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ON THE EXISTENCE OF RESOLVENTS )

J.C. Taylor

Introduction. In [6] a measure-theoretic theorem is proved
which gives a sufficient condition for a proper kernel V on
a measure space (E,g) to be the kernel Vo defined by a
sub-Markovian resolvent.

The theorem of Lion is an immediate corollary
of this result. It states that, for E locally compact and
o —compact, if V satisfies the complete maximum principle and
maps_gc(E) into QO(E) then there is a sub-Markovian resolvent
(V,) on C(E) with V = V_ on C_(E).

F. Hirsch in [2], by using different methods
from those of Lion in [3], has shown that the theorem of Lion
is valid for arbitrary locally compact spaces. The purpose
of this note is to obtain a generalisation of theorem 2
in [6] which has as corollary 31 the above result of Hirsch.
In addition, it has as corollary 3.3 the result of Mokobodzki
and Sibony in [5] (without the restriction, imposed in [67,
that E be o -compact) and as corollary 3.2 an extension of

Hirsch's result to kernmels satisfying the domination principle.

The generalised theorem. Let E be a set and let E be a

o-ring of subsets of E (i.e.:g is closed under countable unions
and relative complements). A function f : E~R" is measurable
if for alle> 0, {f >} ¢ E. It will be said to be locally

measurable if for each X ¢ E, f|X is measurable in the usual
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sense with respect to the o-field of sets of the form A n X,
A ¢ E. A kernel on (E,E) is an additive, increasing, positively
homogeneous map V s éE"' = g" such that if ( fn) < £+ is decreasing
to f then (an) decreases to Vf (here £+ denotes the convex cone
of non-negative measurable functions).

Let E be locally compact. In [1] the ¢ -ring R
of Baire sets is defined to be the smallest o-ring containing l_-I,

the class of compact Gg-subsets of L,

It is shown in [1] that, every A ¢ _Eo is a subset of a
countable union of sets from H.
Remark. It is not hard to see that if K1 ,K‘2 € Ir={ then K1 \K2
is a countable union of sets i‘rom_E i,e. is in H,. Consequently,
the class of H-Borelian sets B(H) coincides with =1.30(13(3) is the
smallest class containing H and closed under countable unions
and countable intersections).

A convex cone C ¢ g"(E) is said to be adapted
if for each f ¢ _E_ there exists g ¢ __Q with £ ¢ o(g) ie. for
all e > o there exists a compact K = K (¢) with f(x) < ¢ g(x)
if x € K.

Proposition 1. Let E be locally compact and denote by
M a positive linear map of gC(E) into C(E) with M (g"c’ (E)) < ¢,
where C = g; (E) or is an adapted cone. Then there is a unique
kernel N on (E,=_]§O) such that N agrees with M on QC(E).

The kernel N satisfies the principle of domination
(respectively, the complete maximum principle) if for all o,

v e cf(B),
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Mo>M yon {¢ >0} implies M o > M § and for all
x ¢ E there exists o ¢ CC(E) with M o(x) # O (respectively,
1+Moe>M gon {§ >0} implies 1 + M o > M ¢).

Proof: If C is an adapted cone then each f ¢ C vanishes
outside of a countable union of compact sets. Hence,
f = Ex s (o)) c__(zz (E). Consequently, M o « 2:; if o GEZ (E).

Define the Radon measure Py by setting < Mys © >
=Mo(x), o c C(E). If £ egg define N (x, £) = <p,, £ >

Let K ¢ E_ and let E be the o-field of sets of the
form A N K, A ¢ 20. Denote by ithe vector space of differences
of non-negative bounded Baire measurable functions. Then Eb can
be naturally identified with a subspace of _1‘=’I.

Consider E = {f e Fy | N f € g}. This a subspace
of =_Eb closed under monotone limits and containing 1 (since
K ¢ E). Assume (fn) < K and that f tends to f uniformly.
There is a set X ¢ 1=50 such that, for all n, {lenl >0} cX
and the functions an are all measurable in the usual sense,
when viewed on X, with respect to the o-field on X induced by
}30‘ Hence, an (which equals ;l.llrg an) is in _Mz since when
viewed on X it is measurable. It follows from IT20 in [47 that
=I§_ = -Eb‘ Furthermore, if f ¢ g; then Nf ¢ 1__3'(;. This follows since
Nf > O is locally measurable and {Nf > o} € B,

If £ ¢ BS then {f >0} c rtli K,» (X)) cH, increasing.

Hence, Nf = }lil: N (f 1% ) and so is in __B;.

n
The last two statements follow by the argument used
to prove XT4 in [47.
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Let N be a kernel on (E,E). A set A € E will be said
to be bounded if N1A is finite and will be said to be _g-bounded
if it is a countable union of bounded sets.

A locally measurable function u will said to be
supermedian if, for all f and g E:§+,

u + Nf > Ng on {g > O} implies u + Nf > Ng.

A supermedian function u is said to vanish at the boundary if
there exists an increasing sequence (An) of bounded sets with
iBf RzAn u = 0 (note: it is no longer required as in [6] that
; A = E).
Proposition 2. The following conditions are equivalent:
(1) every finite potential Nf, f e:£+, vanishes at
the boundary; and
(2) the potential N1, of every bounded set A vanishes
at the boundary.
Proof: Let f ¢ Ef have a finite potential Nf and let {f > 0}
=J Bn’ with each B/ bounded and (Bn) increasing. It can
be assumed further that £ is bounded on each set Bn’

Let N1p vanish at the boundary relative to (Ag). Then, if
n

_p P n . +
Ap _ng1 mg1 Am, each N1Bn vanishes at the boundary relative
t A.

0(p)
Hence, each N(f 15 ) vanishes at the boundary
n
relative to (Ap) and so, by the lemma preceding proposition

1 in [6], Nf vanishes at the boundary relative to (Ap).
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Theorem 3, Let N be a kernel on (E,E) that satisfies the
domination principle and is such that the following conditions
are satisfied:
(1) every set A € E is o-bounded;
(2) every finite potential Nf, f e:§+, vanishes
at the boundary ; and
(3) if A ¢ E there exists a finite supermedian
function u which is strictly positive on A.

Then there exists a unique resolvent (N of kernels NX

X)k>o
on (E,E) with Nj = N, Further, this resolvent is sub-Markovian
if N satisfies the complete maximum principle.
Proof: If g ;‘£+ there exists a set X ¢ E:with the following
properties:

(1) (g >0} c Xx;

(2) X = g A, each A bounded; and

(3) for each n, N1An vanishes on CX and vanishes at
the boundary relative to (An). First note that if (Bn) is any
sequence of bounded sets then there exist sequences (B') and
(B ') of bounded sets such that (a) each N1B vanishes at the
boundary relative to (B )(see the proof of prop051tlon 2) and
(b) for each n, {N1Bn > 0} ¢ 3 B, ", Consequently, there exists
a sequence (Cn) of bounded sets such that, for all n, N1Cn
vanishes on (u Cn) and vanishes at the boundary relative
to some subsequgnce (depending on n) of (Cn). Further, (Cn)

can be assumed to contain {g > 0} in its union.

Let X = VUC_ and A_ = U C
n B LR
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Let:é be the o-field of sets of the form AnX,AcE,

If £ ¢E" and {f >0} © X then (3) implies {Nf ~ 0J)cX. Hence,
N induces a proper kernel R on (X,g) which satisfies the
domination principle.

Let u, be a finite supermedian function on E which
is strictly positive on X, Define Vf = (1/uo) R(fuo),
£ oeXx'.

Then the kernel V satisfies the hypotheses of
theorem 2 in [6] since u supermedian implies u/uO restricteq
to X is supermedian relative to V. Let (Vx)x s 0 be the
sub-Markovian resolvent on (Xﬂi) with V = V_. Then, if
Ryh = u, vy (b/u)), b e §+’ (Rx)x >0
kernels on (Xzé) with R = R. Hence, Ng = (I + N) Rx g.

is the resolvent of

Denote by X' another set in E satisfying (1), (2)
and (3) and let R' be the kernel induced on (X',X') by N,

1
Let (RX)X s o
Since Ng = (I + »N) Rig it then follows from XT 7 in [4]

be the resolvent on (X',X') with Ry = R'.

that, for all ) > o, R.g = R.g.

Define N,g to be R,g, where (RX)X o o 1s the resolvent
defined by a set X ¢ E satisfying (1), (2) and (3) and the
kernel R induced by N.

It follows that (i) each N, is a kernel, (ii) (Nx)x s o
is a resolvent family and (iii) N = N

Application to locally compact spaces. Let E be a locally

compact and denote by'__@o the o-ring of Baire subsets of E,
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Corollary 3.1, (F. Hirsch [2]). Let V be a positive linear
map of C . (E) into C (E) such that for all o, { € g’é (E)
1+Vo>V yon {V >0} implies 1 + V o >V ¥,

Then there is a resolvent family (VX)X s 0 of sub-Markovian
operators V, on C (E) with V o = lim V, ¢, for all o ¢ C (E).
= =0 =

Proof: From proposition 1 and theorem 3 it follows that there

is a sub-Markovian resolvent (V of sub-Markovian kernels

X)X >0
Vv, on (E,Eo) with V_ = V. Note that by the lemma preceding
proposition 1 in [6] every finite potential Vf vanishes at the
boundary because {f > C} c z Kn’ (Kn) c 2 and each V 1Kn clearly
vanishes at the boundary.

Let o ¢ g; (E). Then there exists an open set X € B,
such that (1) {o > 0} c X; (2) X = U Kp» (Kn) C:E; and
(3) for each n, V 1K vanishes on Xnand vanishes at the
boundary relative ton(Kn). It suffices to note that the sets
Bn’ Bn' and Bn" in the proof of the theorem can all be
assumed to be open and relatively compact under the hypotheses
of this corollary.

Consequently, there exists a e_gf(E) with (1)
X = {a > 0} and (2) Va bounded. The argument given in
the remark following corollary 2+¢4 in [6] then implies
me is continuous for all A > 0. Hence, each Vx leaves So(E)
invariant.
Corollary 3,2, Let M be a positive linear map of gc(E) into
:EO(E) such that, for all v, V € g: (E)

Mo>Myon {¢{ >0} implies M v > M .
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Assume M is non-degenerate, i.e. for all x ¢ E there exists
= gc(E) with M o (x) # O and that there is a supermedian
function u with Tu { 1J compact. Then there is resolvent family
(MX)X > o °f unbounded operators MX on EO(E) such that
M o = lim MX p, for all ¢ ¢ C_(E).

"0 =C

Proof: Let N be the kernel on (E,go) determined by M. It
satisfies the domination principle since M is non-degenerate.
If X € B, then there exists (mn) c gz (E) withu= 3z M (mn) € g+(E)
and {u > o} © X. The argument of proposition 3 in [g] shows
that u is a supermedian function.
Because there exists a supermedian function u with
u < 1} compact, every finite potential Nf vanishes at the

boundary and so there is a resolvent (N 0 of kernels Nk on

x)x >
(E,B,) with N_ = N.

Because each X E:E is contained in {u > o}, for some
u continuous and supermedian, it follows that, if o e:gz (E)
and X ¢ E is open and satisfies the conditions in the proof
of corollary 3.1, then the kernel V on (X,ﬁ) induced by N and
u maps gC(X) into go(X). Hence R, o ¢ go(X) and so N, leaves

QO(E) invariant. Define Mxm = N,o, if © ¢ go(E).

A

Application to adapted cones
Let E be locally compact and denote by C © C*(E) an

adapted cone. Let M be a positive linear map of:gc(E) into
C (E) with M (g‘; (E)) < C. Assume the following conditions
satisfied:

A2) for each x ¢ E there exists u ¢ C, u(x) > 0; and

Ah) ifu el and o e(__)'g (E) then

u > M o whenever u > M o on {®» > ol.
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Corollary 5«3 (Mokobodzki-Sibony [5]). Let N be the kernel

on (E,Eo) determined by M. Then there is a resolvent

(NX)X > 0

Proof: Let C_. denote the set of continuous functions

of kernels on (E,go) with N = N.

u on E of the formu = ru, (un) ©C. Eachu ¢ C,

is supermedian (see proposition 3 in [(61)and for each
X ¢ Bo condition A2) implies that there exists u G:Er
with {u ) 0} = X.

If o ¢ EZ (E) the fact that C is adapted and
contains onlyfsupermedian functions implies N © vanishes
at the boundary. Hence, as in the proof of corollary 3-1,
each finite potential Nf vanishes at the boundary. The

result then follows immediately.
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