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TAYLOR EXPANSION OF A POISSON MEASURE

Wilhelm von Waldenfels

Abstract. Denote by 4 «3) the Poisson measure associated to a positive

Radon measure on a 1oca11y compact space countable at infinity.
If Q is bounded, can be expressed as a power series in Q .
If becomes non- ounded this expansion keeps its sense at least for

some ?f( -integrable functions (Theorem). These functions can be ex-
plicitly éharacterized (Additional Remark).

A Poisson measure is a generalization of the Poisson process on
the real line to arbitrary locally compact spaces countable at infinity.
A Poisson process on a finite interval I < R is given by its jumping
points T4, ... T in I, where N is a random number. The proba-
bility that N =n is equal to chnea_CT/n!, where T 1is the length
of the interval and ¢ 1is the parameter describing the Poisson process,
i.e. the mean frequency of jumping points. Given that the number N of
jumping points is equal to n, the n jumping points are distributed
independently and uniformly on the interval I. Be &% (I) +the topo-

logical sum
o 4 2 3
FO=I°c I'e Tl
where 1° = {e}, I1 =TI, 12 =IxI, ..., and € is an arbitrary addi-
tional point. Be f'} O a function on &;(I), whose components

M
_‘)('n: I -7 1R4_ are Lebesgue-measurable, then EJC (Q,...) TN ) can bve

calculated and is equal to

£ § (@, Ty Z%{N N AR
I"L

or

Ef(T. )= —CT(Jf(e)+Z: c {['fm(ﬂ,...,‘t-.‘)olh...o&n)

m!
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This formula can easily be extended to any compact space ¥  and
to any positive measure < on ¥ . Be _'f?O a function on f(gf),
om
with the property that j:,h : %m—a;m_’.is Q -measurable, then the

application of the Poisson measure P(Q) on f is defined by

> 24, 5

M"=0 n-

-_p (%
o <pe,§y = e P

® o J
where ? = 0g , the Dirac measure in e the unique point of xo‘
Now ﬂ:(r) can be interpreted as the free monoid generated byx
with neutral element e, the product being defined by juxtaposition.
é:(%) is locally compact containing % as a compact open subset.
The measure Q on X can be interpreted as a measure on (F(I) .
The product in YF(%') induces a convolution for measures. The n-th
. #n . ®n . zm (g)
convolution power §) of Q is exactly ? carried by C .
So the probability measure p(Q) can be written

(%) 2 &
Cpn g7 =e " 2 A4S

or _ %
p(@)= e o)

£X P
(2) p(9)= 2rp, a(e)

with

(21) Ale)= p-o=x)d, = fg(dx)(cﬁ—oa ).

as d\e is the unit element in the convolution algebra.

s 0 ®™ (olxyy..., olxn) = ©(alx,)... ¢ (olxa)
is symmetric in Xy eeey X, only the symmetric part of —S—.“ gives
a contribution to the integral. So we can switch as well to ‘F,_ (%),

the free commutative monoid generated by % . P(P)can be defined
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by the same formula as a measure on lF'-‘- (%), formulae (2) and (3)
hold as well, We denote by :ff the compact open subspace of “ﬁ; C%)
formed by the monomials of degree k.

Let v“(%) be the space of all positive measures on % with
the vague topology and let vac (%) be the subspace of positive count-
ing measures, i.e. the space of all }J (=% VU(%) of the form

m
)=r
)(je%,")’—'/’)---)m and variable n.Of course vac (E) 15 o sup-

monoid of the additive monoid Va(x) . It can be proved that the appli-

cation

(Xay- ey x,,,)e)fc(f{) — ij ..+o‘;(M e M (%)

is a topological isomorphism. So (P) can be interpreted,as well,
as a measure on dac({{) denoted by Ag(P) and /? (Q) is given

<'4) p(e),§y = %:?(96) ( fo)+
.;mé L | octar- gl vd,)
(5) f{p(@) = RxXpy w(Q)

(51) Q) = fg(dx)(%x— )

There O 1is the zero-measure, /3&‘ signifies the Dirac measure

on JX(I) in the point J;Eva(%) arfd 4?6 the Dirac measure on
ua(%) in the point O.

As u«c (x) is a part of the dual of C(x) the space of all
continuous real-valued function on f , & Fourier transform for mea-
sures on ‘/uc(x)can be defined. Be ?E’. C((f) , then the Fourier

transform of /? (P) in the point (¢ is given by the /%P(P} -inte-
M, (%) C<pm e
gral of the function MU & c — e
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So

(6) f;(p)" () = fﬁa(P)(ol,u)e
= exp (P (p)

(6") e () = gg(o(x) (edq’(x’—-/l).

C<pm, @)

If x becomes non-compact and g) a non-bounded measure on x ,
then formulae (1) - (5) fail, but formula (6) keeps its sense. Consider
the space vuc (%) of all positive counting measures on% , i.e. the
space of all measures of the form

2_d,

eI X
where ()('~ )LGI is locally finite: only finitely many of the XL
are contained in a compact subset of I . We assume the vague topology
an vac(x} Then vac C%) can be considered as a part of the dual space
of Co(x) , the space of all continuous real-valued functions on %
with compact supvort. If % is countable at infinity and Q a posi-
tive measure on }C , then there exists a unique Radon measure Af(?)

on OC(CCI) with the Fourier transform (Cf [l]’[?,])

(7) z}p(e)"(q)) = 2xp f@(dx)(e q>(x)- )

Further investigation shows that formula (2) may keep its sense

as well. This can be seen by writing (2) in a more explicit way

<xf(9),§7= L(e) + fg(dX)(gc(X)—{(e))
w4 [fetdxlpld) (Fox)~ £ix) = £06)+ fle))
+ 4, ﬂ(?(dmg(da)p(dxa) (nf(X«,n, 6= ()

‘ —F ) = f (X %)+ F ()4 F06)+ £ (g)- ffe
.’..
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In fact, the following theorem holds.

Theorem: Assume £ to be a locally compact space countable at
infinity and Q a positive Radon measure on .%' . Let 7[ be a
function on v('(c(%) with the property: The functions

(8) 9o (e) = F(o0)
g, (1) = fU)— f(0)
Gy, (% X0) - F(d+dy,)- $(de )= $(de )+ £(0)

. m \T!
%G\ (’(n-') xm)"‘ Z_ jF(Z_d‘
X 1lc {")7-)--)"\} tel
are ? -measurable on %71 and
> ®on

A

(9) Z:_';'<P ){afv\|> < oo
Mm=0

Denote by /(/(K the restriction of /u (¢ Uac (K) to a compact
subspace KC X and suppose that :F(/UK )— f(/u)in /3(9) -mea-
sure for K1 % (that is the case if e.g. DC is vaguely con-
tinuous). Then is ( -integrable and

f 15 4(Q) -inte

_ A N \>
(10) <’(f(p))3(> = Z"’,<P )34«\
h.
44:0
In order to understand the theorem let us investigate the con-

nection between 3‘— and the function %,n)m: 0,4, 2}- N

One finds

J—(O)z 30(2)
f(dx) = Yo (&) + 9s (x)
£ da) = Go (004 Galnr Jul0) 4 4.6, )

:F(cf-l— l—Cr )- Z Z—_ 3& (X‘;‘)..) ,'k).

=0 l<|7_< LI
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Taking into account that the functions (ak (Xay---y Xg ) are symmetric

in their arguments Xay---) Xk observe
L g (6) = g7
Z3 RGN RIYRCHAIRERIN S
~ :12._ f/u(o(f) g(f§)

L gl axy) = 2 [( (g ulap)e i) g6 5.5)

\< < &

_% SS/A(O"iA)/A’ oifx)ﬁs 4'§4).fz)+ 3 ‘(/U(O(f)a"(f'j'j)r
oo pr = + O

This leads to the assumption that any such sum can be expressed by}AL .
We begin with a well-known lemma from elementary algebra.

Lemma 1 (Newton). Let 1? [K«Y-.) ij} be the ring of polynomials
in n commutative indeterminates over the rational numbers. Then the
symmetric functions

6& = .ZE: . Xf4-.‘ Xi{‘
[ <ig<-- < gy

can be expressed as polynomials with rational coefficients of the power

m
-3 «F
j=a

These polynomials are independent of the number n of indeterminates

sums

and are given by the formal power series
4 +44§"' 6’-52'* €3j3+"' = X} [A4§‘Azj(L/Z+ AJ?/J"*]

Proof. We give the proof as it is very short and not very known.

one P G §HIULGE) - U xa§) = 126§+ &5 4+ e "

ena A+ [ = exp 1»3 (+ x; §)
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% 4+61f+42‘51+-“

= axp > Leg (1+ % §)
< T TaT RN
Caxp T g, CDOF RO

O
%
We recall the definition of VF’“ (%) = Z /‘Ec the free commutative
fe=o
monoid generated by % . If X is locally compact, OCQ, U%)is locally
compact, too. Any measure AL on % can be considered as a measure
*m m
on wo UX') . The convolution powers = of are measures
\F% X pTT a0t
on c-
m
Denote the restriction to X ¢ of a function 3 on DC° ({E)
by %m . then

</um> % 7 - 5‘-.. .(/(A(O‘Y,\)/‘A (0()(..) ﬁ,m ()(«J...I X.)

u
Another measure on \Fn (%) carried by :}g ¢ and related to/-'\- is

Do () 0 < Bonl), 35 = [alde) G (6 ).

(M) Y
We define now a third measure /(,( on ‘Fc (%) carried by CEC

by the formal power series

4+M(A) f +/(A(“}"""“ = X)(y:'# (A,‘(/A)f - Az(/‘A)fz/z+A3{/*“)jz/J$ )

=& 4 d it g 1 ion on XX
Lemma 2. If/u = ,(A+~- + 0y, eand if g is a function on c

</uum)%> - 7 ‘j,(xl‘,‘,---) X"k)'

AL, €\ <o &y €N

then

Proof. Let X,... Xu € x . The application X +—% J)(_
L
can be extended to a homomorphism from W[’(,«)--u )(ul into the

ennvolutinn algebra of measures on {t, (_%‘ The image of X, +---+Xu
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is M and the image of A, = ZX,'* is 2 (Jx“)ﬁz Ah (/‘A)

- < A (Jx..)&) 3> - qi%(x")"’ %) = <Ak(/u)'g ?

By lemma 1 the image of Z Xl;. A
< [P ‘k

X “k is M thi . This
proves lemma 2.
)

Lemma 3., If /LL is a counting measure, then A ( is a positive

measure on I

(+) (%)
Proof. If (%7, O of compact support, then </A 5 3 )"‘/é‘v‘K 5 3>’

if K is compact and contains the support of % As /UK is a
finite counting measure, lemma 2 applies.

An immediate consequence of lemma 2 is

Lemma 4. On the assumptionsof the theorem if M is a finite

counting measure

F) = o @+ Cutgy 4 G g ) o

If Q@ is a bounded measure on ¥ , then /37(?) can be defined
as in (5) and (5'). If Kc X is compact and At a positive measure
on I , its restriction to K will be denoted by S . The méasure
can be considered as a bounded measure on % .

Lemma 5. For any compact Ke % the mapping A }-—e/UK is
AX(P) -measurable and the image of /tf (P) is equal to /%P(PK ),

Proof. We show at first that the mapping is measurable. Let U
be an open neighborhood of K and let /l}/ be a continuous function
X - EOI /1] with compact support in ’U such that 4 = A4 on K,
Then A4 l-—b/(A"V is continuous and /(A/‘V/—_—/{,(K if/(,( (ﬂ-— K)=0. But
«p (P) {pipU-K)=0] = exp(-p (U-K)),

So M l-—"/UK is continuous on the closed subset of all A with
/U(U"K) =0 , whose /?(P) -measure approximates 1 if P M/l-K)

goes to zero.
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The Fourier transform of the image is

(plp(m) e L ®7 _ [lp)idm) e
= exp e =AY < axp Lpe, el a
= /J‘Q(PK)A((P).

<M P >

This proves the lemma. "
Lemma 6. If g is a S)% -integrable function on %c , then
for /f{p) -almost every/u the function 9, is /a *) -integrable.

The functlon/u — </u 3\7 is /?(F) -1ntegrab1e and
)

j/f(f’)(d/“) </M 3(3} = 4‘. <P %>

Proof. Assume a continuous function (P7/ 0 on % whose support
is contained in K where KC 'X, compact. Then /ue .,Uc (92):——9
</(A (-&)) q;> ist continuous and 7 O

AT S PRIVARPNE
_ _p(K) Z 4 gi_(P(d,Q)..p(olxn)Z (P(qu)-o’(fﬁ)

ny % <<ty

(&)
= E{ <P >CP>

This formula extends to any continuous CP of compact support.

If /4 (@) is lower semi-continuous, there exists a net

P e Co(X), @ Top.

Yo cu™ 9> 1 ut e
(gtertop) <u™ @y 1 (g te) e AN
Lot ey 1T <phey

(%)
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So M — </u )(€> is lower semi-continuous, its /y(f’) -integral

is 4/‘& (P )@y and P is u ™) _integravie /y(f) -a.e, if

< P y PV < oo
Assume now that LP?, O is a g -null function. Then there exists

~o
a sequence of lower semi-continuous functions Pm 8 < 7 ¢ such that

<P"!)(1P)M> VO | For /Y(P) -a](.io)st every u the functions ¢, ¢ ...

are/u -integrable and </u > P > { </u (%) (P >
Therefore f,so{p) (ol/u) </u ) cp“ 7 ¥ f’?(f’) (094) </A (M ~ >

~

and (¢ and ¢ are /b( —null functions for a.e. M .
Assume finally € L (P .") . Then there exists a sequence
P, < Co(%),q’m—>Cp ?ﬁ - a.e. and |puls WY where 4 is

lower semi-continuous and integrable. Then Can converges to (p

/u.(k)-a e. for almost all X4 . As |CPM(< A and Y is s (k)

integrable a.e., the function ¢ is/(AH” -integrable a.e. and
(4)
</(A (%) M) ) </(A )(,f) Q.¢.. The theorem of Lebesgue yields the
end of the proof.

%
Proposition. Assume a sequence %‘k ) /F(:O,l’ Z/.. of )D ~-integrable

functions on % e such that

R RIANINEEE
Then the function

£ M) = § <t

is /g lP) -almost everywhere defined and
o0

*
(11) fﬁ[?)(d,u) 7[(/4) c%z %'. (p , g;;, >

= VO

Proof. Immediate.
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Proof of the theorem. By the assumption of the theorem and the

o =é '™ 9, >

is 1&[@) -integrable and its integral is given by (11). By lemma 4

proposition

one has for any compact Kc X

Flpe) = Fime)
1f K7 X which can be done by a sequence as £  is countable at
intinity, (MK )= F() 1. n. by assumption and £l )= £m)
/X [p) -almost everywhere. Hence £ (/(") = f(/‘*) /y/(’/ -a.e.

This proves the theorem.

Additional remark to the theorem. The function :F(/V\.) is /30(9)-

a.e, eaual to the function
(=24

(&)
?Eo Mk 7
and \-F (/(A K ) converges to 7L(/V‘ ) /X 'P) -almost everywhere,
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