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TAYLOR EXPANSION OF A POISSON MEASURE

Wilhelm von Waldenfels

Abstract. Denote by  (P) the Poisson measure associated to a positive
Radon measure 0 on a locally compact space countable at infinity.
If  is bounded,  () can be expressed as a power series in .

If  becomes non-bounded this expansion heeps its sense at least for
some ()-integrable functions (Theorem). These functions can be ex-
plicitly characterized (Additional Remark).

A Poisson measure is a generalization of the Poisson process on

the real line to arbitrary locally compact spaces countable at infinity.

A Poisson process on a finite interval I2. R is given by its jumping

points ~~. ~/v in I, where N is a random number. The proba-

bility that N = n is equal to where T is the length

of the interval and c is the parameter describing the Poisson process,

i. e. the mean frequency of jumping points. Given that the number N of

jumping points is equal to n, the n jumping points are distributed

independently and uniformly on the interval I. Be t~ (I) the topo-

logical sum 

F(I) = I0I1I2I3
where I0 = {g}, I1 =1, I2 = ..., and e is an arbitrary addi-

tional point. Be f  0 a function on jl (I), whose components
~ ~ J. 2014~ K~ are Lebesgue-measurable, then (~~...~ can be

calculated and is equal to
oo 

r r
= Z~ ~~~- ~"" ~~ 

or

E ~,. ,t,)- ~- ~( {(.) ~ ~ ~ ~,.,~~...~.)
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This formula can easily be extended to any compact space 3f and

to any positive measure ~ on3f . Be a function on 

with the property that ~~ : 1 3l 2014~~R is o -measurable, then the
application of the Poisson measure P~~~ on j is defined by

~ ~~,~ . e-~~f ~~~.>"

where g ~pc? ~ ~ 6 ’ ’ the Dirac measure in e the unique point of jf .
Now ~(3T) can be interpreted as the free monoid generated 

with neutral element e, the product being defined by juxtaposition.

locally compact containing J~ as a compact open subset.

The measure  on 9C can be interpreted as a measure on F(X).
The product in ~-(9~~ induces a convolution for measures. The n-th

convolution power ~ of Q is exactly « 
©1t 

carried by JC 
So the probability measure p(P) can be written

p~~-.-~f~~~"

°r 

~(~)= e 
" 

( 2 ) p(9)= Q(p;
with

(2.) a(p)= p-p~)~=~(~)(~-~).
as 03B4e is the unit element in the convolution algebra.

As ~~(o~...,~)- 9(~J...~~
is symmetric in ... , x only the symmetric part of ~~ gives
a contribution to the integral. So we can switch as well to 

the free commutative monoid generated by X . be defined
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by the same formula as a measure on ~c ~~)~ formulae (2) and (3)

hold as well. We denote by the compact open subspace of ~c CXJ
formed by the monomials of degree k.

Let the space of all positive measures on £ with

the vague topology and let be the subspace of positive count-

ing measures, i. e. the space of all jL(6 u~(X) of the form

~B

 = 
« 03B4xj.

xj ~ x, j = 1, ..., n and variable n  Of course is a sub-

monoid of the additive monoid It can be proved that the appli-

cation

~,...~i~(~~~ 
is a topological isomorphism. So can be interpreted,as well,

as a measure on t/M~(~~ denoted by and ~ (~~ is given

by

(4) y(03C1),f> = e-03C1(x)~ (f()+
- f ~ ~ ~)- P~~- ~J
n=1

(5) ~0) = 
(5’) ~(9) = fo(o(~)(~ - ~ )~ ~ 0

There 0 is the zero-measure, signifies the Dirac measure

on o~~~j in the point the Dirac measure on

in the point 0.

As is a, part of the dual of C~9~ the space of all

continuous real-valued function on ~F , a Fourier transform for mea-
sures on be defined. Be (p~. , then the Fourier

transform of in the point (? is given by the -inte-

gral of the function  ~ Uc (x) ~ ei ,03C6>
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So

( 6 ) y ( p ) ~ (q ) = e ~ ~" ~ ~

- e£ p AA ( P) ~ (Q )

( 6 ’ ) /A ( p ) ~ (Lf ) = j Q ( °~ * ) ( e ~ ~’ ~~ ~- 4 ) .

If I becomes non-compact and  a non-bounded measure on 

then formulae (1 ) - (5) fail, but formula (6) keeps its sense. Consider

the space (X) of all positive counting measures on x, I,e, the

space of all measures of the form

I Ci
where (X)~I is locally fini te: only fini tely many of the X
are contained in a compact subset of % . We assume the vague topology
Jn Uc(x). Then Uc (x) can be considered as a part of the dual space
of the space of all continuous real-valued functions on I
wi th compact support. If % is countable at infini ty and p e posi-

tive measure on £ , , then there exists a unique Radon measure y(Q)
on ( 3i ) wi th th e Fouri er transform ( G j . [2] , [3])

 7 > y f > ~  w > = x p /~ g d r > 
° ~* ~- 4 )

Further investigation shows that formula (2) may keep its sense

as well. This can be seen by writing (2) in a more explicit way

 t*  9 > > J > = Q  e > . I I  d  >  4 x > - i e > J
. 4 ( ( p  J p (of g > ( 1 «~> ri J - J ( x~ > - §  xz > + J fe > I

+ 3 4 1 ( ( ( y y  d x2) p (dx3) (I (x1, x2, x3) - J (x1, x2)
’ ’ 

- § (x1, x3> - f (x2, x3) + J (x1) + f(x2) + f (x3) - f(e))
f ~ . ,
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In fact, the following theorem holds.

Theorem: Assume 9~ to be a locally compact space countable at

infinity and 0 a positive Radon measure on J? . . Let -~ be a

function on u6~(G6) with the property: The functions

(8) ~~ = ~
G),(X) - 
~(~~-~4)-~~~~~~~

gn (x1,.., xn) = {It) ’2.)" . 

) fBIB J 
(-1)n-|I| f(03B4xi)

are ~n -measurable on Jh and

~’ ~~P~,~’> ~-

Denote by /0(i~ the restriction of ~~ to a compact

subspace Kc. dC and suppose that ~(./~~2014~ -inea-

sure for (that is the case if is vaguely con-

tinuous). Then f is y(03C1) -integrable and

~ ~(~~~f~,p~~~
~1=0 

11 .

In order to understand the theorem let us investigate the con-

nection between ~- and the function Q~ ~)i-= 0~~~---
One finds

J-(0~= ~o~)
~(J~~ ~ ~(e)+ 

= ~(e~~(~)-.~~~~~~
~~’~-~~0 ’~tT.~ .~ )~ 

"
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Taking into account that the functions Q. (/4~..~ are symmetric

in their arguments X~... X~ observe

r ~~) - /"’3 ~

1. ~~~ ~~ - ~ ~ 
’~ J 

~~f~~(~)

g3(xi, (xj,xh) = 1 6 (d1) (d2) (d3)g3(1,2,3)
-1 2 (d1) (d2)g3(1,1,2)+ 1 3 (d)g3(,,),
/~-= ~~"~ 

This leads to the assumption that any such sum can be expressed by .

We begin with a well-known lemma from elementary algebra.

Lemma 1 (Newton). Let [x1,..., xn] be the ring of polynomials

in n commutative indeterminates over the rational numbers. Then the

symmetric functions

03C3k = . 
xi1... xik

can be expressed as polynomials with rational coefficients of the power

sums ~ 

~~ = 
J=~

These polynomials are independent of the number n of indeterminates

and are given by the formal power series

~t+~h~r~-~f~- 
Proof. We give the proof as it is very short and not very known.

One has 
~+~~)~~~).. (~/~) = ~)+~~r~B- ~ 

and ~ ~ J" = ~ (~+ 
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So 

- 1 of g o f + 0~ j ’+ , , .
= £fp £ (4 + X; j )
= £ fi p £ £ ~k=1 I- 4 1’ j ’ 4@

_ £ ~k=1 (-1)k k0394k/k.
We recall the definition of (, (% ) " "/ the free commutative
monoid generated by K . . If % is locally compact, li, I% ) is locally
compact, too. Any measure  on % can be considered as a measure

on Fc (x). The convolution powers p 
£rnn 

= /A 
m 

of  are mea.sures

on xnc.

Denote the restriction to * c of a function g on Fc (£ )
by (m , then

( , ~ j ) = (" ’ ’ j p (d q > ’ ’ . / I d Y« > j ’l~ ( Y j , .. , I~-~ j

Another measure on fi (% ) carried by % I and related to is

0394n ( ) :  0394n( ),g > = (dx)gn (x,. , x).

We define now a third measure /U 
(n) 

on il (x) Carried by x hc
by the formal power series

q + , A> j + ~  ? ’ t . , , . = Ax p , ~ 4 ~ (p J j - 

Lemma 2. If  = 03B4x1 + . .. + 03B4 xn and if g is a function on xkc

then (h),
g > = g (xi1,..., xik)

.

Proof. Let X1,.
.., xn ~ x . The application X; P@ 

can be extended to e homomorphism from $ [KA> ; .> *« ] into the

convolution algebra of measures on Fc, (x). The image of x1+...+ xn
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and the image of /~=Z)(,’ is Zl((Lj -=/~.(A~
as ~ 

In
as 

 r (~.j,~ = z~~-. ~) - ~h~’- ~ >, ð 
~ ~~ 

ð

By lemma 1 the image of Z- ~~*" ’ ~~ is /C(~~ . . This

proves lemma. 2. 
~«~’~~ 

"

Lemma 5. If //. is a counting measure, then X~ 
(~) is a positive

measure on ~-
. (~~ . / (A) .Proof. If of compact support, then ./~ ~/Jr~K ~)

if r~ is compact and contains the support of 0) . As ./~L~ is a
finite counting measure, lemma 2 applies.

An immediate consequence of lemma 2 is

Lemma 4. On the assumptions of the theorem if ~ is a finite

counting measure

~(~-= ~ (~) + /~~,~ ~ ~’~~~-
If  is a bounded measure on x, , then () can be defined

as in (5) and (5*). If Kc TC is compact and ~C a positive measure

on  . ’I its restriction to K will be denoted by The measure

can be considered as a bounded measure on J~ .
Lemma 5. For any compact Kc. JE the mapping ~C~ t20149/C~~ is

~p(p) -measurable and the image of ~P (?) is equal to ~Pf?~~
Proof. We show at first that the mapping is measurable. Let ~

be an open neighborhood of K and let ~ be a continuous function

x ~ [0,1] wi th compact support in u such that 03C8 = 1 on k.

Then  t2014~~~ is continuous ~-«j=r0. But
~(P) {/~ ~ ~- K)~ o ~ ~~p[- p ( If.,( - t~)~
So  ~ k is continuous on the closed subset of all  wi th

(u-K)=0 , whose (03C1) -measure approximates 1 if 

goes to zero.
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The Fourier transform of the image is

"~- >

~ P, J ~’ ~-~ ~ - P~~ &#x26;~~~
~ ~ ~PK) ~~~

This proves the lemma. 

&#x26; z $Lemma 6. If Q is a C~ -integrable function then

for -almost every  the function 0, is/ 
(k) 

-integrable.

The function Xx ~ (h), g> is y(p)-integrable and

~(p)~) ~ ""~ ~. ~. . j  p*~ ~.
Proof. Assume a continuous function 0 on ~ ~ whose support

is contained in K where KC JL compact. Then 

 It,)) q) ist continuous and  0.

(h), 03C6> = y(03C1)(d ) k (h), 03C6>
= e-03C1(k) 1 n!...03C1(dx1)..03C1(dxu) 03C6(Xi1)..)Xih)
= 

. 

 P (h), 03C6>.

This formula extends to any continuous (p of compact support.

If 03C6  O is Tower semi-continuous, there exists a net

So

O ~ (h), 03C6c> ~ (h), 03C6>

~(p)(ot/.) /~~Bcf~ ~ ~ ~ 
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So /~ 2014=> ~H is lower semi-continuous, its -~~ -integral

is 1/h! 03C1h, 03C6> and Cp is (h) -integrable y(03C1) -a.e. if

P~~~ .

Assume now that ~P~ 0 is a o -null function. Then there exists
. ~~

a sequence of lower semi-continuous functions C~ ~ (~ such that

03C1h, 03C6n>~0. For y(03C1) -almost every  the functions C%.p ...

are (h) 
-integrable and (h), 03C6n) ~ (h), 03C6>

Therefore ~) ~ ~ ~ ~ ~ ~ ~~ (~ ~
and and cp are (h) -null functions for a.e. .

Assume finally 03C6~ L1 (03C1h). Then there exists a sequence

where ~ is

lower semi-continuous and integrable. Then converges to (jp

(h)-a.e. for almost As 03C8 and 03C8 is (h),

integrable a.e., the function 03C6 is (h) -integrable a. e. and

(h), 03C6n> ~ (h),03C6> Q.l. The theorem of Lebesgue yields the

end of the proofs

Proposition. Assume a sequence gk, h = 0,1,2,.. of 03C1
h 

-integrable

functions on xhc such that

r~, pB’~’-) - .

~~=0
Then the function

f( ) = () (h), gk>
is y(03C1) -almost everywhere defined and 

(n) y(03C1)(d ) f( ) = 03A3 1 k! 03C1k, gh>.
Proof. Immediate.
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Proof of the theorem. By the assumption of the theorem and the

proposition 

f( ) = (k),gk>~e = o 
.

is -integrable a.nd its integral is given by (11). By lemma 4

one has for any compact K C. X

C K ~ _ - ~’ ~ ~ K~
If which can be done by a sequence as ~ is countable at

infinity, f( k)~f( ) i. m. by assumption and f( k) ~ f( )
-almost everywhere. Hence f( ) = f( ) y(03C1) -a, e.

This proves the theorem.

Additional remark to the theorem. The function j’(/A) is ~f~’
a. e. eaual to the function

(h), gh>

converges to f ( ) y(03C1) -almost everywhere.
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