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MULTIPLICATIVE EXCESSIVE MEASURES AND DUALITY BETWEEN

EQUATIONS OF BOLTZMANN AND OF BRANCHING PROCESSES

by Masao NAGASAWA 1

Duality between Boltzmann’s equations (corresponding Markov

processes) and so-called S-equations of branching Markov processes

(branching Markov processes) was discovered by H.Tanaka[ll,l2],

Y.Takahashi[10] and the author(unpublished). This will be explained
in the following sections. To make the duality to be realistic,
existence of a special class of excessive measures of branching
Markov processes will be discussed in the later sections.

I. . Boltzmann’s equation

Suppose we are observing the distribution of speed of a gas
molecule. The speed is assumed to stay constant until collision

occurs. Suppose after some time interval of the exponential

distribution, two particles with speeds al and a2 collide and
the speed of the first particle will be distributed in db with

a probability distribution depending on al and a2.
Then’, if the initial distribution of speed of each particle is

f(da), the speed distribution ut(da) at t satisfies

This is the so-called Boltzmann’s equation of gas in a simple
form. McKean[3,4,5] discussed probabilistic aspects of the

equation and gave a model as a temporally inhomogeneous Markov

processes( with non-constant transition mechanism in his

terminology).
Let’s generalize the equation allowing;(a) the speed before

collision not to be constant but varrying as a right continuous

1 The paper was prepared during the author’s stay in Erlangen
in 73/74 under the support of Deutche Forschungsgemeinschaft.
This is gratefully acknowledged here.
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Markov process xt on a state space S with a collision time of
the distribution exp(-ct) where ct is the Kac’s additive functional
of a non-negative function c, and (b) n-particle collision

(n = 2,3,...) with a Let

be a weight of n-collision and Pt be the transition
probability of the Markov process, then a generalized Boltzmann’s

equation is

(1) 

where a = (a1,...,an).
This equation was treated by H.Tanaka[11,12] and T.Ueno[13,14].

Tanaka constructed a Markov process on a large state space

S ==(_) Sn such that: Let Ht be the transition probability of~ 

n=l A

the Markov process and f be the measure on S whose restriction

on Sn is the n-fold product of f. Then the solution of (1) is

given by

ut (B) - f g BCS.

Moreover he characterized the Markov process in terms of the

following convolution property: Let 1 =(~i~2/’*’) and

~ = (~1~2~’*’) be defined on S where 6 is the restriction of

)) on Sn. Define a convolution ~*~ by

(03C6*03C8)n = sym. Z (ai+1,...,an) .

Then the transition probability satisfies

Ht (~ *~ ~ - (H~$ ) * (H~) . ~

Let’s call it Tanaka’s collision property. He also proved that

if we put
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f n (a.b,B) , aE S, B C S,~

then it is a temporally inhomogeneous transition probability
of McKean’s non-constant transition mechanism, i.e.

Pf (t+s,a,B) = 

Ut(B) = Jf(da)P f (t,a,B).

2. Duality between Boltzmann’s and S-equations
To have the duality, we need assumptions on existence of

density functions with respect to a finite(or a-finite) measure

p(da) on S.

Assumption.

(A.I) There exists a density with

respect to p such that

Set

and 
q’n(b) = Sn 

c(b) = ? q’(b)  co.

n=2 ~

(A.2) There exists a transition density function with

respect to p, and

and

are transition probabilities of exp(-ct) -subprocesses of

right continuous Markov processes in duality with respect to p.
Put

qn(b) = if c (b) > 0,
= 0, if c(b) = 0.

1 a.b = when ~=(al,...,an) and b_=(bl,...,bm),
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= if q~(b)>0,
= any probability measure on S~, if 0,

where a = (a~,"-a~)~:S~.
Then we can write the Boltzmann’s equation (1) in terms of

density functions, i.e. if f (da) = f (a) p (da) (~f!!~ 1), then
has a density function u (a) with respect to p, and it

satisfies

u.(a) = P0tf(a) + tods P0Ss{c  qn sn03C0n(., db)û(b)}(a),
Clearly this is the so-called S-equation for a branching
Markov process determined by {P~q ~ }, q.. 

= 

q.. 
= 0 in the

present case (cf. [2,8]), and the solution u.(a) of the

S-equation is given in terms of the branching Markov process

(X.,P., on S~ = LJ S~, S~ = {3}, an extra point?
" S " " " 

n=0

u~(a) = E~[f(X~)], a e S,

(cf.[2,8]).

PROPOSITION 1. There exists a transition density of
the branching Markov process with respect to p, and it satisfies

the branching property in density form:

~t~l*~’) =T~(~,-)*T~(B~-).
PROOF. Put

= S P°(a,,b,), when a and b are in Sm,
and define

T~(a,b) = E~[ T~(X~,&#x26;)], n ~ 1,

where T is the first branching time of the process X..

1 û(b) = S u(b_), (b1,...,bn)

2 s~03BD1*03BD2(da)F(a) = s~s~03BD1(da1)03BD2(da2)F(a1.a2).
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Then
Tt(a,b) =  Tnt(a,b)

provides a desired transition density. For the branching property
refer to ([~8~, where the property is proved not in the density form).

Put

Then if n is an excessive measure for Tt, Ht is a transition
probability.

PROPOSITION 2. Ht satisfies Tanaka’s collision property.
PROOF. Because of the branching property of Tt(a,b)

(a)= (03C6)*(03C8)(db)Tt(b,a)

- * (a) - H t03C6*Ht03C8 (a) . 1

3.Excessive measures

This is a preparatory remark on excessive measures of Markov

processes. Let Tt be the transition probability of a right
continuous Markov process on a locally compact Hausdorf space
with a countable open base.

PROPOSITION 3. Let p be a measure which is finite on every

compact sets. Then the following statements are equivalent
(i) pis an excessive measure for the Markov process,
(ii) uf for every f E Ck,

~f for every a > 0 and f ~ C~,
(iv) 0 for every C~},
where C~ is the space of non-negative continuous functions with
compact supports, Ga is the of and A is the

generator of Tt.
PROOF. Clearly (i) ~-+ (ii) -~ (iii) . (iii) + (ii) is proved
in Nagasawa-Sato ([6] lemma 3.3). Since AGaf = aG f - f,
(iii) +-~ (iv) is clear. 

~ When 0, this convolution property must be modified as
we see in the later section.
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4. Multiplicative excessive measures of CGW

In the theory of branching Markov processes the state space

)i Sn. However, since 3 is a trap, there is no excessive

measure in general. Therefore we exclude 3 and consider

the process on S = !J Sn.
n=1 

"

Let us call an excessive measure of the form p to be

multiplicative. We will first prove the existence of m-excessive

measures for continuous parameter Galton-Watson processes

(abbreviated as CGW). We don’t assume q~ = 0 in this section

(q~ - 0 for the dual of collision processes). The existence of

the unique invariant measure for CGW is proved in Harris([1] ,

p,lll) under the assumption q~ > 0, but the invariant measure

is not multiplicative except when q~ = q2 
= 1/2.

The CGW process is a Markov chain on Z ={0,1,2~"-} satisfying
(i)  T ] = exp(-nct),

Pn[ m ] ~m-n+1’ PO[ X~ = 0 ] = l~

where c is a non-negative constant, T is the first jumping time,
00

and qn > 0 , E q 
= 1 = 0 ) .

~ n=0 ~ "

As mentioned above we exclude ~0} from the state space in

the following. Since the generator of the transition semi-group
of the CGW process is

Af(n) = cn{ qm-n+1fm - fn}, n = 1, 2 , ... ,

and since p is excessive if and only if Af ~ 0, we have

LEMMA 1. Take p > 0. p = n = 1,2,...} is m-excessive

measure for CGW process if and only if

(2) m E  0, for m = 1,2,3," -.
k=0 

"

PROOF. For g = f E Ck, we have

0 ~  nAg(b) = ncn{ qm-n+1gm - gn}
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oo m+1
= c }gm.

Since we can find f E C+k such that gm > .0 for m = 1,2,3,...,

we have

m+1
0’

multiplying u-m-1 and putting m-n+1 = k,

03A3 (m+1-k)qk -k - m -1  0 .fl  o.
k=0 

k

LEMMA 2. p is m-excessive measure if and only if

(a) 2q ~ u-1

(b) h iu-1)  u 1’

where h(u) = E qnun is the probability generating function of q.
n=o 

REMARK. The lemma implies q ~ u 1  r, where q and r are non-
negative roots of h(u) - u = 0.

PROOF OF LEMMA 2. If p is excessive, Lemma 1 implies, putting

m=1,

2q 0  u - 1’
and

E 0,
k=0 

k k -

where

ak = 1 - k/{m+l), k ~ m,

= 0, k > m.

Since afff increases to 1 when m tends to infinity, we have

h (u 1) - -1  0.

Conversely, suppose (a) and (b) are satisfied. Then (2)

follows by induction; assuming (2) for m > 1,



478

m+1 
-k -1

E (m+2-k)qk -k -
k=0 

k

= E + m+1 E qku -k -m u - 1 u -1
k=0 k=0

~ 03A3 qk -k - -l ~ h( -1) - -1 ~ o.

THEOREM 1. M-excessive measures for a CGW process exist

(i) if critical (h’(1) - 1) when and only when qQ - q2 
= 1/2

and 1l = 1,

(ii) if supercritical (h’(1) > 1) when and only when qo  1/2
and 1  u  

(iii) if subcritical (h’(1)  1) when and only when 1/2  q~  r/2
and 1/r  u  

where 0  q  r are two roots of h (u) - u = 0.

PROOF. (i) When the process is critical, q = r = 1. Therefore

we have  = 1 by (b) of lemma 2. Suppose 2q0  1, then

~n=2 1/2, and

2En_2 2.(1/2) - 1~

which contradicts to h’(1) - En=2 nqn = 1. Thus we have 2q.. = 1

by (a) of lemma 2. Because 2q.. == 1, we have

q 
= 1.

However, since the equality must be held, we have q3 = q4 = ... = 0.
Hence, qo = q2 = 1/2.

(ii) When 0 ~ u ~ 1, we have

(3) h(u) - u ~ q~ + u.

If the process is supercritical, 0  q  r = 1. By lemma 2 and
the remark, we have 2q~  1. Then by (3)

h (2q~) - 2q~ ~ 0.

This implies q ~ 2q0 and hence 2q0 ~ u 1  1.
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(iii) When subcritical, q = 1  r. Let us prove 1 ~ 2q0.
Suppose 2q0  1, then by (3) h(2QO) - 2q0  0. This meens the

existence of a root q such that q  2q0  1, contradicting to

subcriticality. If 1 ~ 2q 0  r, then 2q 0  p "I ~ r provides p, ~
completing the proof.

From the theorem we find an interesting fact. For example,
let us suppose q0 + q3 = 1 (q3 ~ 0). Then there is no m-excessive

measure if 1/2  qo  (1+/5)/4. When Qo + q2 - 1 ( q0 ~ 0) ,
there is at least one m-excessive measure. When q0 - 0 (this

is the case if the CGW process is the dual of collision processes)
the CGW process is supercritical and  ~ 1 provides m-excessive
measure (cf. ~9] ) .

It is quite natural to have the following question: If

0 and if m-excessive measure  exists, what is the p-dual
markov process? Let’s prove that even in this case, the dual

process has a property similar to Tanaka’s collision property.

Let Ht be the dual transition probability with respect to p -

defined by

, n,m ~ 1

Ht(0,0) - 1, Ht(O,m) = 0, m ~ 1,

where Tt(n,m) is the transition probability of the CGW process.

Defining a convolution f*g of f = (fl,f2’...) and g = (gl,g2’...)
by

(f*g) (n) - fn + fn-lgl + ... + 1,

we have

PROPOSITION 4. For n = 1,2,3,...

(4) 

where = mTt(m,0).
REMARK. When q0 

= 0, Therefore (4) reduces to

Tanaka’s collision property
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PROOF OF PROPOSITION. Let n > 1. By the definition of Ht

(n) - n~

where a term for m= 0 is formally added because 0,

then by the branching property of Tt,

= 03A3n1+n2=n (fTt) (n1)(g Tt) (n2)
-n .

n1,n2~0

Because

tn) - Htf tn) un ~ n ? 1 ~

- H~f (0) , n = 0,

we get ( 4 ) .

REMARK. Since the generator B of the -dual Markov process of
the CGw process is given by

Bf(m) = m+1 n-m - f - mfm}, m > 1,

we have

PROPOSITION 5. The necessary and sufficient condition for ~ to

be m-excessive measure for the $-dual of the CGW process is

uq __ ~  ur.

PROOF. Because

03A3~m=1 03BBmBf (m) - c 03A3~n=1 nfn03BBn{03A3~k=0 ( a/u ) 1},

is m-excessive measure if and only if

a/u ~ ~~

thus we have

q  a/u  r.
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5. General cases

Let us extend the result in the previofis section to wider

cass of branching Markov processes. Let S be a state space of

one particle as usual. Given a right continuous Markov process
on S with a transition probability Pt, bounded non-negative
measurable function c, 0 with 1, and probability

kernels 03C0n(x,dy) defined on S Sn, n = 0,1,2,..., we can construct
a branching Markov process (X ,P ) on Sa (cf.[2,8]). .

Let Pt and Pt be direct products of Pt and the transition
probability Pt of exp(-ct)-subprocess, respectively. Then

the transition probability Tt of the branching Markov process
satisfies for x = (xl,x2, . . . ,xn) and for a symmetric bounded

measurable function F = (F ) on Sa,

(5) + ~~ dr f S n 
where

03A6(y,F)=03A3c(yk)03A3qm(yk)Sm 03C0m(yk,dz)F(y1,...,yk-1,z,yk+1,...,yn).

This is verified through construction of the process(cf.[2,8]).
Theref ore we have

(TtF (X) -F (X) ) /t = (p,°tF (X) -F (X) ) /t + ~

The second term is bounded by the uniform norm of F, because

is a probability measure on Sn, and the rest

part of the integrand on Sn is bounded by

~ F~ 03A3 qm (Yk) J ~F~ ,

m=0 S m=0

and it converges to 4l(x,F), (t~O). Therefore if F belongs to

the domain of the weak generator G°of Pt, then so does to the
domain of the weak generator A and vice versa. Therefore

we have D (A) - D(go) and Af = gOF + ~ ( . , F ) . Thus we have
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PROPOSITION 6. Let C be the weak generator of Pt, then
D (A) - D (G° ) C D (G) and for symmetric F E D () and x in Sn

AF (x) - + 

where ~Y (x,F) - ~ (x,F) - 

We assume in the following that there is a Pt-invariant
measure dx on S.

Assumption B. (i) There exists a density function 03C0n(x,z)
with respect to dg ; ,~

~ (x,dz) - z :
(ii) q~ = Is qO{x)dx  oo,

qk = sup k Is oo, k = 1,2,3....
~ 

zes

(iii) c(x) _ 1.

Put

h(u) = E q uB_ 

THEOREM 2. If there are non-negative solutions 0  r~ 1  r12

(at most two) of h(u) - u = 0, then 1~~ (u is a positive
constant) is m-excessive measure for the branching Markov process
determined by when

2qp  r12
and

1/n2 _ u _ 1/2q0.
PROOF. Because udx is an invariant measure of Pt,

j 1~ G_F = 0

for non-negative F ~ D (G) . Therefore ~ is excessive for Tt
if and only if

J ~d~ ’~ (x,F)  0.

This is equivalent to
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m 
,m E (m+l-k) sup f udx m ~ 0, m = 1,2,3,-".

k=0 
k k -

Therefore we get the theorem by the same arguments as in the

case of CGW processes.

EXAMPLE 1. When q~ 
= 0, h(u) = u has two solutions u=0 and n > 0,

where n is the solution of

n=2 q -n un 1 - 1.

If qn is constant, then qn 
= 

qn and n 
= 1. Thus  ~ 1 gives

an m-excessive measure Therefore the duality described in

§2 and §3 is justified in this case.

EXAMPLE 2. When dx is Pt-invariant probability measure, qn =
constant, 1, n=1,2;.., then h(u) = h(u) = 

Therefore we can state the same conclusion as for CGW processes.

EXAMPLE 3.(due to K.Uchiyama) Take n-dimensional Brownian motion.

The Lebesgue measure dx is the invariant measure for the motion.

Assume satisfy that q~ is bounded by 1 and belongs to

L , and
= 1 ~ ak ? ~ ~

~k (x, Z) - , for z = (zl, ... , zk) ~

where Pk is a probability density function which belongs to Lk.
Then a sufficient condition for existence of m-excessive measure

is

2q0 ~ 1/ , a0 + 03A3 ak~ pk~ 
k(1/ )k ~ 

1/u .

where ~pk~ is L norm. This follows from

sup 

z

For example, take 1-dimensional Brownian motion and

exp(-ax ) , Q2{x) = 1 - 

~r2 (x,z) - (2~b)-1/2exp{-1/2b. ( (x-zl) 2+(x-z2) 2) }.
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Then q~ - ~, q2  , and a suff icient condition for .~d
to be excessive is given by

203C0/a ~ 1/  ~ 03C0b + 03C0b-203C0b/a

ab > 4.

APPENDIX. When q2 - 1, the resolvent of the CGW process is

G(n,m) - 1/m, 1  n  m,

=0, otherwise.

In the case,  ~ 1 gives an m-excessive measure u. Let’s find
which initial distribution v gives u as a potential such that
vG = u. If vG = u, we have

03A3mn=1 03BDn = m m,

and

v~ = 
- 

, n = 1,2,3,...~ ,

is the one we need. Let’s take this initial distribution .

Then the reversed process of the CGW process from an L-time

(cf.[7]) is a collision process with the -dual transition
probability.

Since the resolvent of the y-dual process is given by

G _ (n,m) _ 1  m  n,

= 0, otherwise,

and since 0 ~ a  u gives m-excessive measure a for the -dual,
the initial distribution v which gives ~ as a potential (vG=a)
is given by

vm = .

As a special case if we take u - 1 then v 
= 1 (n > 1) gives

vG(m) = 1 (m > 1 ) , but 1 is not a potential for.the 1-dual
process. The author does not know when m-excessive measure is

given as a potential in general.
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