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Existence of Small Oscillations at Zeros of Brownian Motion

by Frank B. Knight

0. Introduction. Let X(t), X(O) = 0, be a standard one-dimen-

sional Brownian motion, with zero-set Z = (0 ~ t ~ l:X(t) = 0).

Many properties of Z are known, in the sense that they hold with

probability 1. For example, Z is a closed uncountable set of

Hausdorff dimension 2 1 [2, 2.5]. If one asks, however, for the

conditional behavior of X(t+h) given that 0  t E Z one encoun-

ters the difficulty that, since P(t E Z) - 0, the conditioning

has no meaning. To be sure if t = T(w) E Z is a stopping time,

then the strong Markov property implies various results, of which

the most relevant here is the well-known Local Law of the Iterated

Logarithm [6, VI, 51.1]: Set ~hX(t) - X(t+h) - X(t) and ~2(h) -
(h log Then P(lim 

~Q+ h 2

lim sup - ~ X(T)(~ ~ (h))-1 - 1) == 1. There are, however, many
h 2

(random) t E Z at which this behavior does not hold, and such

t we shall term "exceptional." The object of this paper is to

study one type of exceptionality which occurs with

probability 1. (1)

(l)It will be noted that such a type of exceptionality will be

represented not only in Z but also at all x in the range

of X(t) outside a random set of Lebesgue measure 0. It then

follows directly from P,Levy’s modulus of continuity for X(t)

[6, VII, 52] that the overall exceptional set has Hausdorff

dimension ~ ~- (for this observation I am indebted to

Professor N. Jain).
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Our main result is to show that there exist t e Z with

lim sup ~2(h))-1  1. This gives a partial answer toh

a question of A. Dvoretzsky [1] which remained unanswered in [9]

(without the added information that t E Z). To do this we rely

upon a result of B. Mandelbrot [7] and L. Shepp [10]. At the same

time, our analysis seems to indicate that there do not exist t E Z

for which lim sup ~a X(t) ~ (~ (h) )-1 - 0. Consequently, if such
h ~0+ 

h "

t exist- they must be sought elsewhere than in the set where X(t)
has a prescribed value.

Before turning to this result, let us remark upon a

type of exceptionality which is quite well understood. A time

t E Z is said to be the starting time of an excursion of X(t)
if X(t+h) ~ 0 for 0  h  e sufficiently small. There are

countably many such t, and for all of them the behavior of

QhX(t) is adequately covered by [2, 2.10]. Assuming, as we may,

that X(t+h) > 0, we have lim sup Q X(t)(~ ~ (h))~l - 1 as inh 2

the unexceptional case, but also lim inf 1/h ) (1+s) ~ 1
h.---~+ 

"

for e > 0, in radical contrast with the normal behavior for

- X(t). We see immediately that there cannot exist a stopping
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time T which equals the starting time of an excursion with

p ositive p robab ility.~2~

(2)Another set of exceptional times is of course the set of local

maxima and minima. Being countable, however, it does not

intersect Z. The behavior of X(t) following such an

extremum is entirely analogous to that at the start of an

excursion. This is easily seen from P. Levy’s equivalence

)X(t)j .= M(t) - X(t) where M(t) = max X(s). Moreover, by
s_t 

’

an evident reversal of time most of this exceptional behavior

holds in both time directions. In short, the path exhibits

a dense set of spine-like projections of sharpness exceeding

( log 1 ) -( 1+s~ for every E > 0.
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1. Exceptional Small Oscillations at t ~ Z.

We introduce the standard local time f(t) of X(t)
at 0 using the indicator function . of (-oo,x):

t

(I.I) =?~ 
o X~O

The existence and continuity in t of f(t) is a well-known

result of P. Levy (see [2]). The exact statement of our result

is as follows.

Theorem 11 e Z:lim k) = 1,
jL h20142014>0+

for all k > 2’2.

Proof. The key to the proof lies in the observation that if the

oscillations of [ above 0 are recorded as a function of

the local time f(t) they generate a homogeneous Poisson point

process of the type considered in [10].

Definition 1.1. Let f(-1)(03B1) = inf(t:f(t) > a) be the right-

continuous inverse local time at 0, and let =

( -, 
!x(t)f. 0 ~a  a + e.

Lemma 1.1. The random set r = ((a,y): lim /?(a-e,a) = y > o)
e2014>0+

is a homogeneous Poisson point process with parameter a > 0 and

expectation measure ~ x ~ where A is Lebesgue measure and

ti(A) = ~ on (y:0  y  co).
A

Proof. Since f~ ~(a) is a homogeneous process with independent
increments and a stopping time of X(t) for each a, with

X(f (a)) = 0, it is clear that r is a homogeneous Poisson



138

point process. Taking into account the independence of the local

times for x > 0 and for x  0 up to time f ( 1) (a) and the

fact that  z) = exp - 03B1 Z, known from [3, Theorems

1.2 and 2.2, or 11, Proposition 2.4], we have  z} =
00

exp - 2a. In view of 2a = 03B1  2y-2dy this implies the result.

The following lemma is now a direct consequence of [7 ].

Lemma 1.2. . with f ( 1) (a ) 0  1 and  CE,

0  e  6 for some b ~ O) = 1 for c > 2.

 Proof. The property  ce, 0  E  6, may be stated

as saying that ao is not covered by the union of open intervals

(a-z,a) generated by the truncated Poisson process

((a,z):z = ~ A E r) where A denotes minimum.

This process has mean density 2c ly 2; y  c8, with a point

mass at y = 8 of size The result of [10, (40)] or j7],

states that such an ao exists with positive probability if

and only if , a  oo, where

0 x
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6

2(cy) 1 - + 2(ca) 1 is the expectation measure in

The condition is equivalent to x c dx  ~, i.e.,

0 1
to c > 2. Routine use of the scale change X(t) = k-2 X(kt)

shows and letting k ---~ 0

we may allow a ---~ ~ and apply the 0-1 Law to get the prob-

ability 1 as required.

The exceptional to of Theorem 1.1 is essentially

but to derive the result directly would involve

giving a meaning to the process which is prob-

lematical. Instead, we introduce the space [0,oo) 

where S2 is the sample space of X(t), and define the condi-

tioning sequentially in such a way that it may be applied at a

constant a = 0. We then argue that the projection of the limit

set in n’ has positive probability in n, and therefore the

additional condition of Theorem 1.1 is met at some 

Turning to the details, let a, co and p  1 be posi-

tive constants, 0  r  s and n be integers, and consider the

subset of n’

(1.2) S’(n,r,s) = S’(n) 

S’(n) = ((a,w) : f ( 1) (a)  1,~(a,a+k2 na)  k  2n)

~X(t) m  s}.
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Furthermore, let ~(S’) = (w:(a,w) E S’ for some denote

the projection onto n. The proof rests in showing that, for

suitable co, c, b, and r,

(1.3) (a) lim lim P(~(S~(n,r,s))) ~ 0, and

(b) lim lim ~(S~(n,r,s)) = ~( lim lim .

Indeed, it is clear that

(1.4) lim lim S’(n,r,s) = ((a,w) E S~’:f( 1)(a)  1;

c E, 0  s  8, and

|X(s)| ~ co03C62( 03C1m03B4), r ~ m  °°} .

Since 03C62 is increasing this will imply the result when 2 2

and 0, for in view of (b) the set of w for which there

exists an exceptional will have positive probabi-

lity (the scale change used in Lemma 1.2 again shows easily that

the probability must be 0 or 1).

The first step in proving (a) is

Lemma 1.3. . P(~(S~ (n,r,s) ) ~ > P(~(S’~(n) ) } x
c E S’(n)). 

’
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Proof. We set a = inf(a:(a,w) e S’(n)) if this is non-null

and a = 1(1) + 1 otherwise. Although a is not a stopping

time, we can reduce it to stopping time on the set (a ~ ~(1)) =

~(~~) ~ S’(n)). On this set, either an =0 or else a is

the local time of an excursion of X(t) such that 

c2"~6. To see this, note that if 0  f(l) then for a  a
we have A an) > ck2-n03B4 for some k  2n, and the

assertion follows as a increases to an. The set of 

with >c2’~6 is contained in the sequence T.,...,T ....
of stopping times T. = inf(t:X(t) = 0 and max [ > c2"~6),

0st

T-. where ~. is the usual translation opera-

tor. Setting T = 0 and using the strong Markov property, we

have

00

P(~(S’(n,r,s))) ~ ~ P((~.w) = 

k=O

= e M’(r,s)j(0,w) e S’(n)L

as required.

The next step is to obtain an estimate of the above

conditional probability. The analytical content is contained in

Lemma 1.4. . For p >0, x > 0, K>0 and large r,

lim P(f(~)(~ (p~6)) E S’(n)) i
c

~ |log 03C1m03B4|Kx-203B22K(c03B22K log|log 03C1m03B4|)c 2.
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Proof. Given (0,w) e S’(n) the increments f(-1)(j2-n03B4) -
f(-1)((j-1)2-n03B4) remain independent,  n, and their

conditional distribution is the same as that of t~)(2"’~6)
given that max !x(t)) cj2-n03B4. The Laplace trans-

0tf(-1)(2-n03B4)
form of this conditional distribution is readily obtained from

[4, Theorem 2.1], in which we set a = 2 "~6, a = and

square the result since the f of [4] is twice the present f

and the sojourns in (0,a) and (-a,0) are independent.(3) Mul-

tiplying from j = 1 to k we obtain

(1.5) E(exp - ~f~)(k2"~))(0,w) e S’(n))
k

= exp Y (2014 - 21-n03B4 203BB cotanh(cj2-n03B4 203BB)).
J=l

Letting k2"~6 = e remain fixed as n 20142014> oo the exponent

becomes

lim 2-n03B4 V cotanh cj2-n03B4 203BB)
~ cj.

e

= lim f (-§- - 2 s/~ cotanh c -/~ x)dx

= - ec s/~) - lim (log c ’~’ +o(e’)))~ 

= - § 109((EC ec ~2~),

and so the Laplace transform converges to

"check" on p. 179 of [4] has a mistaken integrand. It should

be exp - cotanh a -~2~) .
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(1.6) ( (~c 203BB) (sinh ~c 203BB)-1)+2 c.
Accordingly, the conditional distributions converge weakly, and

the limits may be bounded by using P(R  k) )  , valid

for any positive random variable R and 03BB > 0. Setting

E = ~~ 2 ( pm8 ) , k = and À = > we have

~k = Kx log’ log ~/~ = cp log) log pm8 ~ , and using the

fact that for large values of the argument we may replace sinh( . )

by § exp ( . ) in (1.6), for large r and m > r we obtain the

required upper bound of Lemma 1.4.

To continue, let E’ ~ 0 be fixed and note that

lim cf (t) + ~1,0  f ( t )  03B4|(0,w) E S’(n)} = 1, as

follows from I in view of (1.4). On the other

hand, since the limit distribution with transform (1.6) is con-

centrated near 0 for small E, we have for any b’ ~ 0 and

m > r sufficiently large, lim  f (b) ~ (o,w) E S’ (n~ ) ~ 1-6 ’ .
n--~

Therefore

s

(1.7) E S’(n))

 lim + s’ ~ ~,0  t  

and max !X(t~ ~ ~ E S’(n)) + b’ .° ~ 
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Thus if we set T(m) = inf (t: cf ( t) j } for c~  co,
and let e’ ~ 0, (1.7) will be bounded by

lim and max 

E S’(n)) } + 6’. .

Next, since T(m) is a stopping time and X(T(m)) = 0, this

limit is seen to be bounded by

s 1

(1.$) 

where F m,n (x) is the conditional distribution function " of

given ((0,w) E S’(n)}. Here we have Fm,n(x) ~

> E S’ (n) }  P{f(-1)(co c 03C62(03C1m03B4)) 
E S’(n)). In applying Lemma 1.4 we may simply set

co = c since the bound is continuous. Moreover, for large m

the last factor may be absorbed by an arbitrarily small increase
__ c

in the exponent Kx - 2p where ~ _ ~ .
As for the integrand in (1.8), we use the standard

inequality

(1.9) P( max IX(s) I > k}  4P{X(t) > k} ~ (4 k t 2 )exp - 2t ,
o s (t 

~ ~r ~b

where the first factor on the right will be small for large m

and may be replaced by unity. It follows from this and the weak
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convergence of the distributions in Lemma 1.4 that (1.8) is

bounded by

(1.10) )

=  K log ( log c2o 2(1-x) + Kx - 
m=r 0

Now for given K the exponent is maximized at x = 1 - 

where it becomes K - K1 2co(2 + 2 c3/2 ). We can easily minimize

this over K > 0 to obtain the value E(co) = -c2o 4(2+8 c+8 2).° ~ 
c

If we choose co to make this less than -1, then the integrals

in (1.8) are of the order m y which is the general term of

a convergent series.

By choosing c - 2 small, this may be accomplished for

any . Recalling that 6’ I in.(1.7) does not depend on s

we can then let s ~ ~ and (1.7) will be strictly less than 1

if r is large. In view of Lemmas 1.3 and 1.2 this proves

property (1.3), (a): lim lim P(~(S~(n,r,s))) ~ 0, for any
~ 1 when c and r are suitably chosen.

It remains only to prove (1.3), (b). The inclusion from

right to left is obvious. Conversely, let w E lim lim 

and let (w,an ) e S’(n,r,s) for each (n,s). Keeping s fixed

and choosing a subsequence we may assume that lim a = a. 

n , s s

exists. We will show that lim f(-1)(03B1n,s) = f(-1)(03B1s). In
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the contrary case, as would be the local time of an excursion

of X(t), and  as would hold for infinitely many n.

This would contradict the definition of S’(n,r,s) since

A(03B1s-,03B1s) > 0 is impossible when + 

1 s k  2n, for 0  a - s sufficiently small. It

thus follows from the definitions that (w,a ) E lim S’(n,r,s).s 
n -

Similarly, let lim a = a exist along a subsequence. Then

lim f( 1~(a ) - f( 1)(a~ in view of (1.4), and sos

(w,a) E lim lim S’(n,r,s). This implies the result.

A very slight change in this proof also shows the exis-

tence of two-sided exceptional times.

Corollary 1.2. P{~to E Z:lim sup  k,

O  1 + 2 = hl = i for all k > 4 3 .

Remark. It is shown in [ 12 ] that for t > 0

P{lim sup = 2} = 1 for t fixed.
1 2 2

Since 4  ~ the to obtained above is exceptional.

Proof. The argument of Lemma 1.2 also shows that P{~03B1o with

l, and both  cs and  cE,

0  E  8} - 1 for c > 4. Indeed, this is equivalent to a~
not being covered by the intervals (a-z,a+z), and by the homo-

geniety of the Poisson process this is equivalent to replacing z
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by 2z. The mean density is then and the integral

converges for c > 4. Since the problem only involves the

increments of X(t) we can assign to X(O) a uniform initial

measure on (-00~00) and obtain a stationary process, -co  t  oo.

Then the same proof given above, but with c > 4, applies both

to X(to+El) - X(to) and to X(to-E2) - X(to). The condition

that -1 becomes c ~ 2 ~2, and 

J2 ~2(h) when h = El + E2 is small (as is not difficult to show)
we obtain the constant ~. The Corollary is proved.
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