SÉMINAIRE DE PROBABILITÉS (STRASBOURG) #### MASAO NAGASAWA # Multiplicative excessive measures and duality between equations of Boltzmann and of branching processes *Séminaire de probabilités (Strasbourg)*, tome 9 (1975), p. 471-485 http://www.numdam.org/item?id=SPS 1975 9 471 0> © Springer-Verlag, Berlin Heidelberg New York, 1975, tous droits réservés. L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ ## MULTIPLICATIVE EXCESSIVE MEASURES AND DUALITY BETWEEN EOUATIONS OF BOLTZMANN AND OF BRANCHING PROCESSES #### by Masao NAGASAWA 1 Duality between Boltzmann's equations (corresponding Markov processes) and so-called S-equations of branching Markov processes (branching Markov processes) was discovered by H.Tanaka[11,12], Y.Takahashi[10] and the author(unpublished). This will be explained in the following sections. To make the duality to be realistic, existence of a special class of excessive measures of branching Markov processes will be discussed in the later sections. #### I. Boltzmann's equation Suppose we are observing the distribution of speed of a gas molecule. The speed is assumed to stay constant until collision occurs. Suppose after some time interval of the exponential distribution, two particles with speeds \mathbf{a}_1 and \mathbf{a}_2 collide and the speed of the first particle will be distributed in db with a probability distribution $\bar{\pi}_2(\mathbf{a}_1,\mathbf{a}_2;\mathrm{db})$ depending on \mathbf{a}_1 and \mathbf{a}_2 . Then, if the initial distribution of speed of each particle is f(da), the speed distribution \mathbf{u}_+ (da) at t satisfies $$u_t = e^{-t}f + \int_0^t ds \ e^{-(t-s)} \int \int_0^s u_s(da_1)u_s(da_2) \bar{\pi}_2(a_1,a_2;\cdot).$$ This is the so-called Boltzmann's equation of gas in a simple form. McKean[3,4,5] discussed probabilistic aspects of the equation and gave a model as a temporally inhomogeneous Markov processes (with non-constant transition mechanism in his terminology). Let's generalize the equation allowing; (a) the speed before collision not to be constant but varrying as a right continuous ¹ The paper was prepared during the author's stay in Erlangen in 73/74 under the support of Deutche Forschungsgemeinschaft. This is gratefully acknowledged here. Markov process \bar{x}_t on a state space S with a collision time of the distribution $\exp(-c_t)$ where c_t is the Kac's additive functional of a non-negative function c, and (b) n-particle collision $(n=2,3,\cdots)$ with a distribution $\bar{\pi}_n(a_1,a_2,\cdots,a_n;db)$. Let $\bar{q}_n(a_1,\cdots,a_n)$ be a weight of n-collision and \bar{P}_t^0 be the transition probability of the Markov process, then a generalized Boltzmann's equation is (1) $$u_t = f \overline{P}_t^0 + \int_0^t ds \sum_{n=2}^{\infty} \int_{s^n} \prod_{j=1}^n u_s(da_j) \overline{q}_n(\underline{a}) \int_S \overline{\pi}_n(\underline{a}, dc) P_{t-s}^0(c, \cdot),$$ where $\underline{\mathbf{a}} = (\mathbf{a}_1, \dots, \mathbf{a}_n)$. This equation was treated by H.Tanaka[ll,l2] and T.Ueno[l3,l4]. Tanaka constructed a Markov process on a large state space $\underline{\underline{S}} = \bigcup_{n=1}^{\infty} S^n \text{ such that: Let } H_t \text{ be the transition probability of the Markov process and } f \text{ be the measure on } \underline{\underline{S}} \text{ whose restriction on } S^n \text{ is the } n\text{-fold product of } f. \text{ Then the solution of } (1) \text{ is given by}$ $$u_t(B) = \int_{\underline{S}} \hat{f}(d\underline{a}) H_t(\underline{a}, B), \quad B \subset S.$$ Moreover he characterized the Markov process in terms of the following convolution property: Let $\underline{\phi}=(\phi_1,\phi_2,\cdots)$ and $\underline{\psi}=(\psi_1,\psi_2,\cdots)$ be defined on \underline{S} where ϕ_n is the restriction of $\underline{\phi}$ on S^n . Define a convolution $\phi\star\psi$ by $$(\phi * \psi)_{n} = \text{sym.} \sum_{\substack{i+j=n \\ i,j \ge 1}} \phi_{i}(a_{1}, \dots, a_{i}) \psi_{j}(a_{i+1}, \dots, a_{n}).$$ Then the transition probability satisfies $$H_{t}(\underline{\phi}*\underline{\psi}) = (H_{t}\underline{\phi})*(H_{t}\underline{\psi}).$$ Let's call it Tanaka's collision property. He also proved that if we put $$P^{f}(t,a,B) = \int_{S} \hat{f}(d\underline{b}) H_{t}(a \cdot \underline{b},B), \quad a \in S, B \subset S, \uparrow$$ then it is a temporally inhomogeneous transition probability of McKean's non-constant transition mechanism, i.e. $$P^{f}(t+s,a,B) = \int P^{f}(t,a,db) P^{u}t(s,b,B),$$ $u_{+}(B) = \int f(da) P^{f}(t,a,B).$ #### 2. Duality between Boltzmann's and S-equations To have the duality, we need assumptions on existence of density functions with respect to a finite(or σ -finite) measure μ (da) on S. #### Assumption. (A.1) There exists a density function $\overline{\pi}_n(a_1,\cdots,a_n;b)$ with respect to μ such that $$\bar{\pi}_{n}(a_{1}, \dots, a_{n}; db) = \bar{\pi}_{n}(a_{1}, \dots, a_{n}; b) \mu(db).$$ Set $$q'_n(b) = \int_{S^n} \hat{\mu}(d\underline{\underline{a}}) \bar{q}_n(\underline{\underline{a}}) \bar{\pi}_n(\underline{\underline{a}},b)$$ and $$c(b) = \sum_{n=2}^{\infty} q_n'(b) < \infty.$$ (A.2) There exists a transition density function $P_{\mbox{\scriptsize t}}^{\,0}\left(a,b\right)$ with respect to $\mu,$ and $$P_{t}^{0}(a,db) = P_{t}^{0}(a,b)\mu(db)$$, and $$\bar{P}_{t}^{0}(a,db) = \mu(db)P_{t}^{0}(b,a)$$ are transition probabilities of $\exp(-c_{t})$ -subprocesses of right continuous Markov processes in duality with respect to $\mu.$ Put $$q_n(b) = q_n'(b)/c(b), \text{ if } c(b) > 0,$$ = 0, \text{ if } c(b) = 0. $[\]frac{1}{\underbrace{\underline{a} \cdot \underline{b}} = (a_1, \dots, a_n, b_1, \dots, b_m)} \text{ when } \underline{\underline{a}} = (a_1, \dots, a_n) \text{ and } \underline{\underline{b}} = (b_1, \dots, b_m).$ $$\begin{split} \pi_n(b,d\underline{a}) &= \overline{q}_n(\underline{a})\overline{\pi}_n(\underline{a},b)\widehat{\mu}(d\underline{a})/q_n^{\,\prime}(b)\,, & \text{if } q_n^{\,\prime}(b)>0\,, \\ &= \text{any probability measure on } S^n, \text{ if } q_n^{\,\prime}(b)=0\,, \end{split}$$ where $\underline{\mathbf{a}} = (\mathbf{a}_1, \dots \mathbf{a}_n) \in S^n$. Then we can write the Boltzmann's equation (1) in terms of density functions, i.e. if $f(da) = f(a)\mu(da)$ ($||f|| \le 1$), then $u_t(da)$ has a density function $u_t(a)$ with respect to μ , and it satisfies $$\mathbf{u}_{t}(\mathbf{a}) = \mathbf{P}_{t}^{0}\mathbf{f}(\mathbf{a}) + \int_{0}^{t} d\mathbf{s} \ \mathbf{P}_{s}^{0}\{\mathbf{c} \ \sum_{n=2}^{\infty} \mathbf{q}_{n} \int_{\mathbf{S}^{n}} \pi_{n}(\cdot, d\underline{b}) \hat{\mathbf{u}}(\underline{b})\}(\mathbf{a}),$$ Clearly this is the so-called S-equation for a branching Markov process determined by $\{P_t^0,q_n,\pi_n\}$, $q_0=q_1=0$ in the present case (cf. [2,8]), and the solution $u_t(a)$ of the S-equation is given in terms of the branching Markov process $(X_t,P_{\underline{a}},\underline{a}\in\underline{S}^{\partial})$ on $\underline{S}^{\partial}=\bigcup_{n=0}^{\infty}S^n$, $S^0=\{\partial\}$, an extra point; $$u_t(a) = E_a[\hat{f}(X_t)], a \in S,$$ (cf.[2,8]). PROPOSITION 1. There exists a transition density $T_{t}(\underline{a},\underline{b})$ of the branching Markov process with respect to $\hat{\mu}$, and it satisfies the branching property in density form: $$T_t(v_1^*v_2,\cdot) = T_t(v_1,\cdot)*T_t(v_2,\cdot).^2$$ PROOF. Put $T_t^0(\underline{\underline{a}},\underline{\underline{b}}) = \prod_{i=1}^m P_t^0(a_i,b_i)$, when $\underline{\underline{a}}$ and $\underline{\underline{b}}$ are in S^m , and define $$T_t^n(\underline{\underline{a}},\underline{\underline{b}}) = E_{\underline{\underline{a}}}[T_{t-\tau}^{n-1}(X_{\tau},\underline{\underline{b}})], \quad n \ge 1,$$ where τ is the first branching time of the process X_{+} . 1 $$\hat{\mathbf{u}}(\underline{\mathbf{b}}) = \prod_{j=1}^{n} \mathbf{u}(\mathbf{b}_{j}), \text{ when } \underline{\mathbf{b}} = (\mathbf{b}_{1}, \dots, \mathbf{b}_{n})$$ Then $$T_t(\underline{\underline{a}},\underline{\underline{b}}) = \sum_{n=0}^{\infty} T_t^n(\underline{\underline{a}},\underline{\underline{b}})$$ provides a desired transition density. For the branching property refer to ([8], where the property is proved not in the density form). Put $$H_{t}(\underline{a},d\underline{b}) = \hat{\mu}(d\underline{b})T_{t}(\underline{b},\underline{a}).$$ Then if $\hat{\mu}$ is an excessive measure for T_t , H_t is a transition probability. PROPOSITION 2. Ht satisfies Tanaka's collision property. PROOF. Because of the branching property of $T_{+}(\underline{\underline{a}},\underline{\underline{b}})$ $$\begin{split} \mathbf{H}_{\mathsf{t}}\left(\phi\star\psi\right)\left(\underline{\underline{a}}\right) &= \int \phi\star\psi\hat{\mu}\left(\mathbf{d}\underline{\underline{b}}\right)\mathbf{T}_{\mathsf{t}}\left(\underline{\underline{b}},\underline{\underline{a}}\right) \\ &= \left(\phi\hat{\mu}\mathbf{T}_{\mathsf{t}}\right)\star\left(\psi\hat{\mu}\mathbf{T}_{\mathsf{t}}\right)\left(\underline{\underline{a}}\right) \\ &= \left(\phi\hat{\mu}\mathbf{T}_{\mathsf{t}}\right)\star\left(\psi\hat{\mu}\mathbf{T}_{\mathsf{t}}\right)\left(\underline{\underline{a}}\right) \\ &= \mathbf{H}_{\mathsf{t}}\phi\star\mathbf{H}_{\mathsf{t}}\psi\left(\underline{\underline{a}}\right). \end{split}$$ #### 3.Excessive measures This is a preparatory remark on excessive measures of Markov processes. Let \mathbf{T}_{t} be the transition probability of a right continuous Markov process on a locally compact Hausdorf space with a countable open base. PROPOSITION 3. Let μ be a measure which is finite on every compact sets. Then the following statements are equivalent - (i) μ is an excessive measure for the Markov process, - (ii) $\mu T_t f \leq \mu f$ for every $f \in C_k^+$, - (iii) $\mu(\alpha G_{\alpha}f) \leq \mu f$ for every $\alpha > 0$ and $f \in C_k^+$, - (iv) $\mu Au \leq 0$ for every u in $\{G_{\alpha}f; \alpha > 0, f \in C_{k}^{+}\}$, where C_k^+ is the space of non-negative continuous functions with compact supports, G_{α} is the resolvent of T_t , and A is the generator of T_t . PROOF. Clearly (i) \leftrightarrow (ii) \rightarrow (iii). (iii) \rightarrow (ii) is proved in Nagasawa-Sato ([6] lemma 3.3). Since $AG_{\alpha}f = \alpha G_{\alpha}f - f$, (iii) \leftrightarrow (iv) is clear. When $q_0 \neq 0$, this convolution property must be modified as we see in the later section. #### 4. Multiplicative excessive measures of CGW In the theory of branching Markov processes the state space is $\underline{\underline{S}}^{\partial} = \bigcup_{n=0}^{\infty} S^{n}$. However, since ∂ is a trap, there is no excessive measure on $\underline{\underline{S}}^{\partial}$ in general. Therefore we exclude ∂ and consider the process on $\underline{\underline{S}} = \bigcup_{n=0}^{\infty} S^{n}$. Let us call an excessive measure of the form $\hat{\mu}$ to be <u>multiplicative</u>. We will first prove the existence of m-excessive measures for continuous parameter Galton-Watson processes (abbreviated as CGW). We don't assume $q_0=0$ in this section $(q_0=0$ for the dual of collision processes). The existence of the unique invariant measure for CGW is proved in Harris([1], p.111) under the assumption $q_0>0$, but the invariant measure is not multiplicative except when $q_0=q_2=1/2$. The CGW process is a Markov chain on $Z^+=\{0,1,2,\cdots\}$ satisfying i) $P_n[t < \tau] = \exp(-nct)$, (ii) $$P_n[X_t = m] = q_{m-n+1}, P_0[X_t = 0] = 1,$$ where c is a non-negative constant, τ is the first jumping time, and $q_n \geq 0$, $\sum_{n=0}^{\infty} q_n = 1$ $(q_1 = 0)$. As mentioned above we exclude {0} from the state space in the following. Since the generator of the transition semi-group of the CGW process is Af (n) = $$cn\{\sum_{m=n-1}^{\infty} q_{m-n+1} f_m - f_n\}$$, n = 1,2,... and since $\hat{\mu}$ is excessive if and only if $\hat{\mu}Af \leq 0$, we have LEMMA 1. Take $\mu > 0$. $\hat{\mu} = \{\mu^n; n = 1, 2, \cdots\}$ is m-excessive measure for CGW process if and only if (2) $$\sum_{k=0}^{m} (m+1-k) q_k \mu^{-k} - m \mu^{-1} \leq 0, \quad \underline{\text{for }} m = 1,2,3,\cdots.$$ PROOF. For g = $G_{\alpha}f$, $f \in C_{k}^{+}$, we have $$0 \geq \sum_{n=1}^{\infty} \mu^{n} \operatorname{Ag}(n) = \sum_{n=1}^{\infty} \mu^{n} \operatorname{cn} \{ \sum_{m=n-1}^{\infty} q_{m-n+1} g_{m} - g_{n} \}$$ $$= c \sum_{m=1}^{\infty} \left\{ \sum_{n=1}^{m+1} nq_{m-n+1} \mu^{n} - m\mu^{n} \right\} g_{m}.$$ Since we can find $f \in C_k^+$ such that $g_m > 0$ for $m = 1, 2, 3, \cdots$, we have $$\sum_{n=1}^{m+1} nq_{m-n+1} \mu^m - m\mu^n \leq 0,$$ multiplying μ^{-m-1} and putting m-n+1 = k, $$\sum_{k=0}^{m} (m+1-k) q_{k} \mu^{-k} - m \mu^{-1} \leq 0.$$ LEMMA 2. $\hat{\mu}$ is m-excessive measure if and only if $$(a) 2q_0 \leq \mu^{-1}$$ (b) $$h(\mu^{-1}) \leq \mu^{-1}$$, where $h(u) = \sum_{n=0}^{\infty} q_n u^n$ is the probability generating function of q_n . REMARK. The lemma implies $q \le \mu^{-1} \le r$, where q and r are non-negative roots of h(u) - u = 0. PROOF OF LEMMA 2. If $\hat{\mu}$ is excessive, Lemma 1 implies, putting m=1, $$2q_0 \leq \mu^{-1},$$ and $$\sum_{k=0}^{\infty} a_k^m q_k^{-k} - m\mu^{-1}/(m+1) \le 0,$$ where $$a_k^m = 1 - k/(m+1), k \le m,$$ = 0, k > m. Since \boldsymbol{a}_k^{m} increases to 1 when m tends to infinity, we have $$h(\mu^{-1}) - \mu^{-1} \leq 0.$$ Conversely, suppose (a) and (b) are satisfied. Then (2) follows by induction; assuming (2) for $m \ge 1$, $$\begin{array}{l} \overset{m+1}{\Sigma} & (m+2-k) \, q_k \mu^{-k} - (m+1) \, \mu^{-1} \\ = & \overset{m}{\Sigma} & (m+1-k) \, q_k \mu^{-k} + \overset{m+1}{\Sigma} \, q_k \mu^{-k} - m \mu^{-1} - \mu^{-1} \\ \leq & \overset{m+1}{\Sigma} \, q_k \mu^{-k} - \mu^{-1} \leq h \, (\mu^{-1}) - \mu^{-1} \leq 0 \, . \end{array}$$ #### THEOREM 1. M-excessive measures for a CGW process exist - (i) if critical (h'(1) = 1) when and only when $q_0 = q_2 = 1/2$ and $\mu = 1$, - (ii) if supercritical (h'(1) > 1) when and only when $q_0 \le 1/2$ and $1 \le \mu \le 1/2q_0$, - (iii) if subcritical (h'(1) < 1) when and only when $1/2 \le q_0 \le r/2$ and $1/r \le \mu \le 1/2q_0$, where $0 \le q \le r$ are two roots of h(u) - u = 0. PROOF. (i) When the process is critical, q=r=1. Therefore we have $\mu=1$ by (b) of lemma 2. Suppose $2q_0<1$, then $\Sigma_{n=2}^{\infty}$ $q_n>1/2$, and $$\sum_{n=2}^{\infty} nq_n \ge 2\sum_{n=2}^{\infty} q_n > 2 \cdot (1/2) = 1$$ which contradicts to h'(1) = $\Sigma_{n=2}^{\infty}$ nq_n = 1. Thus we have $2q_0 = 1$ by (a) of lemma 2. Because $2q_0 = 1$, we have $$\sum_{n=2}^{\infty} nq_n \ge 2\sum_{n=2}^{\infty} q_n = 1.$$ However, since the equality must be held, we have $q_3 = q_4 = \cdots = 0$. Hence, $q_0 = q_2 = 1/2$. (ii) When $0 \le u \le 1$, we have (3) $$h(u) - u \le q_0 + (1-q_0)u^2 - u$$. If the process is supercritical, $0 \le q < r = 1$. By lemma 2 and the remark, we have $2q_0 \le 1$. Then by (3) $$h(2q_0) - 2q_0 \le -q_0(1-2q_0)^2 \le 0.$$ This implies $q \le 2q_0$ and hence $2q_0 \le \mu^{-1} \le 1$. (iii) When subcritical, q=1 < r. Let us prove $1 \leq 2q_0$. Suppose $2q_0 < 1$, then by (3) $h(2q_0) - 2q_0 < 0$. This meens the existence of a root q such that $q < 2q_0 < 1$, contradicting to subcriticality. If $1 \leq 2q_0 \leq r$, then $2q_0 \leq \mu^{-1} \leq r$ provides $\hat{\mu}$, completing the proof. From the theorem we find an interesting fact. For example, let us suppose $q_0+q_3=1$ $(q_3\neq 0)$. Then there is no m-excessive measure if $1/2 < q_0 < (1+\sqrt{5})/4$. When $q_0+q_2=1$ $(q_0\neq 0)$, there is at least one m-excessive measure. When $q_0=0$ (this is the case if the CGW process is the dual of collision processes) the CGW process is supercritical and $\mu \geq 1$ provides m-excessive measure (cf.[9]). It is quite natural to have the following question: If $q_0\neq 0$ and if m-excessive measure $\hat{\mu}$ exists, what is the $\hat{\mu}\text{-dual}$ markov process? Let's prove that even in this case, the dual process has a property similar to Tanaka's collision property. Let H_t be the dual transition probability with respect to $\hat{\mu}$ defined by $$H_t(n,m) = \mu^m T_t(m,n) \mu^{-n}$$, $n,m \ge 1$ $H_t(0,0) = 1$, $H_t(0,m) = 0$, $m \ge 1$, where $T_t(n,m)$ is the transition probability of the CGW process. Defining a convolution f*g of $f=(f_1,f_2,\cdots)$ and $g=(g_1,g_2,\cdots)$ by $$(f*g)(n) = f_n + f_{n-1}g_1 + \cdots + f_1g_{n-1} + g_n, \quad n \ge 1,$$ we have PROPOSITION 4. For $n = 1, 2, 3, \cdots$ (4) $$H_t(f*g)(n) = (H_tf*H_tg)(n) + H_tf(n)H_t^0g(0) + H_t^0f(0)H_tg(n),$$ where $H_t^0(0,m) = \mu^m T_t(m,0).$ REMARK. When $q_0 = 0$, $T_t(m,0) = 0$. Therefore (4) reduces to Tanaka's collision property PROOF OF PROPOSITION. Let $n \ge 1$. By the definition of H_{+} $$H_t(f*g)(n) = \sum_{m=0}^{\infty} (f\hat{\mu}*g\hat{\mu})(m)T_t(m,n)\mu^{-n}$$ where a term for m= 0 is formally added because $T_t(0,n) = 0$, then by the branching property of T_t , $$= \sum_{\substack{n_1+n_2=n\\n_1,n_2 \ge 0}} (\hat{f} \hat{\mu} T_t) (n_1) (g \hat{\mu} T_t) (n_2) \mu^{-n} .$$ **Because** $$f\hat{\mu}T_{t}(n) = H_{t}f(n)\mu^{n}, \quad n \ge 1,$$ = $H_{t}^{0}f(0), \quad n = 0,$ we get (4). REMARK. Since the generator B of the $\hat{\mu}\text{-dual}$ Markov process of the CGW process is given by Bf(m) = $$c\{\sum_{n=1}^{m+1} n\mu^{n-m}q_{m+1-n}f_n - mf_m\}, m \ge 1,$$ we have PROPOSITION 5. The necessary and sufficient condition for $\hat{\lambda}$ to be m-excessive measure for the $\hat{\mu}$ -dual of the CGW process is $$\mu q \leq \lambda \leq \mu r$$. PROOF. Because $$\Sigma_{m=1}^{\infty} \lambda^{m} Bf(m) = c \Sigma_{n=1}^{\infty} nf_{n} \lambda^{n} \{\Sigma_{k=0}^{\infty} (\lambda/\mu)^{k-1} q_{k} - 1\},$$ $\hat{\lambda}$ is m-excessive measure if and only if $$\sum_{k=0}^{\infty} q_k (\lambda/\mu)^k - \lambda/\mu \leq 0,$$ thus we have $$q \le \lambda/\mu \le r$$. #### 5. General cases Let us extend the result in the previous section to wider cass of branching Markov processes. Let S be a state space of one particle as usual. Given a right continuous Markov process on S with a transition probability P_t , bounded non-negative measurable function c, $q_n \geq 0$ with $\Sigma q_n(x) = 1$, and probability kernels $\pi_n(x,d\underline{y})$ defined on $S \times S^n$, $n = 0,1,2,\cdots$, we can construct a branching Markov process $(X_t,P_{\underline{a}})$ on \underline{S}^{∂} (cf.[2,8]). Let \underline{P}_t and \underline{P}_t^0 be direct products of P_t and the transition probability P_t^0 of $\exp(-c_t)$ -subprocess, respectively. Then the transition probability \underline{T}_t of the branching Markov process satisfies for $\underline{x} = (x_1, x_2, \cdots, x_n)$ and for a symmetric bounded measurable function $F = (F_n)$ on \underline{S}^0 , $$(5) \quad \underline{\underline{T}}_{t}F(\underline{\underline{x}}) = \underline{\underline{P}}_{t}^{0}F(\underline{\underline{x}}) + \int_{0}^{t} dr \int_{\underline{c}^{n}} \underline{\underline{P}}_{r}^{0}(\underline{\underline{x}}, d\underline{\underline{y}}) \Phi(\underline{\underline{y}}, \underline{\underline{T}}_{t-r}F),$$ where $$\Phi(\underline{\underline{y}},F) = \sum_{k=1}^{n} c(\underline{y}_{k}) \sum_{m=1}^{\infty} q_{m}(\underline{y}_{k}) \int_{S^{m}} \pi_{m}(\underline{y}_{k},d\underline{\underline{z}}) F(\underline{y}_{1},\cdots,\underline{y}_{k-1},\underline{\underline{z}},\underline{y}_{k+1},\cdots,\underline{y}_{n}).$$ This is verified through construction of the process(cf.[2,8]). Therefore we have $$(\underline{\underline{T}}_\mathsf{t} F (\underline{\underline{x}}) - F (\underline{\underline{x}})) / \mathsf{t} \ = \ (\underline{\underline{P}}_\mathsf{t}^0 F (\underline{\underline{x}}) - F (\underline{\underline{x}})) / \mathsf{t} \ + \ 1 / \mathsf{t} \cdot \int_0^\mathsf{t} \! \mathrm{d} r \int_{S}^n \underline{\underline{P}}_\mathsf{r}^0 (\underline{\underline{x}}, \underline{d}\underline{\underline{y}}) \, \Phi (\underline{\underline{y}}, \underline{\underline{T}}_\mathsf{t-r} F) \, .$$ The second term is bounded by the uniform norm of F, because $\underline{\underline{P}}_r^0(\underline{\underline{x}},d\underline{\underline{y}})\,\Sigma_{k=1}^nc(y_k) \text{ is a probability measure on S}^n, \text{ and the rest part of the integrand on S}^n \text{ is bounded by}$ $$|| F || \sum_{m=0}^{\infty} q_m(y_k) \int_{S^m} \pi_m(y_k, d\underline{z}) \leq || F || \sum_{m=0}^{\infty} q_m(y_k) = || F ||,$$ and it converges to $\Phi(\underline{x},F)$, (t+0). Therefore if F belongs to the domain of the weak generator \underline{G}^0 of \underline{P}_t^0 , then so does to the domain of the weak generator \underline{A} of \underline{T}_t , and vice versa. Therefore we have $D(\underline{A}) = D(\underline{G}^0)$ and $\underline{A}f = \underline{G}^0F + \Phi(\cdot,F)$. Thus we have PROPOSITION 6. Let \underline{G} be the weak generator of $\underline{\underline{P}}_{t}$, then $D(\underline{\underline{A}}) = D(\underline{\underline{G}}^{0}) \subset D(\underline{\underline{G}})$ and for symmetric $F \in D(\underline{\underline{A}})$ and $\underline{\underline{x}}$ in \underline{S}^{n} $$\underline{\underline{A}}F(\underline{\underline{x}}) = \underline{\underline{G}}F(\underline{\underline{x}}) + \Psi(\underline{\underline{x}},F)$$ where $\Psi(\underline{x},F) = \Phi(\underline{x},F) - \Sigma_{k=1}^{n} c(x_{k}) F(\underline{x})$. We assume in the following that there is a P_t -invariant measure dx on S. Assumption B. (i) There exists a density function $\pi_n(x,\underline{z})$ with respect to $\widehat{d\underline{z}}$; $$\pi_n(x,d\underline{z}) = \pi_n(x,\underline{z}) \ \widehat{d\underline{z}} :$$ (ii) $$q_0 = \int_S q_0(x) dx < \infty,$$ $$\underline{q}_{k} = \sup_{\underline{z} \in S^{k}} \int_{S} dx q_{k}(x) \pi_{k}(x,\underline{z}) < \infty, \quad k = 1,2,3,\dots$$ (iii) $$c(x) \equiv 1$$. Put $$\frac{h}{a}(u) = \sum_{k=0}^{\infty} q_k u^k.$$ THEOREM 2. If there are non-negative solutions $0 \le \eta_1 \le \eta_2$ (at most two) of h(u) - u = 0, then $\widehat{\mu} d\widehat{\underline{x}}$ (μ is a positive constant) is m-excessive measure for the branching Markov process determined by $\{P_+, c=1, q_n, \pi_n\}$, when $$\eta_1 \leq 2q_0 \leq \eta_2$$ and $$1/\eta_2 \leq \mu \leq 1/2q_0.$$ PROOF. Because μdx is an invariant measure of P_t, $$\int \widehat{\mu} d\underline{x} \ \underline{G}F = 0$$ for non-negative $F\in\,D\,(\underline{G})\,.$ Therefore $\widehat{\mu d\underline{x}}$ is excessive for \underline{T}_t if and only if $$\int \widehat{\mu} d\underline{x} \ \Psi(\underline{x},F) \leq 0.$$ This is equivalent to $$\begin{array}{c} \mathbf{m} \\ \boldsymbol{\Sigma} \\ \mathbf{k} = \mathbf{0} \end{array} \int \mu d\mathbf{x} \ \mathbf{q}_{\mathbf{k}}(\mathbf{x}) \pi_{\mathbf{k}}(\mathbf{x}, \underline{\underline{z}}) / \mu^{\mathbf{k}} - \mathbf{m} \leq \mathbf{0}, \quad \mathbf{m} = 1, 2, 3, \cdots.$$ Therefore we get the theorem by the same arguments as in the case of CGW processes. EXAMPLE 1. When $q_0=0$, $\underline{h}(u)=u$ has two solutions u=0 and $\eta>0$, where η is the solution of $$\sum_{n=2}^{\infty} q_n u^{n-1} = 1.$$ If q_n is constant, then $\underline{q}_n=q_n$ and $\eta=1$. Thus $\mu\geq 1$ gives an m-excessive measure $\widehat{\mu d\underline{x}}$. Therefore the duality described in §2 and §3 is justified in this case. EXAMPLE 2. When dx is P_t -invariant <u>probability</u> measure, $q_n = \text{constant}$, and $\pi_n(x,\underline{z}) \equiv 1$, $n=1,2,\cdots$, then $\underline{h}(u) = h(u) = \Sigma q_n u^n$. Therefore we can state the same conclusion as for CGW processes. EXAMPLE 3.(due to K.Uchiyama) Take n-dimensional Brownian motion. The Lebesgue measure dx is the invariant measure for the motion. Assume $\{q_n,\pi_n\}$ satisfy that q_0 is bounded by 1 and belongs to L^1 , and $$q_k(x) = a_k(1-q_0(x)), \quad \sum_{k=2}^{\infty} a_k = 1, a_k \ge 0;$$ $$\pi_k(x,\underline{z}) = p_k(x-z_1) \times \cdots \times p_k(x-z_k)$$, for $\underline{z} = (z_1, \cdots, z_k)$, where p_k is a probability density function which belongs to L^k . Then a sufficient condition for existence of m-excessive measure $\widehat{\mu dx}$ is $$2\underline{q}_{0} \leq 1/\mu$$, $a_{0} + \sum_{k=2}^{\infty} a_{k} || p_{k} ||^{k} (1/\mu)^{k} \leq 1/\mu$. where $||p_k||$ is L^k norm. This follows from $$\sup_{\mathbf{z}} \int q_{k}(\mathbf{x}) d\mathbf{x} \pi_{k}(\mathbf{x}, \underline{\underline{\mathbf{z}}}) \leq a_{k} || p_{k} ||^{k}.$$ For example, take 1-dimensional Brownian motion and $$q_0(x) = \exp(-ax^2)$$, $q_2(x) = 1 - q_0(x)$, $\pi_2(x,\underline{z}) = (2\pi b)^{-1/2} \exp\{-1/2b \cdot ((x-z_1)^2 + (x-z_2)^2)\}$. Then $\underline{q}_0 = \sqrt{\pi/a}$, $\underline{q}_2 \le 1/2\sqrt{\pi b}$, and a sufficient condition for $\widehat{\mu} d\widehat{x}$ to be excessive is given by $$2\sqrt{\pi/a} \leq 1/\mu \leq \sqrt{\pi b} + \sqrt{\pi b - 2\pi \sqrt{b/a}}$$ i,e, ab \geq 4. APPENDIX. When $q_2 = 1$, the resolvent of the CGW process is $$G(n,m) = 1/m, 1 \le n \le m,$$ =0, otherwise. In the case, $\mu \geq 1$ gives an m-excessive measure $\hat{\mu}$. Let's find which initial distribution ν gives $\hat{\mu}$ as a potential such that $\nu G = \hat{\mu}$. If $\nu G = \hat{\mu}$, we have $$\Sigma_{n=1}^{m} v_{n} = m\mu^{m},$$ and $$v_n = n\mu^n - (n-1)\mu^{n-1}, \quad n = 1,2,3,\cdots,$$ is the one we need. Let's take this initial distribution . Then the reversed process of the CGW process from an L-time (cf.[7]) is a collision process with the $\hat{\mu}$ -dual transition probability. Since the resolvent of the $\hat{\mu}$ -dual process is given by $$G(n,m) = \mu^{m-n}/n, \quad 1 \leq m \leq n,$$ = 0, otherwise, and since $0 \le \lambda \le \mu$ gives m-excessive measure $\hat{\lambda}$ for the $\hat{\mu}$ -dual, the initial distribution ν which gives $\hat{\lambda}$ as a potential $(\nu \bar{G} = \hat{\lambda})$ is given by $$v_{\rm m} = m\lambda^{\rm m}(1 - \lambda/\mu)$$. As a special case if we take $\mu=1$ then $\nu_n=1$ ($n\geq 1$) gives $\nu \overline{G}(m)=1$ ($m\geq 1$), but $\hat{1}$ is not a potential for the $\hat{1}$ -dual process. The author does not know when m-excessive measure is given as a potential in general. #### REFERENCES - [1] T.E.Harris, The theory of branching processes. (1963) Springer. - [2] N.Ikeda M.Nagasawa S.Watanabe, <u>Branching Markov</u> processes I,II,III, Journal of Mth. Kyoto Univ. Vol.8 (1968) 233-278, 365-410, vol. 9 (1969) 95-160. - [3] H.P.McKean, A class of Markov processes associated with nonlinear parabolic equations, Proc. Nat. Acad. Sci. vol. 56 (1966) 1907-1911. - [4] -----, Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas, Archive for rational mechanics and analysis. vol. 21 (1966) 343-367. - [5] -----, An exponential formula for solving Boltzmann's equation for a Maxwellian gas, J. of Combinatorial theory. vol. 2 (1967) 358-382. - [6] M.Nagasawa K.Sato, Some theorems on time change and killing of Markov processes, Kōdai Math. Sem. Rep. vol. 15 (1963) 195-219. - [7] M.Nagasawa, Time reversions of Markov processes, Nagoya Math. Journal. vol.24 (1964) 177-204. - [8] -----, Branching property of Markov processes, Lecture notes in Mathematics, vol 258, Séminaire de Probabilités de Strasbourg VI, Springer 1972,177-197. - [9] -----, Multiplicative excessive measures of branching processes, Proc. Japan Acad. vol. 49 (1973) 497-499. - [10] Y. Takahashi, Markov semi-groups with simple interaction I,II. Proc. Japan Acad. vol. 47 (1971) Suppl. II, 974-978, 1019-1024. - [11] H.Tanaka, Propagation of chaos for certain purely discontinuous Markov processes with interactions, J. Fac. Sci. Univ. Tokyo, vol. 17 (1970) 259-272. - [12] -----, Purely discontinuous Markov processes with nonlinear generators and their propagation of chaos, Teor. Ber. prim. vol. 15 (1970) 599-621. - [13] T.Ueno, A class of Markov processes with interactions I,II, Proc Japan Acad. vol.45 (1969) 641-646, 995-1000. - [14] ----, A class of Markov processes with non-linear bounded generators, Japanese J. of Math. vol. 38 (1969) 19-38. Mathematisches Institut Universität Erlange-Nürnberg, D-852 Erlangen Bismarckstrasse 1 1/2, and Department of Applied Physics Tokyo Institute of Technology Oh-okayama, Meguro, Tokyo.