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RELAXATION IN INFINITE SPIN SYSTEMS

Hermann Rost

v
We present in this paper some recent results of DOBRUSIN and
HOLLEY in the field of statistical mechanics.
I. Consider a finite or countable set I , the set of "lattice

sites", and associate to each i&I a "spin " Xs equal to +1 ;

a spin configuration is a family x = (x.) the set S of

ieI
al} spin configurations will be provided with its usual pro-

i

duct topology and product G-field. For each 1 1let Xi be
mapping which assigns to xe€&S its i-th coordinate.

Further, for each 1 we are given a "local energy function"

U(.,i) on S which we assume to be of the form
UG, = 20 x)

ieP jeP
where JP is a real number for every finite subset of of I
such that for all iel Z lJPl < Oo
ieP

A probability measure W on S will be called a Gibbs measure
iff for every i€I and x€S
(exp(-U(x,1)) + exp(-U(T;x,i))) 1 exp(-U(x,i))
is a version of the conditional r«-—probablllty of {Xi = xi}
under the hypothesis Xj = x. for all j # i. (Here T is the

J

inversion of the spin at site i : y = Ti(x) iff y; = <X5 and

V5 = X; for j # i.) Under the above assumptions, the existence
of a Gibbs measure is always guaranteed; for the question of

its uniqueness see L’{]or [_S-_]

II. In order to describe relaxation phenomena or time dependent

behaviour of a spin system we will look for a stochastic process
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(if possible Markovian) with state space S which may serve as
a model for the changes which undergoes a spin configuration
under the influence of some thermal disorder. From the mathe-
matical point of view there are many ways to define such a
process; see for example [C,] .

Here we try to find a Markov process whose generator A is
defined at least on all functions on S which depend only on
a finite number of coordinates and is of the form
(20 (Af) (x) = > exp(U(x,1)) - (£(T;x) - £(x)).

i€l
For finite I there is no problem; in the case of infinite I
the construction of a suitable stochastic semigroup acting on
@(s) , the space of all continuous functions on S , and hence
a Markov Process is given in [2.] . Since that construction in-
volves a nice combinatorial argument we will present it here

in all essential steps.

Theorem 1. Let for each i € I the continuous function V{(.,i)

. . e E
on S be given, V(.,i)20. For finite E ¢ I let (Pt)t>,o

be ge semigroup on €(S) with generator AE , where

@aff) (x) = 2 vix,i) (F(t.x) - £(x)) , fe CS).
i€E 1
Set G(i,j): = sup lV(tjx,i) -ve,u)| ., i e T
X
Then, if sup (ZG(i,j)) < oo , there exists for each f &€ &35)
I i J —_——— —

and t>0 the limit (in the uniform sense)

P.f := lim PEf
ENI

and defines a reller semigroup (Pt)t;o on_ é(s) . (The gene-

rator A of (Pt) is of the form (¥) if V = exp U .)

The theorem is an easy consequence of the following

Lemma. Let C,D,E be finite subsets of I with C¢D<CE ;
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let f = £(2z) be an element of €(S) depending only on =z

i’

i €C, and satisfying 0 «f <1 ;

let x , y €S be fixed and such that X;=y; for 1ieD;
let (Qu) and (R.) be the semigroups on &S) with gener-

ator, respectively,

g —>» V(. ,1)(go'c -g), g — 2_W(. ,1)(gor -g),
ieE ieE

where all W(.,i) are continuous and positive and W(.,i) =

= V(.,i) for 1 &D.
Then one has for all t20

,Qt(x:f) - Rt(Y:f), < Z Z(exp tG)(i,j) .
igC j D

The proof of the lemma is based on an idea of WASSERSTEIN
([?:\), who introduces the following measure of a distance
between two probability measures on the product space S

we say that s ,i€I , is a bound for r_ and v iff there

exists a probability measure (-7 on SxS having r«and v as
its projections on the first and second factor and such that
. . < s. i
(D(Xl # Y.) <€ s; for all ieI.

(Here X; »resp. Y. , assigns to each (x,y)€SxS the coor-
dinate X; 5 resp. y; $)

It is easy to see that if s; > i €I , is a bound for rA- and
V then we have for a function f on S with values between

0 and 1 and depending only on Z; ieC ,

(+) I<pe-vs eole 2ey

C
So one tries to find a bound for the measures Qt(x,.) and

Rt(y,.) by constructing a suitable joint realization of the

processes (X(t))t;o and (Y(t))t;O having (Qt)’ Pesp.(Rt), as
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transition semigroup and x , resp. y , as initial point.

A realization of one process, say (X(t)), may be found the
following way

Xi(.) remains unchanged equal to x; for all iéE 3
for each 1i€E we consider independently a Poisson point pro-
cess p; = (pi,pZi,....) and construct the path X(.) given
P; > ieE , in a deterministic way, namely

Xi(O) = X5 ieE ;
Xi(]::) jumps at time t if and only if v;(t), defined as
50 V(X(s),i)ds , is equal to some point p]i< », k21 , in the

sample P; > iekE .
By the same procedure we construct the process (Y(t)) using
functionals W instead of v, » where wi(tj‘ = SZ W(Y(s),id)ds.
The salient point is that we define both processes by means of
the same set of auxiliary Poisson point processes P; > i€k .
Then one has for ieD , t>0

P(Xi(t) £ Yi(t)) < P(there is a point of p; between vi(t)

and w; (1)) <

£S 'vi(t) - wi(t) (by the strong Markov property) <

t t
< &lvxes),i) - wres),i as ¢ & = G(i,i))ds =
X.(s) # Y.(s)
J J

-t
= 2 6(i,3)-P(X.(s) # Y.(s)) ds
o jeE J J

As is easy to check, P(Xi(t) # Yi(t)), ieE , is dominated by
the solution of the integral equation
t
s;(t) = ;000 + [ 2 6(ij) 's5(s) ds , i€E ,
j€E
where the initial condition is

si(O) =0 for ieD , Si(O) =1 for 1&END ;
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that solution has the explicit form

si(t) = 2 (exp tG)(i,j) , ieE ,
j€END

which is the desired bound for the two measures Qt(x,.) and

Rt(y,.). In view of (+) the lemma is proven.

We remark that the lemma allows one to obtain a lower estim-
ate for a "relaxation time" : if a spin system with the stoch-
astic behaviour governed by the semigroup (Pt) is changed at
time O arbitrarily outside some finite set D the local be-
haviour at some fixed i&D will not be influenced too heavily

at a time t sto , Where to is the smallest solution of (say)

jz*'D(exp tG)(i,j) = & , and & is small.

ITI. In order to consider the semigroup (Pt) in a more concrete
situation we will specify our assumptions

let I be equal to ZV/ the lattice of points with integer val-
ued coordinates in v-dimensional space, V2 1 ;

let a finite collection of finite sets K , Kez” and 0OeK ,

be given and to each K a real number JK 5 put

U(x,i) = %JK(T'— xj> ,iez

j-ieK

and as before V(x,i) = exp U(x,i) , xeS , i ¢ 2V

let (Pt) be the semigroup constructed in theorem 1.

We will say that a probability measure p on S 1is ghift in-
variant, iff for any finite CegZ¥ and ‘xj = +1 , jeC ,

J
Then the following theoremg hold ([3]’[@:

‘L(Xj = %5, jec ) = "'(Xj+i: «. , jeC) for every iez" .
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Theorem 2. A shift invariant probability measure p on S

is Gibbs if and only if it is invariant under (P‘t)’ i.e. if

WPy = W for all t30.

In that case the process (X('t))t>o is reversible under the
d

law P¥ , i.e. one has for t>0 , A and B ¢ S

PH(X(0) €A, X(t) eB) = PH(X(0) B, X(t)eA) .

Theorem 3. If there exists a unique shiftinvariant Gibbs measure

F and if P is any shift invariant probability measure on S ,

P converges to W weakly, i.e.
WPy converges to [ weakly
<F.,f> = 1m <'.4.P_t, £> for all fe <) .

The last theorem says roughly speaking that in our model of a
spin system at the end of the relaxation process described by
(Pt) the system is found in the equilibrium state F regardless

of what its initial state was.
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