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ON THE EXISTENCE OF RESOLVENTS 1)

J.C. Taylor

Introduction. In [61 a measure-theoretic theorem is proved

which gives a sufficient condition for a proper kernel V on

a measure space (E,E) to be the kernel V defined by a
sub-Markovian resolvent.

The theorem of Lion is an immediate corollary

of this result. It states that, for E locally compact and

5-compact, if V satisfies the complete maximum principle and

maps Cc(E) then there is a sub-Markovian resolvent

(V~) on Co(E) with V = Vo on Cc(E).
F. Hirsch in [2], by using different methods

from those of Lion in [31, has shown that the theorem of Lion

is valid for arbitrary locally compact spaces. The purpose

of this note is to obtain a generalisation of theorem 2

in [61 which has as corollary 3.1 the above result of Hirsch.

In addition, it has as corollary 3.3 the result of Mokobodzki

and Sibony in [5] (without the restriction, imposed in [6],

that E be a-compact) and as corollary 3.2 an extension of

Hirsch’s result to kernels satisfying the domination principle.

The generalised theorem. Let E be a set and let E be a

~ -ring of subsets of E (i.e. E is closed under countable unions

and relative complements). A function f : is measurable

if for all o~ > 0, { ~ ) ~c ~ ~ E. It will be said to be locally
measurable if for each X ~ E, f|X is measurable in the usual
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sense with respect to the 03C3-field of sets of the form A n X,

A E E, A kernel on (E,E) is an additive, increasing, positively

homogeneous map V : E+ ~ E+ such that if (f ) C E+ is decreasing
to f then (Vf ) £creases to Vf (here E+ denotes the convex cone
of non-negative measurable functions).

Let E be locally compact. In [ 11 the 03C3-ring Bo
of Baire sets is defined to be the smallest «-ring containing H,

the class of compact Ga-subsets of E.

It is shown in [1] that, every is a subset of a

countable union of sets from H.

Remark. It is not hard to see that if then K1 B K2
is a countable union of sets from H i,e, is in H~. Consequently,
the class of H-Borelian sets B(H) coincides is the

smallest class containing H and closed under countable unions

and countable intersections).

A convex cone C C- C+(E) is said to be adapted

if for each f E C there exists g E C with f E o(g) i.e. for

all E> o there exists a compact K = K ( e) with f(x) ~ e g(x)
if X f K.

Proposition 1. Let E be locally compact and denote by

M a positive linear map of Cc(E) into with M (C~ (E)) c: C,
where ~ = Co (E) or is an adapted cone. Then there is a unique

kernel N on such that N agrees with M on ~c(E) .
The kernel N satisfies the principle of domination

(respectively, the complete maximum principle) if for all cp,

~ 
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M (~ > 0) impliesM cp ~ M ~ and for all

x E E there exists cp E Cc(E) with M =~ 0 (respectively,

1 +M cp  M  on {~r >0~ implies 1 ~).

Proof: If C is an adapted cone then each vanishes

outside of a countable union of compact sets. Hence,

f = I: cpn, (E). Consequently, if c (E).
n 

~~ ~ ~~

Define the Radon measure u by setting  co >

= M 03C6 (x), 03C6 e If f E Bo define N (x, f) =  f >.

Let and let F be the a-field of sets of the

form A n K, A E B . Denote by M the vector space of differences

of non-negative bounded Baire measurable functions. Then Fb can
be naturally identified with a subspace of M.

Consider K = f e Ml. This a subspace

of Fb closed under monotone limits and containing 1 (since

K E H). Assume (fn) c K and that fn tends to f uniformly.
There is a set such that, for all n, ( > 0) c X

and the functions Nfn are all measurable in the usual sense,
when viewed on X, with respect to the a-field on X induced by

Bo. Hence, Nfn (which equals lim Nfn) is in M since when
viewed on X it is measurable. It follows from IT20 in [4] that

K = Fb. Furthermore, if f E Fb then Nf E Bo, This follows since
Nf > 0 is locally measurable and (Nf > Bo’

If f then (f > 0) c u Kn, (Kn) increasing.

Hence, Nf = lim N (f 1K ) and so is in n -

The last two statements follow by the argument used

to prove XT4 in [4~.
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Let N be a kernel on (E,E). A set A E E will be said

to be bounded if N1A is finite and will be said to be ~-bounded
if it is a countable union of bounded sets.

A locally measurable function u will said to be

supermedian if, for all f and g E E+,
u + Nf > Ng on (g > 0) implies u + Nf > Ng.

A supermedian function u is said to vanish at the boundary if

there exists an increasing sequence (An) of bounded sets with

inf RCA u = 0 (note: it is no longer required as in [6] that
n

u A = E).n

Proposition 2. The following conditions are equivalent:

(1) every finite potential Nf, f ~JE~, vanishes at
the boundary; and

(2) the potential N1A of every bounded set A vanishes
at the boundary.

Proof : Let f E E+ have a finite potential Nf and let ff > 0)

- n Bn, with each Bn bounded and (Bn) increasing. It can
be assumed further that f is bounded on each set Bn.
Let N1B vanish at the boundary relative to (A~). Then, if

Ap =  Anm, each vanishes at the boundary relative

to (Ap).
Hence, each N(f 1B ) vanishes at the boundary

n

relative to (A ) and so, by the lemma preceding proposition

1 in [6], Nf vanishes at the boundary relative to (Ap).
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Theorem 3. Let N be a kernel on (E,E) that satisfies the

domination principle and is such that the following conditions

are satisfied:

(1) every set A e E is a-bounded;

(2) every finite potential Nf, f E E+, vanishes
at the boundary ; and

(3) if there exists a finite supermedian

function u which is strictly positive on A.

Then there exists a unique resolvent (N ) of kernels N03BB
on (E,E) with N = N. Further, this resolvent is sub-Markovian
if N satisfies the complete maximum principle.

Proof: If g c E+ there exists a set X E E with the following
properties:

(1) (g > X;

(2) X = u An, each An bounded; and

(3) for each n, N1A vanishes on Fx and vanishes at
n

the boundary relative to (An). First note that if (Bn) is any

sequence of bounded sets then there exist sequences (Bn) and

(Bn ) of bounded sets such that (a) each N1B vanishes at the
~ 

, n

boundary relative to (B )(see the proof of proposition 2) and
(b) for each n, [N1B > U B . Consequently, there exists
a sequence (Cn) of bounded sets such that, for all n, N1C

n

vanishes on (u Cn) and vanishes at the boundary relative
n

to some subsequence (depending on n) of (Cn). Further, (Cn)
can be assumed to contain [g > 0) in its union.

n

Let X = and A = U Ci.n n "1=1’-
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Let g be the a-field of sets of the form 
If and (f > 0 } c X then (3) implies ~Nf > o)cX. Hence,
N induces a proper kernel R on (X,X) which satisfies the
domination principle.

Let uo be a finite supermedian function on E which
is strictly positive on X. Define Vf = (1/u ) R(fu ),
f ~ X+.

Then the kernel V satisfies the hypotheses of

theorem 2 in [6] since u supermedian implies u/uo restricted 
B

to X is supermedian relative to V. Let (Vj, A. A. *> 0 be the
sub-Markovian resolvent on (X,X) with V = Yo. Then, if

R03BBh = Uo V03BB ( h/uo ) , h F x+, (R03BB)03BB > o 
is the resolvent of

kernels on (X,X) with Ro = R. Hence, Ng = (I + R g.
Denote by X’ another set in E satisfying (1), (2)

and (3) and let R’ be the kernel induced on (X’,X’) by N.
Let (R~)~ > o be the resolvent on (X’,X’) with R~ = R’.
Since Ng = (I + BN) R~g it then follows from XT 7 in [4]

that, for all B > o, R~g = R~g,
Define N~g to be Rxg, where (R~) ~ > o 

is the resolvent

defined by a set satisfying (1), ( 2) and (3) and the

kernel R induced by N.

It follows that (i) each N~_ is a kernel, ( ii) (N.) > o
is a resolvent family and (iii) N = 

Application to locallv compact spaces. Let E be a locally

compact and denote by B the a-ring of Baire subsets of E.
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Corollary 3.1. (F. Hirsch [2]). Let V be a positive linear

map of Cc (E) into £0 (E) such that for all c~, ~ E C~ (E)
{ ~ > 0 ~ implies 1 

Then there is a resolvent family (V~) ~ > o of sub-Markovian
operators V, on C (E) with V cp = lim V, cp, for all v E g (E).X =o =c

Proof: From proposition 1 and theorem 3 it follows that there

is a sub-Markovian resolvent (V~)~ > o of sub-Markovian kernels

V~ on (E,B ) with V = V. Note that by the lemma preceding
proposition 1 in [6] every finite potential Vf vanishes at the

boundary because (f > OJ c u Kn, (Kn) c H and each V 1K clearly
n 

- 

n

vanishes at the boundary.

Let 03C6 ~ Co (E). Then there exists an open set X E Bo
such that (1) > 0 ~ c X; (2) X = u Kn, ( Kn) c H; and

n 
2014

(3) for each n, V 1K vanishes on X and vanishes at the
n

boundary relative to (Kn), It suffices to note that the sets
t ,, t 

Bn, Bn and Bn in the proof of the theorem can all be

assumed to be open and relatively compact under the hypotheses

of this corollary.

Consequently, there exists a E C+(E) with (1)
X = (a > 0) and (2) Va bounded. The argument given in

the remark following corollary 2.4 in [6] then implies

is continuous for all À > O. Hence, each V~ leaves Co(E)
invariant.

Corollary 3.2. Let M be a positive linear map of into

Co(E) such that, for all cp, W E C~ (E)
~ 

(~>0} implies ~.
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Assume M is non-degenerate, i.e. for all x E E there exists

with M cp (x) =~ 0 and that there is a supermedian
function u with ).u ( 1J compact. Then there is resolvent family

(M~)~ > 0 of unbounded operators Mx on Co(E) such that

M cp = lim M, cp, for all cp E 
=~

Proof: Let N be the kernel on determined by M. It

satisfies the domination principle since M is non-degenerate.

If then there exists C~ (E) with u = E M ( c~n) E °° ~ "~ 
n 

~ ’

and (u > X. The argument of proposition 3 in [6] shows

that u is a supermedian function.

Because there exists a supermedian function u with

{.u  1J compact, every finite potential Nf vanishes at the

boundary and so there is a resolvent (N~)~ > 0 of kernels N. on
with No = N.

Because each X E E is contained in (u > o), for some

u continuous and supermedian, it follows that, (E)

and X E E is open and satisfies the conditions in the proof

of corollary 3.1, then the kernel V on (X,X) induced by N and

u maps Cc(X) into Hence and so N. leaves

Co(E) invariant. Define Mcp = if ca E 

Application to adapted cones

Let E be locally compact and denote by C c S+(E) an

adapted cone. Let M be a positive linear map of Cc(E) into
C (E) with M (E)) c C. Assume the following conditions

satisfied:

A~) for each x E E there exists u E C, u(x) > 0; and

A4) if u E C and c~ E C ~ (E) then
~ 

u > M cp whenever 
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Corollary (Mokobodzki-Sibony [ 5 ] ) . Let N be the kernel

on determined by M. Then there is a resolvent

(N~)~ ~ o of kernels on with No = N.
Proof: Let C ~ denote the set of continuous functions

u on E of the form u = E un, C. Each u E C ~.
n 

~ " 

is supermedian (see proposition 3 in [6])and for each

X E Bo condition A2) implies that there exists u E C~.
with {u ) 0) ~ X.

If C ~ (E) the f act that C is adapted and
contains only supermedian functions implies N ~n vanishes

at the boundary. Hence, as in the proof of corollary 3.1,

each finite potential Nf vanishes at the boundary. The

result then follows immediately.
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