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SKOROKHOD STOPPING VIA POTENTIAL THEORY

by David Heath *

Université de Strasbourg
Séminaire de Probabilites

I. Introduction. We present here a potential-theoretic viewpoint of

the construction of Skorokhod given in [2] for the proof of the following

result: :

If !" is a probability measure on R with x2 d   oo and 
,

fx =z 0 then there exists a (randomized) stopping time T for

Brownian motion ( Xt , , t~0 ) starting at 0 such that the distribution

of 3L, is  and E.(T) = x2 d .

The construction of )~2] consists essentially of finding a monotone

collection ( I(s), of intervals in IR such that the required

stopping time may be defined as

T a inf { t>0 : s Xt  ICS) }

where S is a random variable independent of the Brownian motion~with

distribution uniform on [0,1]. (Actually, in (2~ the intervals are

parameterized differently so that S has distribution ~u.) Here is a

proof which differs slightly from that of Skorokhod. To simplify the

notation we restrict our attention (as did [2]) to the case in which

has a continuous distribution function.

It is easy to see that under this hypothesis one can find a family

of intervals ( I(s), of the form I(s) ~ ( 

f or which

a) ~,~,(I(s)) s s
and b) S x d~. ~ 0.

I(s)

Clearly xl and x are strictly monotone functions, and they are essentially

unique. . Define T as above, and let V be the distribution of X,p. We
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wish to show that ~! =~u, , It is obvious that conditions a) and b)

remain true if ~c is replaced by 1J.

Let f be any bounded continuous function on IR and let 0’ be any

probability measure satisfying conditions a) and b). Define

J - J f do’ , Clearly J is absolutely continuous; ; moreover,
° 

I(s)
except on the count able set { s: xl or ~ is not cont inuous at s}, f J

is differentiable and one can easily check that

, 
- xl(s) 

~ f(~(s)) + ~ 

Since J0 = 0 and J1 = f f dO-, we see that

f d03C3 = 

J’s ds =  PI’(s) f(0) ds

where I’(s) is the complement of I(s) and PI,(s) is the corresponding
hitting operator for Brownian motion. From this we conclude that ~f dr
depends only upon the family ( I(s) ) and hence ff jf 
so that 1J ~ ~tc . . The equat ion f or E(T ) is easily obtained.

II. Another Definition ~f ( I(s ) ) . The proof given above relies

on the geometry of IR both for selecting the intervals and for identifying

V with ~M.. We seek now another characterization of these intervals.

Suppose now that fA- has support in some bounded interval E and let 

be the potential in E given by
x

F(y) dy + h(x)

where F is the distribution function of  and h is a harmonic (i.e. .

linear) function chosen to make vanish at the endpoints of E. Fix

s e [.0,1] and let xl = xl(s) and  = z2(s). Define
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t. (x) - + (x-x.) (U,~c)’(xl) for i=1,2, .

It is easy to check that because of the choice of I(s), t2(0).
Further, one can check that the function g defined by

g(x) = tl(x) if 

t2(x) if x~[0,x2)

is the potential of a probability measure with mass s at 0, mean 0, and

agreeing with p on (x2~ ~). Notice that we have then

g = -sUe) + sUeo f

where Eo is the probabi lity measure assigning mass one to {0} and Rf is

the infimum of all supermedian functions dominating f. Also,

( x: > 

The purpose of the next two sections is to show that the above structure

exists in at least slightly more generality.

III. A Theorem Of Mokobodzki, The result of this section is due to

G. Mokobodzki (private communication) and is more general than we shall

use. . We suppose given a (sub-) Markovian semigroup ; ’excessive’ ’ and

’supermedian’ are with respect to this semigroup. As above, if f is

any function we let Rf be the infimum of all supermedian functions

dominating f and RAf = R(fIA).
LEMMA. Suppose Rf is everywhere finite and A = ( f>(I-e)Rf } for some

e in ( 0~ 1 ) . . Then R Rf = Rf. .

PROCF. * Set g = RARf . * Both on A and off A it is clear that

f ~ (l-e)Rf + eg; hence this supermedian function dominates Rf. . Since

g ~ Rf, it is also dominat ed by Rf ; hence ( 1-E )Rf + eg = Rf, so g=Rf. 0

Now let a and b be excessive functions with a everywhere finite. . For

let t = 1-t and define:



153

vt = a - tb , Yt = Rvt,
{ vt > Vt ht s RAe b ,

t

Clearly Vt  a, so A~t ~ { vt > Vt } ; thus according to the lemma

RA~t Vt = Vt. Moreover, for 03BB~[0,1] we have v 03BBs+03BBt = 03BBvs+03BBvt; the

subadditivity of R then shows that V is convex.

Fix a and consider the graphs of Vt (x) (convea) and vt(a)+eta(g)
(linear). These functions are equal at t=1; hence { t: 

is of the f orm CG~ 1~. This means that At increases with t . 
At y ~ so ht y ; call it s limit ht. We then have the f ollowing:

1

THEOREM. a - ht dt .
0

PROOF. Since vt = vs + the subadditivity of R gives (for sct)

Vt  Vs + (t-s)b; appl,y RA~t to get Vt  Vs + (t-s ) ht ,
in the other direction, on Ag we have vs > Vs -Eta, so that on 

vt = vs + (t-s)b > Vs - eta + (t-s)b. Thus

(Vt + eta) Vs IAe + (t-s) IAe b. Since RA~ is additive on
s s s s

supermedian functions, we obtain

Vt + RAe( Vt + RAe Vs + (t-s) RAe b _ Vs + (t-s) hs .
s s s

Combining these, we obt ain

e Eta Vt - Vs 
e

s B lI-s) (t-s)
After letting E10, we see that the right derivative of V lies between

1 .

h ~ and h ~+, Theref ore V1 - f ht dt as desired. ©..+ 
0

IV . Skorokhod St opping In IR N. Let E be a bounded ball about 0 in 1
or 2 or E = N f or N>2 . Let t a 0) be st andard Browni an mot i on

in ~N starting at 0 and killed when it leaves Et and let u and U be

the associated potential kernel, as in Blumenthal and Getoor (1~,

p. 253. Let E~ be as before.

THEO " . Let  be a probability measure with support in E satisfying
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Ue and 0)  There is then a monotone collection

(A(s),se[o,l]) of subsets of E such that if S is independent of 

with distribution uniform on ~0,1~ T = inf ~t>0: X e A(S)}, , then

XT has distribution ~c.
PROQ. According to exercise (1.27) of Chapter VI of is

in duality with itself relative to Lebesgue measure restricted to E.

Set a = U  and b a U~0; because of the regularity of Brownian motion

we can set &#x26;=0 in the proof of the previous theorem. Letting 

we obtain as ,f ds. It follows from Theorem (6.12) of Chapter

II that RA(t)b a PA(t)b almost everywhere ( Lebesgue measure) for
each Using Fubini’s theorem we can then conclude that
1 1

f 0 RA(S)b ds = ~ 4 PA(s)b ds almost everywhere. Since PA(s)b is a
monotone function of s, its integral can be expressed as t.he limit of

an increasing sequence of excessive functions and is therefore excessive.

Since this integral is almost everywhere equal to a, an excessive function,

lqy Proposition (1.3) of Chapter VI of [1], they must be equal, i.e.,
z

a = ds.

Suppose now that T is defined as in the statement of the theorem,
1

and let V be the distribution of Clearly ~(’) _ ~ PA($)(0,’) ds.1 1 0
Now 

ds - a(x), where the second equality follows from Theorem

of Chapter VI of [1]. Thus ft and  have the same potential; by

Proposition ( 1.15 ) of Chapter VI of they must be equal. Q
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