SÉminaire de probabilités (Strasbourg)

Wilhelm von Waldenfels
 Taylor expansion of a Poisson measure

Séminaire de probabilités (Strasbourg), tome 8 (1974), p. 344-354
http://www.numdam.org/item?id=SPS_1974__8_344_0
© Springer-Verlag, Berlin Heidelberg New York, 1974, tous droits réservés.
L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

Wilhelm vol Waldenfels

Abstract. Denote by $\mathscr{g}(\rho)$ the Poisson measure associated to a positive Radon measure Q on a locally compact space countable at infinity. If Q is bounded, $\mathcal{Y}(\rho)$ can be expressed as a power series in Q. If Q becomes non-bounded this expansion keeps its sense at least for some $g(\rho)$-integrable functions (Theorem). These functions can be explicitly characterized (Additional Remark).

A Poisson measure is a generalization of the Poisson process on the real line to arbitrary locally compact spaces countable at infinity. A Poisson process on a finite interval $I \subset \mathbb{R}$ is given by its jumping points $\tau_{1}, \ldots \tau_{N}$ in I, where N is a random number. The probebility that $N=n$ is equal to $c^{n_{T}} e^{-c T} / n!$, where T is the length of the interval and c is the parameter describing the Poisson process, i.e. the mean frequency of jumping points. Given that the number N of jumping points is equal to n, the n jumping points are distributed independently and uniformly on the interval I. Be frI) the toological sum

$$
f(I)=I^{0} \cup I^{1} \cup I^{2} \cup I^{3} \dot{ }
$$

where $I^{0}=\{e\}, I^{1}=I, I^{2}=I \times I, \ldots$, and e is an arbitrary additional point. Be $f \geqslant 0$ a function on $f(I)$, whose components $f_{n}: I^{n} \rightarrow \mathbb{R}_{+}$are Lebesgue-measurable, then $E f\left(\tau_{1}, \ldots, \tau_{N}\right)$ can be calculated and is equal to

$$
E f\left(\tau_{1}, \ldots, \tau_{\mathbb{N}}\right)=\sum_{n=0}^{\infty} \operatorname{Prob}\{N=n\} \frac{1}{T^{n}} \int . . \int_{I^{n}} f_{n}\left(t_{1, \ldots}, t_{n}\right) d t_{1} \ldots d t_{n}
$$

or
$E f\left(\tau_{1}, \ldots, \tau_{N}\right)=e^{-c T}\left(f(e)+\sum_{n=1}^{\infty} \frac{c^{n}}{n!} \int_{I} \ldots f_{n}\left(t_{1}, \ldots, t_{n}\right) d t_{1} \ldots d t_{n}\right)$

This formula can easily be extended to any compact space \mathfrak{E} and to any positive measure \mathcal{Q} on \mathscr{X}. Be $f \geqslant 0$ a function on $\mathcal{F}(\notin)$, with the property that $f_{n}: \mathscr{K}^{n} \rightarrow \mathbb{R}_{+}$is \oint^{n}-measurable, then the application of the Poisson measure $p(\rho)$ on f is defined by

$$
\begin{equation*}
\langle p(\rho), f\rangle=e^{-p(æ)} \sum_{n=0}^{\infty} \frac{1}{n!}\left\langle\rho^{\otimes n}, f_{n}\right\rangle \tag{1}
\end{equation*}
$$

where $\rho^{\otimes 0}=\delta_{e}$, the Dirac measure in e the unique point of \mathscr{X}_{0}. Now $\mathcal{F}(\mathfrak{F})$ can be interpreted as the free monoid generated by \nsubseteq with neutral element e, the product being defined by juxtaposition.
$f(\mathscr{X})$ is locally compact containing \mathscr{X} as a compact open subset. The measure ρ on $\not \subset$ can be interpreted as a measure on $\mathcal{F}(\mathscr{X})$. The product in $f(\mathscr{X})$ induces a convolution for measures. The n-th convolution power $\rho^{\nleftarrow n}$ of ρ is exactly $\rho^{\otimes n}$ carried by $X^{n} \subset \delta(\nVdash)$. So the probability measure $\rho(\rho)$ can be written

$$
\langle p(\rho), f\rangle=e^{-\rho(\nsupseteq)} \sum_{n=0}^{\infty} \frac{1}{n!}\langle\rho \cdot n\rangle
$$

or

$$
p(\rho)=e^{-\rho(\mathscr{X})} \exp p_{\Delta p} \rho
$$

(2)

$$
p(\rho)=\exp _{\nless} a(\rho)
$$

with

$$
\begin{equation*}
a(\rho)=\rho-\rho(æ) \delta_{e}=\int \rho(\alpha x)\left(\delta_{x}-\delta_{e}\right) . \tag{2'}
\end{equation*}
$$

as δ_{e} is the unit element in the convolution algebra.
As $\rho^{\otimes n}\left(d x_{1}, \ldots, d x_{n}\right)=\rho\left(d x_{1}\right) \ldots \rho\left(d x_{n}\right)$
is symmetric in x_{1}, \ldots, x_{n} only the symmetric part of f_{n} gives a contribution to the integral. So we can switch as well to $\mathcal{f}_{c}(\mathscr{X})$, the free commutative monoid generated by $\mathfrak{X} . \quad p(\rho)$ can be defined
by the same formula as a measure on $\mathcal{F}_{c}(\mathcal{X})$, formulae (2) and (3) hold as well. We denote by \mathcal{X}_{c}^{k} the compact open subspace of $\mathcal{F}_{c}(\Re)$ formed by the monomials of degree k.

Let $\mathcal{M}(\nVdash)$ be the space of all positive measures on $\mathscr{\not}$ with the vague topology and let $\mu_{c}(\mathfrak{X})$ be the subspace of positive counting measures, i.e. the space of all $\mu \in \mu(\nVdash)$ of the form

$$
\mu=\sum_{j=1}^{n} \delta_{x_{j}}
$$

$x_{j} \in \mathscr{X}, j=1, \ldots, n$ and variable n. Of course $\mu_{c}(\mathscr{X})$ is a submonoid of the additive monoid $\mu(\notin)$. It can be proved that the application

$$
\left(x_{1}, \ldots, x_{n}\right) \in f_{c}(\not \mathscr{X}) \longmapsto \delta_{x_{1}}+\cdots+\delta_{x_{n}} \in \mu_{c}(\mathscr{X})
$$

is a topological isomorphism. So $\rho(P)$ can be interpreted, as well, as a measure on $\mu_{c}(\mathscr{F}$ denoted by $\varphi(\rho)$ and $\varphi(\rho)$ is given by
(4) $\langle y(\rho), f\rangle=e^{-\rho^{(æ)}}(f(\sigma)+$

$$
\div \sum_{n=1}^{\infty} \frac{1}{n!} \int \cdots \int \rho\left(d x_{1}\right) \cdots \rho\left(d x_{n}\right) f\left(\delta_{x_{1}}+\cdots+\delta_{x_{n}}\right)
$$

(5)

$$
\begin{align*}
& \left.g(\rho)=\exp _{\phi} \operatorname{v(\rho }\right) \\
& v(\rho)=\int \rho(d x)\left(\delta_{\delta_{x}}-\alpha_{0}\right) \tag{5'}
\end{align*}
$$

There 0 is the zero-measure, δ_{x} signifies the Dirac measure on $\mathcal{M}(\mathscr{X})$ in the point $\delta_{x} \in M(\mathscr{F})$ and \mathscr{V}_{0} the Dirac measure on $\mu(\mathfrak{X})$ in the point 0 .

As $\mu_{c}(\nVdash)$ is a part of the dual of $C(\nVdash)$ the space of all continuous real-valued function on \mathscr{X}, a Fourier transform for meansures on $c l_{c}(\mathscr{X})$ can be defined. Be $\varphi \in C(\mathscr{X})$, then the Fourier transform of $y(\rho)$ in the point φ is given by the $g(\rho)$-intaral of the function $\mu \in \mu_{c}(\mathscr{X}) \longmapsto e^{i\langle\mu, \varphi\rangle}$

So
(6)

$$
\begin{align*}
g(p)^{\wedge}(\varphi) & =\int y(p)(d \mu) e^{i\langle\mu, \varphi\rangle} \\
& =\exp \mu(\rho)^{\wedge}(\varphi) \\
\mu(p)^{\wedge}(\varphi) & =\int \rho(d x)\left(e^{i \varphi(x)}-1\right)
\end{align*}
$$

If \mathfrak{X} becomes non-compact and ρ a non-bounded measure on \mathfrak{X}, then formulae (1) - (5) fail, but formula (6) keeps its sense. Consider the space $\mu_{c}(\mathscr{X})$ of all positive counting measures on \mathfrak{X}, i.e. the space of all measures of the form

$$
\sum_{c \in I} \delta_{x_{c}}
$$

where $\left(X_{\iota}\right)_{\iota \in I} \quad$ is locally finite: only finitely many of the X_{l} are contained in a compact subset of \mathscr{X}. We assume the vague topology on $\mu_{c}(\nVdash)$. Then $\mu_{c}(\mathscr{X})$ can be considered as a part of the dual space of $C_{0}(\mathfrak{X})$, the space of all continuous real-valued functions on \mathscr{X} with compact support. If \mathscr{X} is countable at infinity and ρ a posifive measure on \mathscr{X}, then there exists a unique Radon measure $g(\rho)$ on $\mathcal{l}_{c}(\mathfrak{E})$ with the Fourier transform (cf.[2], [3])

$$
\begin{equation*}
y(\rho)^{\wedge}(\varphi)=\exp \int \rho(d x)\left(e^{i \varphi(x)}-1\right) \tag{7}
\end{equation*}
$$

Further investigation shows that formula (2) may keep its sense as well. This can be seen by writing (2) in a more explicit way

$$
\begin{aligned}
& \langle g(\rho), f\rangle=f(e)+\int \rho(d x)(f(x)-f(e)) \\
& +\frac{1}{2!} \iint \rho\left(d x_{1}\right) \rho\left(d x_{2}\right)\left(f\left(x_{1}, x_{2}\right)-f\left(x_{1}\right)-f\left(x_{2}\right)+f(e)\right) \\
& +\frac{1}{3!} \iiint \rho\left(d x_{1}\right) \rho\left(d x_{2}\right) \rho\left(d x_{3}\right)\left(f\left(x_{1}, x_{2}, x_{3}\right)-f\left(x_{1}, x_{2}\right)\right. \\
& \left.\quad-f\left(x_{1}, x_{3}\right)-f\left(x_{2}, x_{3}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)-f(e)\right)
\end{aligned}
$$

$$
+\cdots
$$

In fact, the following theorem holds.
Theorem: Assume \mathscr{X} to be a locally compact space countable at infinity and φ a positive Radon measure on \mathscr{E}. Let f be a function on $\mu_{c}(\mathscr{\not})$ with the property: The functions

$$
\begin{align*}
& g_{0}(e)=f(0) \tag{8}\\
& g_{1}(x)=f\left(\delta_{x}\right)-f(0) \\
& g_{2}\left(x_{1}, x_{2}\right)=f\left(\delta_{x_{1}}+\delta_{x_{2}}\right)-f\left(\delta_{x_{1}}\right)-f\left(\delta_{x_{2}}\right)+f(0) \\
& \vdots \\
& g_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{I \subset\{1,2, \ldots, n\}}(-1)^{n-|I|} f\left(\sum_{i \in I} \delta_{x_{i}}\right)
\end{align*}
$$

are $\rho^{\otimes n}$-measurable on \Varangle^{n} and
(9) $\sum_{n=0}^{\infty} \frac{1}{n!}\left\langle p^{\otimes n},\right| g_{n}| \rangle<\infty$

Denote by μ_{K} the restriction of $\mu \in \mu_{c}(K)$ to a compact subspace $K \subset \mathfrak{X}$ and suppose that $f\left(\mu_{K}\right) \rightarrow f(\mu)$ in $y(\rho)$-masure for $K \uparrow \nsupseteq$ (that is the case if e.g. f is vaguely continuous). Then f is $g(\rho)$-integrable and

$$
\begin{equation*}
\langle g(p), f\rangle=\sum_{n=0}^{\infty} \frac{1}{n!}\left\langle p^{\otimes n}, g_{n}\right\rangle \tag{10}
\end{equation*}
$$

In order to understand the theorem let us investigate the connection between f and the function $g_{n}, n=0,1,2, \ldots$
One finds

$$
\begin{aligned}
& f(0)=g_{0}(e) \\
& f\left(\delta_{x}\right)=g_{0}(e)+g_{1}(x) \\
& f\left(\delta_{x_{1}}+\delta_{x_{2}}\right)=g_{0}(e)+g_{1}\left(x_{1}\right)+g_{1}\left(x_{2}\right)+g_{2}\left(x_{1}, x_{2}\right) \\
& \left.f\left(\delta_{x_{1}}+\cdots+\delta_{x_{4}}\right)=\sum_{k=0}^{n} \sum_{i_{1}<i_{2}<\cdots<i k} g_{k}\left(x_{i_{1}}\right) \cdots, x_{i_{k}}\right) .
\end{aligned}
$$

Taking into account that the functions $g_{k}\left(\alpha_{1} \ldots, x_{k}\right)$ are symmetric in their arguments X_{1}, \cdots, X_{k} observe

$$
\begin{aligned}
& \sum g_{1}\left(x_{i}\right)=\langle\mu, g\rangle \\
& \sum_{i<j} g_{2}\left(x_{i}, x_{j}\right)=\frac{1}{2} \iint \mu\left(d \xi_{1}\right) \mu\left(d \xi_{2}\right) g_{2}\left(\xi_{1}, \xi_{2}\right) \\
& -\frac{1}{2} \int \mu(d \xi) g(\xi, \xi) \\
& \sum_{i<j<k} g_{3}\left(x_{i}, x_{j} x_{h}\right)=\frac{1}{6} \iiint \mu\left(d \xi_{1}\right) \mu\left(d \xi_{2}\right) \mu\left(d \xi_{3}\right) g_{3}\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \\
& -\frac{1}{2} \iint \mu\left(d \xi_{1}\right) \mu\left(d \xi_{2}\right) g_{3}\left(\xi_{1}, \xi_{1}, \xi_{2}\right)+\frac{1}{3} \int \mu(d \xi) g_{3}\left(\xi_{1} \xi_{1} \xi_{r},\right.
\end{aligned}
$$

for $\mu=\delta_{x_{1}}+\cdots+\delta_{x_{n}}$.
This leads to the assumption that any such sum can be expressed by μ. We begin with a well-known lemma from elementary algebra.

Lemma 1 (Newton). Let $\mathcal{Q}\left[x_{1}, \ldots, x_{n}\right]$ be the ring of polynomials in n commutative indeterminate over the rational numbers. Then the symmetric functions

$$
\sigma_{k}=\sum_{i_{1}<i_{2}<\cdots<i_{h}} x_{i_{1}} \cdots x_{i_{k}}
$$

can be expressed as polynomials with rational coefficients of the power sums

$$
\Delta_{k}=\sum_{j=1}^{n} x_{j}^{k}
$$

These polynomials are independent of the number n of indeterminate and are given by the formal power series

$$
\left.\left.\left.\left.\left.1+\sigma_{1}\right\}+\sigma_{2} \xi^{2}+\sigma_{3}\right\}^{3}+\cdots=\exp \left[\Delta_{1}\right\}-\Delta_{2}\right\}^{2} / 2+\Delta_{3}\right\}^{3} / 3-+\right]
$$

Proof. We give the proof as it is very short and not very known. One has $\left(1+x_{1} \xi\right)\left(1+x_{2} \xi\right) \cdots\left(1+x_{n} \xi\right)=1+\sigma_{1} \xi+\sigma_{2} \xi^{2}+\cdots+\sigma_{n} \xi^{n}$ and $\left.\left.1+x_{i}\right\}=e \times p \log \left(1+x_{i}\right\}\right)$.

So

$$
\begin{aligned}
& \left.\left.1+\sigma_{1}\right\}+\sigma_{2}\right\}^{2}+\cdots \\
= & \exp \sum_{i=1}^{n} \log \left(1+x_{i} \xi\right) \\
= & \operatorname{lxp} \sum_{i=1}^{n} \sum_{k=1}^{\infty}(-1)^{k} \xi^{k} x_{i}{ }^{k} / k \\
= & \ell \times p \sum_{k=1}^{\infty}(-1)^{k} \xi^{k} \Delta k / k
\end{aligned}
$$

We recall the definition of $f_{c}(\notin)=\sum_{k=0}^{\infty} \mathscr{X}_{c}^{k}$ the free commutative monoid generated by \mathscr{X}. If \mathscr{X} is locally compact, $\mathcal{F}_{c}(\mathscr{X}$) is locally compact, too. Any measure μ on \mathscr{X} can be considered as a measure on $\forall_{c}(\notin)$. The convolution powers $\mu^{\nrightarrow n}=\mu^{n}$ of μ are measures on \mathscr{E}_{c}^{n}.

Denote the restriction to \mathscr{X}_{c}^{m} of a function g on $\mathscr{F}_{c}(\mathscr{X})$ by g_{n}, then

$$
\left\langle\mu^{n}, g\right\rangle=\int \cdots \int \mu\left(d x_{1}\right) \cdots \mu\left(d x_{n}\right) g_{n}\left(x_{1}, \ldots, x_{n}\right)
$$

Another measure on $F_{c}(\notin)$ carried by \mathscr{E}_{c}^{n} and related to μ is

$$
\Delta_{n}(\mu):\left\langle\Delta_{n}(\mu), g\right\rangle=\int \mu(d x) g_{n}(x,, x)
$$

We define now a third measure $\mu^{(n)}$ on $F_{c}(\notin)$ carried by X_{c}^{n} by the formal power series

$$
1+\mu^{(1)} \xi+\mu^{(2)} \xi+\cdots=\exp p_{\ngtr}\left(\Delta_{1}(\mu) \xi-\Delta_{2}(\mu) \xi^{2} / 2+\Delta_{3}(\mu) \xi^{3} / 3 \mp\right)
$$

Lemma 2. If $\mu=\delta_{x_{1}}+\cdots+\delta_{x_{u}}$ and if g is a function on \mathscr{X}_{c}^{k} then

$$
\left\langle\mu^{(k)}, g\right\rangle=\sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant n} g\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)
$$

Proof. Let $x_{1}, \ldots, x_{n} \in \mathscr{X} \quad$. The application $x_{i} \longmapsto \delta_{x_{i}}$ can be extended to a homomorphism from $\mathcal{Q}\left[x_{1}, \ldots, x_{n}\right]$ into the convolution algebra of measures on $F_{C}(\notin)$. The image of $x_{1}+\cdots+x_{n}$
is μ and the image of $\Delta_{k}=\sum x_{i}^{k}$ is $\sum\left(\delta_{x_{i}}\right)^{k}=\Delta_{h}(\mu)$ as

$$
\left\langle\sum\left(\delta_{x_{i}}\right)^{k}, g\right\rangle=\sum_{i=1}^{m} g\left(x_{i, \ldots}, x_{i}\right)=\left\langle\Delta_{k}(\mu), g\right\rangle
$$

By lemma 1 the image of $\sum_{i_{1}<i_{2}<\cdots<i_{h}} x_{i_{1}} \ldots x_{i_{k}} \quad$ is $\mu^{(h)}$. This proves lemma 2.

Lemma 3. If μ is a counting measure, then $\mu^{(k)}$ is a positive measure on \notin.

Proof. If $g \geqslant 0$ of compact support, then $\left\langle\mu^{(k)}, g\right\rangle=\left\langle\mu_{k}^{(h)}, g\right\rangle$, if K is compact and contains the support of g. as μ_{K} is a finite counting measure, lemma 2 applies.

An immediate consequence of lemma 2 is
Lemma 4. On the assumptions of the theorem if μ is a finite counting measure

$$
f(\mu)=g_{0}(e)+\left\langle\mu^{(n)}, g\right\rangle+\left\langle\mu^{(2)}, g\right\rangle+\cdots
$$

If ρ is a bounded measure on $\not \subset$, then $g(\rho)$ can be defined as in (5) and (5'). If $K \subset \mathfrak{X}$ is compact and μ a positive measure on \mathcal{X}, its restriction to K will be denoted by μ_{H}. The measure can be considered as a bounded measure on \mathcal{X}.

Lemma 5. For any compact $K \subset \npreceq$ the mapping $\mu \longmapsto \mu_{K}$ is $g(\rho)$-measurable and the image of $g(\rho)$ is equal to $g(P K)$.

Proof. We show at first that the mapping is measurable. Let U be an open neighborhood of K and let ψ be a continuous function $\mathscr{X} \rightarrow[0,1]$ with compact support in U such that $\psi=1$ on K. Then $\mu \mapsto \mu \psi$ is continuous and $\mu \psi=\mu_{K}$ if $\mu(U-K)=0$. But $g(p)\{\mu: \mu(u-K)=0\}=\exp (-p(u-K))$.
So $\mu \longmapsto \mu_{k}$ is continuous on the closed subset of all μ with $\mu(U-K)=0$, whose $\varphi(p)$-measure approximates 1 if $\rho(U-K)$ goes to zero.

The Fourier transform of the image is

$$
\begin{aligned}
& \int g(\rho)(d \mu) e^{i\left\langle\mu_{k}, \varphi\right\rangle}=\int g(\rho)(d \mu) e^{i\left\langle\mu, \varphi_{k}\right\rangle} \\
& =\exp \left\langle\rho, e^{i \varphi_{K}}-1\right\rangle=\exp \left\langle p_{k}, e^{i \varphi}-1\right\rangle \\
& =g\left(\rho_{K}\right)^{\wedge}(\varphi) .
\end{aligned}
$$

This proves the lemma.
Lemma 6. If g is a ρ^{k}-integrable function on \mathscr{X}_{c}^{k}, then for $\varphi(\rho)$-almost every μ the function g is $\mu^{(k)}$-integrable. The function $\mu \mapsto\left\langle\mu^{\left(k_{2}\right)}, g\right\rangle$ is $g(p)$-integrable and

$$
\int g(p)(d \mu)\left\langle\mu^{(k)}, g\right\rangle=\frac{1}{k!}\left\langle p^{k}, g\right\rangle
$$

Proof. Assume a continuous function $\varphi \geqslant 0$ on $X_{c}^{h_{c}}$ whose support is contained in K_{c}^{k} where $K \subset \mathscr{X}$ compact. Then $\mu \in \mu_{c}(\mathscr{X})_{\mapsto}$ $\left\langle\mu^{(h)}, \varphi\right\rangle$ inst continuous and $\geqslant 0$.

$$
\begin{aligned}
& \int \varphi(p)(d \mu)\left\langle\mu^{(h)}, \varphi\right\rangle=\int y(p)(d \mu)\left\langle\mu_{k}^{(h)}, \varphi\right\rangle \\
& \left.=e^{-p(K)} \sum_{n \geqslant k} \frac{1}{n!} \int \cdots \int p\left(d x_{1}\right) \cdots p\left(d x_{n}\right) \sum_{i_{1}\left\langle i_{2}<\ldots i_{k}\right.} \varphi\left(x_{i_{1}}\right) ., x_{i_{k}}\right) \\
& =\frac{1}{k!}\left\langle p^{(k)}, \varphi\right\rangle .
\end{aligned}
$$

This formula extends to any continuous φ of compact support.
If $\varphi \geqslant 0$ is lower semi-continuous, there exists a net

$$
\varphi_{1} \in C_{0}(x), \varphi, \uparrow \varphi .
$$

So

$$
\begin{aligned}
& 0 \leq\left\langle\mu^{(k)}, \varphi_{c}\right\rangle \uparrow\left\langle\mu^{(k)}, \varphi\right\rangle \\
& \int g^{(p)}(d \mu)\left\langle\mu^{(k)}, \varphi_{1}\right\rangle \uparrow \int g(p)(d \mu)\left\langle\mu^{(k)}, \varphi\right\rangle \\
& \left\langle p^{k}, \varphi_{1}\right\rangle \uparrow\left\langle p^{k}, \varphi\right\rangle .
\end{aligned}
$$

So $\mu \longmapsto\left\langle\mu{ }^{(k)}, \varphi\right\rangle$ is lower semi-continuous, its $\varphi(\rho)$-integral is $1 / k!\left\langle\rho^{k}, \varphi\right\rangle$ and φ is $\mu^{(k)}$-integrable $g(\rho)$-a.e. if $\left\langle\rho^{k}, \varphi\right\rangle\langle\infty$.

Assume now that $\varphi \geqslant 0$ is a ρ null function. Then there exists a sequence of lower semi-continuous functions $\varphi_{n} \downarrow \tilde{\varphi} \geqslant \varphi$ such that $\left\langle p^{k}, \varphi_{n}\right\rangle \downarrow 0$. For $\varphi(p)$-almost every μ the functions $\varphi_{1}, \varphi_{2}, \ldots$ $\operatorname{are} \mu^{(k)}$-integrable and $\left\langle\mu^{(k)}, \varphi{ }_{n}\right\rangle \downarrow\left\langle\mu^{(k)}, \tilde{\varphi}\right\rangle$ Therefore $\int \mu(p)(d \mu)\left\langle\mu^{(\hbar)}, \varphi_{n}\right\rangle \downarrow \int g(\rho)(d \mu)\left\langle\mu^{(h)}, \tilde{\varphi}\right\rangle$ and $\tilde{\varphi}$ and φ are $\mu^{(t)}$-null functions for ace. μ.

Assume finally $\varphi \in L^{1}\left(\rho^{k}\right)$. Then there exists a sequence $\varphi_{n} \in C_{0}(\mathscr{X}), \varphi_{n} \rightarrow \varphi \quad \rho^{k}-$ a.e. and $\left|\varphi_{n}\right| \leqslant \psi \quad$ where ψ is lower semi-continuous and integrable. Then φ_{m} converges to φ $\mu^{(k)}-$ a.e. for almost all μ. As $\left|\varphi_{n}\right| \leqslant \psi$ and ψ is $\mu^{(k)}$ integrable a.e., the function φ is $\mu^{(k)}$-integrable a.e. and $\left\langle\mu^{(k)}, \varphi_{n}\right\rangle \rightarrow\left\langle\mu^{(h)}, \varphi\right\rangle$ Q.e. The theorem of Lebesgue yields the end of the proof.
$\frac{\text { Proposition. Assume a sequence } g_{k}, k=0,1,2, \ldots \text { of } \rho^{k} \text {-integrable }}{\notin}$ functions on $\not \mathscr{C}_{c}^{k}$ such that

$$
\sum_{k=0}^{\infty} \frac{1}{k!}\left\langle p^{k},\right| g_{k}| \rangle<\infty
$$

Then the function

$$
f(\mu)=\sum_{k=0}^{\infty}\left\langle\mu^{(h)}, g_{k}\right\rangle
$$

is $g(\rho)$-almost everywhere defined and
(11) $\int \mu(p)(d \mu) f(\mu)=\sum_{k=0}^{\infty} \frac{1}{k!}\left\langle p^{k}, g_{k}\right\rangle$.

Proof. Immediate.

Proof of the theorem. By the assumption of the theorem and the proposition

$$
\tilde{f}(\mu)=\sum_{k=0}^{\infty}\left\langle\mu^{(k)}, g_{k}\right\rangle
$$

is $g(\rho)$-integrable and its integral is given by (11). By lemma 4 one has for any compact $K \subset \mathfrak{X}$

$$
f\left(\mu_{k}\right)=\tilde{f}\left(\mu_{k}\right)
$$

If $K \uparrow \mathfrak{X}$ which can be done by a sequence as \mathfrak{X} is countable at infinity, $f\left(\mu_{k}\right) \rightarrow f(\mu)$ i. m. by assumption and $\tilde{f}\left(\mu_{k}\right) \rightarrow \tilde{f}(\mu)$ $y(p)$-almost everywhere. Hence $f(\mu)=\tilde{f}(\mu) \quad y(\rho)$-a.e. This proves the theorem.

Additional remark to the theorem. The function $f(\mu)$ is $g(\rho)$ a.e. eaual to the function

$$
\sum_{k=0}^{\infty}\left\langle\mu^{(k)}, g_{k}\right\rangle
$$

and $f\left(\mu_{K}\right)$ converges to $f(\mu) \quad g(\rho)$-almost everywhere.

Literature

[1] Waldenfels, W. von
Zur mathematischen Theorie der Druckverbreiterung von Spektrallinien. Z. Wahrscheinlichkeitstheorie verw. Geb. 6, 65-112 (1966).
[2] Waldenfels, W. von Zur mathematischen Theorie der Druckverbreiterung von Spektrallinien. II. Z. Wahrscheinlichkeitstheorie verw. Geb. 13, 39-59 (1969).
[3] Waldenfels, W. von
Charakteristische Funktionale zufälliger Maße. Z. Wahrscheinlichkeitstheorie verw. Geb. 10, 279-283 (1968).

Universität Heidelberg
Institut für Angewandte Mathematik

69 Heidelberg / BRD
Im Neuenheimer Feld 5

