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PHASE TRANSITION AND MARTIN BOUNDARY

by Hans Föllmer

The theory of stochastic fields, and in particular of Markov fields

in the sense of DOBRUSHIN [ 1 ] and NELSON has some close analogies

to probabilistic potential theory. Our purpose here is to discuss the

analogy between phase transition and the existence of non-constant

harmonic functions of a Markov process. In particular we derive a

general integral representation of stochastic fields as mixtures of

phases using the Martin boundary technique. A similar approach based

on the "harmonic" martingales of (1.7) below has already been suggested
in [6]. But it turns out that DYNKIN’s construction of the boundary in

[4] is a much more convenient method. Moreover it allows to drop the

Markov property, and this is desirable in Statistical Mechanics

(example 2a below) and also of interest in Quantum field theory

(cf. [13]).

Sections 1 and 2 introduce some basic notions and examples, and

sections 3 and 4 are a straightforward modification of DYNKIN C43

adapted to stochastic fields. We refer to PRESTON [12~ for a different

approach based on Choquet simplex theory which leads to very similar

results.

1. STOCHASTIC FIELDS

Let ( ~, F) be a standard Borel space (cf. p. 133), V an index
- 

A 
-

set ordered by a relation C , and decreasing family of sub-

6-fields of F. For each V eV let 1T V be a probability kernel on 
such that

(1.1) 03C0V(.,A) is FV -measurable (A E F) , ,

and suppose that the collection n = satisfies the consistency
condition 

~

(1.2) W V = 1TW ~ VsW).
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Any probability measure P on (i~,F) which is compatible with n in the

sense that

(1.3) P-a. s. 

will be called a stochastic field with local characteristics n. The set

C = C(II) of all such fields is obviously convex, and ist extreme points
will be called the hases of II. Let us assume C ~ ~; a sufficient

condition for the existence of some PeC will be given in (3.2) below.

The case ~C) >1, where the stochastic field is not uniquely determined

by its local characteristics, is often called a phase transition.

In many applications, e.g. in lattice gas models of type (2.1)

below, C is a metrizable simplex, and so the Choquet integral repre-
sentation theory implies that each stochastic field is a mixture of

phases. In our general context, without compactness assumptions,we will

derive such an integral representation using the Martin boundary

technique. There is in fact a close analogy between the stochastic

fields of II and the harmonic functions of a Markov process. To make it

more explicit, let us first introduce the notion of a Markov field;

cf. DOBRUSHIN [1] and NELSON 

A

Suppose we have, in addition to the decreasing family ,

an increasing family such that F and Evv F (VeV) .
Let us write ~FV = Evn tv and let us say that II has the Markov

property if

(1.4) nV ( . ,AV) is ~FV - measurable (AV E FV) . .
In that case, any P e C(1I) will be called a Markov field.

Let us now fix P~C and let us look at the class Cp = Cp(n) of all

fields QEC which are "locally absolutely continuous" with respect to

P in the sense that

(1.5) QV « PV (VeY)

where Qv denotes the restriction of Q to FV. Clearly, any QECp induces
a non-negative martingale X = (XV)VeV over (S~,F, (FV) ,P) which is

normalized to 1 : : just take 
"

(1.6) XV = d (VEX). .

The following proposition gives an intrinsic characterization of all

those martingales which arise in that manner from a stochastic field
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in Cp. Here we assume that (EV)VEV is a "standard system" in the sense

of [11] p. 143: each is standard Borel, and any decreasing

sequence of atoms 
n 

(V1 ~ V2 ~ ...) has a non-void intersection.

Cf. [8] Theorem VII.2 for a similar result in Quantum field theory.

(1.7) PROPOSITION. - Su ose that 03A0 has the Markov property. Then (1.6)

establishes a 1-1 correspondence between CP(II) and the set of all those

non-negative normalized martingales X = over 
which are adapted to in the sense that 

~

(1.8) X is measurable P-a.s. (VEV)

PROOF. -

1) Let X = (XV) be the martingale associated to a field PX ECp. For any
F-measurable bounded function we have

= = EX[E[03C6V|F~V]]
= 

and this implies (1.8). .

2) Let X = (XV) be a non-negative martingale with = 1 . Then

FV) yields a consistent definition of PX on
, and since (Ev) is a standard system we may view PX as a pro-

bability measure on F; cf. [11] Th. 4.2. Now assume (1.8) and let us

verify (1.3). Since F = FV ~ FV it is enough to consider the case

A~FV. Take any W e V with V and a -measurable bounded cp .

Since F and n is Markovian, it is enough to check =

i In fact we have

E[XW r

A A
and since , (1.8) allows to continue

= E[XW 

2. EXAMPLES

a) LATTICE GAS MODELS. - Let E be a countable set, T = {t =

integer} with d > 1, and consider the space n = ET of
configurations 03C9: T ->E. For any V ~ T define FV as the o-field
generated by the maps (t ~ V) , , and take V = the finite subsets

of T.
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In the lattice gas models of Statistical Mechanics the local

characteristics are given in terms of a potential function U , that

is, a collection of maps

’ E~ 2014>R (V 

If as soon as the diameter of A is greater than some fixed

integer r then U is said to be of finite range r . . If this is the case

with r = 1 then U is called a nearest neighbor potential. The energy of

a configuration ~ e ~ on Vey is defined as

EV(03BE) = 03A3 
n V 

_i 

where 03BEW is the restriction of 03BE to W , and where the assumptions on U
are such that the right side is always absolutely convergent. For 
the measure ~ (~.) is concentrated on the finite set of all those

~ which coincide with w on T - V , and any such ~ carries the

weight

(2.1) ) = Z~-(~) exp (-E~(~))
with

= 

I: on (~)) . .

n = is then consistent, and any P ec(II) is called a Gibbs

field.

If U is of finite range r then n has the Markov property (1.4) if

we define ~.- as the a-field generated by all with t eT

and dist (t~V) ~ r .

Let us now consider the case where E is finite and where U is a

potential function with range r = 1 . . Then there is no phase transition

for d = 1 (cf. [14~). For d ~ 2 the Ising model (E =

J if V = {s,t} with ~s-t~ = 1 and U (.) =0 else) yields

examples of phase transition as soon as ~J~ is large enough (cf. Cl4]).
Let us however emphasize that even for d = 1 we may encounter phase
transitions as soon as either the Markov property (cf. DYSON [15~) or

the condition that E is finite (cf. example c) below is dropped.

b) QUANTUM FIELDS. - Take the space ~ of distributions on Euclidean

space R and y = the relatively compact open subsets of . For any

open V S: R define ~ as the a-field generated by the maps w->w(f)
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supp (f) S V), and for any closed define EA as the inter-
section of the 

. fields Ev (V open, V ~ A) . For V EV we set ~ FV = F~V
and ~V = °

The "free Markov field" in NELSON is a probability measure
on ( S~, F) such that

E V] = E rIA |~FV] (A e .

The question of phase transition arises if the free Markov field is

"perturbed" by a multiplicative functional; this induces a Markovian
collection 11= of local characteristics as indicated in

DOBRUSHIN-MINLOS C231the kernels can be constructed consistently in
the sense of (1.2) at least for a countable base of V).

c) MARKOV CHAINS. - Take Q = ET where E is some countable state space
and T = { 0,1, 2, ...} , V = the sets { ~, , .. ,n } , and for V E V define
the "past" , the "future" 9v and the "present" ~FV as in example a)
(with r = 1). Any Markov chain on E with transition matrix P(.,.) and

fixed initial distribution  , considered as a probability measure on
~! , is a Markov field with local characteristics

1r V( ~’ {~}) _ u(~(0)) P(~(4)~~(1))...P(~(n-1)~ n )
~ 

(V = {0,...,n-1} ; w, E(t) = w(t) for t > n). Proposition (1.7)
shows that the fields P EC(II) may be identified with the non-negative
normalized martingales X = (XV) such that each XV is 3Fv -measurable,
that is, of the form X{0~ " ,,n-1}(~) - h(~(n),n) for some space-time
function h : E x {1,2,...}-~ R. The martingale property of the process
X is equivalent to the space-time harmonicity of the function h. Thus

we have a phase transition as soon as P(.,.) admits space-time harmonic
functions other than the constants. In particular we get many examples
of a Markovian phase transition in one dimension as soon as ~E~ - ~ , .

3. THE MARTIN BOUNDARY OF II

Let n = be a collection of local characteristics over

(~,F) and suppose that V has a countable base. We fix a polish topology
on Q compatible with F , and thereby a polish topology on the set

of all probability measures on ( S~,F) (cf. 11 Th. 6.5). Let C =
Coo(IT) be the set of all limits

(3.1) lim (~n,’)
n n



310

where is some countable base of V and ( n) some sequence in Q .

C is complete in M(S~), and thus a polish space whose Borel field we
denote by C_ ; as shown below, our assumption C ~ ~ will imply C ~ ~ ~.
Let us call the Martin boundary of lI .

(3.2) REMARK. - In many applications there is a natural topology on ~
and the kernels ~rV have the Feller property, that is is continuous

for bounded continuous ~ . In that case it is easy to show If,
as in (2.1), Q is in addition compact then we have (without a

priori assumptions on C), and in particular C ~ ~. Moreover C~ is a
compact space.

Let be a countable base of V and take PE C. Then we have for

any e 

(3.3) = lim E[03C6|FV 7= lim03C0V (.,d03C9)03C6(03C9) P-a.s.
n n n n

where F denotes the tail field ~ V = ~ V . Letting 03C6 run through a
suitable sequence we obtain, P-a.s. , nthenexistence of

(3.4) lim 03C0V (03C9,.)~ C~
n n

(cf.C 11J Th. 6.6). Denoting by P~ resp. Ea the measure resp. the
expectations corresponding to a E 

, we can combine (3.3) and

(3.4) into

( 3. 5 ) E ( ~ 7( c~) - E p ( ~) P-a. s.

~ 
n n

For any bounded functions f, cP , , 03C6V which are, respectively,
F-, V-measurable we have

E[E03C1(.)[03C6V]] = E[03C6V] = E[E[03C6|V] V]
- 

and this implies

(3.6) Pp(,) E C P-a.s.

Since
n 

_ 

A

Cf(p(.))7J
for any bounded measurable function f on C , we also have

(3.7) Pp (w) ~ p (. ) - p (~)~ - 1 P-a.s.

In view of (3.6) and (3.7) let us call



311

P 0 [p(.) = a~= 1}
the essential part of the boundary. It is easy to see that A is a Borel

set in Coo (if nhas the Feller property then it is even a G ~set) , and

thus (~, A) with A = is again a standard Borel space. From now

on let us view P(.) as a measurable map from ~ to A (due to (3.6) and

(3.7) we can redefine it arbitrarily on {03C1(.)0394} ). By (3.5) we have

(3.8) 03C1-1() = ~ P-a. s.

Defining a probability measure p p on A through
(3.9) ~P (A) - P[p(.)e A J (A £~)

we may use (3.5) to write

(3.10) 
p

It is easy to check that, conversely, any probability measure p on A

induces a stochastic field P ~ C via (3.10). This implies in particular
that P is extremal in C if and only if P = P 0 for some We have

thus shown that C admits an integral representation

(3.11) P(.) = /P. (.) P (do)
which is coupled to the tail field in the sense that p is obtained from
the restriction of P to F via p(.). To summarize:

(3.12) THEOREM. - The relations (3.9) and (3.11) establish a 1-1

correspondence between the stochastic fields in C(II) and the probability

measures on the essential part A of the Martin boundary of n, and in

particular between A and the set of extreme points of C(II).

As corollaries we get two results which have been obtained in-

dependently by GEORGII [7] and PRESTON [12] . The first characterizes

the phases of n by a 0-1 law on the tail field. The second says that

any phase can be approximated by measures of the form ~rv(c~,.) - in

analogy to the well known fact in potential theory that extremal

harmonic functions can be approximated by normalized Green functions.

(3.13) COROLLARY. - A stochastic field P eC is an extreme point of C

if and only if

P[A] e { 0,1 } (A £ F ) . .

PROOF. - We have seen that P eC is a phase if and only if P is a
/B

one-point measure, and this is equivalent to a 0-1 law for P on Eoo due
to (3.8).
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(3.14) COROLLARY. - Any extreme point of C belongs to C ~.

PROOF. - Immediate from our construction of A .

4. SPECIAL INTEGRAL REPRESENTATIONS

Let If = be a collection of local characteristics and

assume that V has a-countable base. In many applications the real

object of interest is not so much the set C(II) of all stochastic fields

with local characteristics II , but rather a suitable convex subset of

C(ll). We will shortly discuss two examples.

a) LOCAL ABSOLUTE CONTINUITY. - Suppose as in (1.7) that we have an

increasing family of 6-fields such that F = Let us fix

some P e and consider the convex set CP ( lI) of all those Q e C ( II)

which are locally absolutely continuous with respect to P in the sense

of (1.5). We assume that II admits reference measures in the following
sense: For each Ve V there is a 6-finite measure nu, on F such that

(4.1) nW( ~,. )  Ev ( w s S2 )

for some W e V with Since 

we have

(4.2) mV (V E V) . .

Let 03C6V be a density of PV with respect to mV and define = 0 }. °

(4.3) LEMMA. - For any Q E we have

Q e Cp (ll) ~ (V E V)

PROOF. - " ~ " is clear since = 0. Now take a set B E Ev with

P[B3 dmv = 0 .

Then B ~ Av mV-a.s., due to (4.1) we get

QM = I’~(. ~B)dQ ~ = 

and this yields 
" 

~=== ". .

The lemma shows

Q ~  Q(d03B4) P03B4[AV] = O (V e V)

where
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Ap:= ( o (v £ v) }

is  -measurable since V has a countable base. To summarize:

(4.4) THEOREM. - The relations (3.9) and (3.11) establish a 1-1

correspondence between C p (II) and the set of probability measures on

sp , and in particular between pp and the set of extreme points of

Cp(n). 

b) INVARIANCE. - Suppose that we have a group (at)t ET of measurable
bijections -> S~ which is compatible with TI in the sense that

(4.5) P 03B8t E C(II) (P E C(II), t e T)

and

(4.6) I ~ F mod P (P e I)

where I is the o-field of (0 )-invariant sets, I the set of (6.)-in-
variant probability measures and where P at denotes the image of P
under 6t.

(4.7) REMARK. - I f f or t e T and V E V there is a Vt e V such that

(4.8) Vt = 03B8-1t(V)

and

(4.9) ~(6~),.) = (W,.) et

then it is easy to check (4.5). If, in addition, F = V Ev
as in a) and i f f or V, W E V there i s a t E T such that

(4.10) 

then (4.6) follows as well; cf. [7] for a proof. In the situation of

example 2a) above it is natural to take T = Zd and 6t as the shift
tran sf ormat ion de f ined through ( et ~ ) ( s ) =w (t+s). Then (4.8) and

(4.10) are satisfield, and (4.9) boils down to the condition that the

potential function U = (UV) is translation invariant in the sense that

E y, t E T, °

We denote by Co = Co(II) the convex set C(H) I. Let us assume

Co .~ ~; for a sufficient condition combine (4.7) with (3.2). For any

phase P.. the measure P03B403B8t is again a phase, and so it corresponds to

some point Thus induces a group of transformations on A
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which we denote again by (9t). For each PEC(1I) with representing
measure up we may then write

P03B8t[A] = 

- 

t a ) CAJ 
= (AsF).

Thus is the unique representing measure for P8 in the sense of
(3.12). In particular we have P~Co if and onl y if is (03B8t)-invariant.
We are now going to invoke the ergodic theorem, and so we have to be

more specific about (6t)tET’ In order to simplify the exposition, let

us just consider the case where T = Zd and 03B8to03B8s = 8 t + s as in example
2a above; cf. (4.?). Writing Tn = {t~T |~t~~n} we can apply WIENER’s
version of the ergodic theorem and obtain

(4.11) EC iIJ - lim 1 E P-a.s.

n

for any bounded F-measurable 03C6 and for any PEI (C3JVIII.6.9). Now we
assume PECo ( II) and use ( 4. 6 ) and ( 3.5 ) to conclude

= = lim E 03C6o03B8t|~]
n (TnI tET

n

- lim T1 E E ( C J P-a.s.

n

This implies the existence of

(4.12) u(~) := = lim 1 I E P 
S ( ô )teT 8t(a)

n

in for P-almost all Proceeding in exact analogy to the

proof of (3.12) we can now construct a polish space para-

metrizing a certain subset of Co(1I) and redefine a as a measur able map

from p to ~o such that the map po = aop satisfies

(4.13) 03C1-
1o
(o) - I mod P

(4.14) EC 03C6|I] = Ep (,) [03C6] P-a.s.
0

for any PECo (1I) . Writing

ECE 

with

(4.15) Po[A] := P[03BB 1 
(A) J - P[03C1-1o (A) J (A~o)

we obtain an integral representation
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(4.16) P(.) = /p~ ~~0~6 ~~o "

for which is coupled to the invariant 03C3-field I via the map p .

To summarize:

(4.17) THEOREM. - (4.15) and (4.16) establish a 1-1 correspondence

between stochastic fields in and probability measures on A ~ ,

and in particular between A and the set of extreme points of 

As corollaries we obtain two more results of GEORGII C7J resp.

PRESTON C12; . .

(4.18) COROLLARY. - A stochastic field PeC is an extreme point of C~
if and only if

Pt:A3e{0,l} (Aep , ,
that is, if and only if P is ergodic.

A
PROOF. - As for (3.13) with I instead of g~.

(4.19) COROLLARY. - Any extreme point P of C can be represented in

the form .

P = (03C9,.)03B8t

for P-almost all 03C9 and for any countable base (V ) of Y.

PROOF (GEORGII C7~). - If PeC is extremal and ~ F-measurable and
bounded then

E[03C6] = = 

= lim E[1  E ~ 

n ’ 
= 

lim r=- |t~Tn03A3  03C6d 03C0Vn (03C9,.)03B8t
where we use (4.18) in the first step, (4.6) in the second, and (4.11)

combined with HUNT’S extension of the martingale convergence theorem

(cf. C93) in the third. This implies (4.19).
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P.S. The whole point of this paper was to show that DYNKIN’s approach
to Martin boundary theory applies very naturally to stochastic fields.
In fact DYNKIN has just pointed out to me that part of the argument in

two of his articles subsequent to [4J applies directly, even without
the straightforward modification required by [4J; cf. Uspehi Mat. Nauk

vol.26, no.4 (1971) and vol.27, no.l (1972). C. PRESTON has taken up

the above situation in chapter 10 of his "Notes on Random Fields" (to

appear). In particular he clarifies in terms of tightness the existence

problem mentioned in 3.2.
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