 1, then by (3) h(2q0) - 2q0 < 0. This meens the
existence of a root q such that g < 2q0 < 1, contradicting to
subcriticality. If 1 < 2q) < r, then 2q, < pt < r provides i,
completing the proof.

From the theorem we find an interesting fact. For example,
let us suppose 9y t 43 = 1 (q3 # 0). Then there is no m-excessive
measure if 1/2 < q < (1+/5) /4. When 9y + 9, =1 (g5 #0),
there is at least one m-excessive measure. When 9y = 0 (this
is the case if the CGW process is the dual of collision processes)
the CGW process is supercritical and u > 1 provides m-excessive
measure (cf. [9]).

It is quite natural to have the following question: If
99 # 0 and if m-excessive measure ﬁ exists, what is the ﬁ—dual
markov process? Let's prove that even in this case, the dual
process has a property similar to Tanaka's collision property.
Let Ht be the dual transition probability with respect to ﬁ
defined by

H (n,m) = y"r, (m,nu™ , nm31

v

Ht(0,0) =1, H(Om =0, m21,

where Tt(n,m) is the transition probability of the CGW process.
Defining a convolution fxg of f = (fl'fz"'°) and g = (gl,gz,---)
by

(fxg) (n) = fn + fn—lgl + see + flgn-l + g5, n2 1,
we have
PROPOSITION 4. For n = 1,2,3,..-
= 0 0
(4) H,(£xg) (n) = (H £*H_g) (n) + H,£(n)H)g(0) + H £(0)H,g(n),
where Hg(o,m) = umTt(m,O).

REMARK. When 9y = o, Tt(m,O) = 0. Therefore (4) reduces to
Tanaka's collision property
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PROOF OF PROPOSITION. Let n > 1. By the definition of Ht

H, (£xg) (n) = I, (£lixgil) (m)T, (m,n)u ",

where a term for m= 0 is formally added because Tt(O,n) =0,
then by the branching property of Tt'

— ~ ~ -n
= Enl+n2=n (EuT,) (ng) (GUTL) (ny)u = .
ny,n,20
Because
o — n
fuTt(n) = Htf(n)u ;, n2>1,
= 1% (0) n=0
t ! ’
we get (4).

REMARK. Since the generator B of the ii-dual Markov process of
the CGW process is given by

Bf (m) = c{ZﬁZi nun~mqm+l_nfn -mf }, m>1,

we have

PROPOSITION 5. The necessary and sufficient condition for A to

be m-excessive measure for the i-dual of the CGW process is

A

ug £ A < wr.
PROOF. Because

(-]

z

m e n, o k-1_
=1 X'Bf(m) = c Z =1 nE A {Zk=0(k/u) q 1},

£ is m-excessive measure if and only if

Zemo@ /W) = A/ < 0,

thus we have
q < Au <r.
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5. General cases

Let us extend the result in the previoGs section to wider
cass of branching Markov processes. Let S be a state space of
one particle as usual. Given a right continuous Markov process
on S with a transition probability Pt’ bounded non-negative
measurable function ¢, q, 2 0 with Eqn(x) = 1, and probability
kernels ﬂn(x,dz) defined on stn, n=20,1,2,---, we can construct

a branching Markov process (Xt'Pa) on ia (cf.[2,8]).

Let gt and g% be direct products of Pt and the transition

probability P% of exp(-ct)-subprocess, respectively. Then
the transition probability gt of the branching Markov process

satisfies for x = (x,,X,,°**,x_) and for a symmetric bounded
= 1’72 n

measurable function F = (Fn) on ga,

t
(5) I, F(x) = RF(x) + [, dr fs“ P)(x,dy) @ (¥, _ F),
where
n 00
VG EI= T ety Toan ()] g T (W dBIF Yy ottt oYy s 2o iy 07T Yy) -
= = m=

This is verified through construction of the process(cf.[2,8]).
Therefore we have

(ZF(x)-F(x))/t = (RBF(X)-F(x))/t + l/t~f8drf nBp (2,dy) @ (¥, I, _ F).
s

The second term is bounded by the uniform norm of F, because
g;(é,dz)zﬁ=lc(yk) is a probability measure on Sn, and the rest

part of the integrand on s" is bounded by
NEll £ a (v)f 7 (v82) < lIEll E a () = [[FIl,
n=0 @ k g m k"= = m=g ™ k

and it converges to ¢(x,F), (t¥0). Therefore if F belongs to
the domain of the weak generator G°of gg, then so does to the
domain of the weak generator A of Et' and vice versa. Therefore
we have D(A) = D(G°) and Af = G°F + ¢(-,F). Thus we have
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PROPOSITION 6. Let G be the weak generator of gt’ then
D(a) = D(G°) C D(G) and for symmetric F€& D(A) and x in S"

AF(x) = GF(x) + ¥(x,F)
where ¥(x,F) = 0(x,F) - Ip_;c(x)F(x).
We assume in the following that there is a Pt—invariant

measure dx on S.

Assumption B. (i) There exists a density function wn(x,g)
P
with respect to dz ;
AN
T, (%,dz) = 7 (x,2) Az :

(ii) 9y = fs qo(x)dx < o,
qk = sup X IS dqu(x)nk(x,§)< ©, k=1,2,3,°°°"
= zZE S

(iii) c(x) = 1.

Put
= 5 k

h(u) = z QU .
- k=0 -

THEOREM 2. If there are non-negative solutions 0 <ni 2N

(at most two) of h(u) - u = 0, then @ (v is a positive
constant) is m-excessive measure for the branching Markov process
determined by {Pt,c=l,qn,1rn}, when

N1 £ 295 2 N2
and
1/n2 < w £ 1/2q,.

PROOF. Because udx is an invariant measure of Pt'
[ @z gF = 0

for non-negative F & D(G). Therefore @ is excessive for T,
if and only if

[ f&% ¥ (x,F) < 0.

This is equivalent to
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m
Z (m+l-k) sup f udx qk(x)wk(x,g)/uk -m<0, m=1,2,3,---.
k=0 ze S

Therefore we get the theorem by the same arguments as in the
case of CGW processes.

EXAMPLE 1. When qy = 0, h(u) = u has two solutions u=0 and n > O,
where n is the solution of

n-1

zn=2 9

1.

If q, is constant, then 9, = 9, and n = 1. Thus 4 > 1 gives
an m-excessive measure ﬁag. Therefore the duality described in
§2 and §3 is justified in this case.

EXAMPLE 2. When dx is Pt—invariant probability measure, q, =
constant, and nn(x,g) =1, n=1,2,++-, then h(u) = h(u) = anun.

Therefore we can state the same conclusion as for CGW processes.

EXAMPLE 3. (dué to K.Uchiyama) Take n-dimensional Brownian motion.
The Lebesgue measure dx is the invariant measure for the motion.
Aisume {qn,ﬂn} satisfy that 9, is bounded by 1 and belongs to
L™, and

©

Qe (x) = a (1-q5(x)), I3, =1, a 2 0;

M (X,2) = Py (X=21)%+-.xp, (x=24), for z = (z3,---,2}),

where p, is aprobability density functionwhich belongs to Lk.
k

Then a sufficient condition for existence of m-excessive measure

ﬁ&i is

2qy < Vs ag + I agllpll Fam® < 1.

where || p. || is LX norm. This follows from

sup qu(x)dxnk(x,g) < akllpklr.
z

For example, take l-dimensional Brownian motion and

4 (%) = exp(-ax?) , q,(x) =1 - q4(x),

1/2

m,(x,2) = (2mb) "1/ 2exp{-1/2b- ((x-2;) %+ (x-2,) ) }.
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Then q, = v¥n/a, q, < 1/2/7b , and a sufficient condition for ﬁEﬁ
=0 22

to be excessive is given by
2/1/a < 1/u < /b + /ab-21/b/a

i,e, ab > 4.

APPENDIX. When q2 = 1, the resolvent of the CGW process is

G(nm) =1/m, 1 <n<m,

=0, otherwise.

In the case,u > 1 gives an m-excessive measure f. Let's find
which initial distribution v gives I as a potential such that
VG = . If VG = 1i, we have

and
v, = nun - (n-l)un_l: n=1,2,3,°"",
is the one we need. Let's take this initial distribution .
Then the reversed process of the CGW process from an L-time
(cf£.[7]) is a collision process with the ﬁ~dual transition
probability.
Since the resolvent of the ﬁ-dual process is given by

G(n,m) = ™7y

n, l<m n,

A

0, otherwise,

and since 0 < A < p gives m-excessive measure X for the ﬁ—dual,
the initial distribution v which gives A as a potential (V6=X)
is given by

Vi = mA™ (1 - A/u).

As a special case if we take u =1 then v, = 1 (n > 1) gives
vG(m) =1 (m > 1), but 1 is not a potential for -the l-dual
process. The author does not know when m-excessive measure is
given as a potential in general.
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