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A SEMI-MARKOVIAN MODEL FOR THE BROWNIAN MOTION

M. G. Murmann

Introduction

In the last few years several authors studied stochastic models

for an infinite particle system and its dynamic (for a first survey
see Spitzer [7]). Within this scope Spitzer [6] and Holley [4] found-

ed a new theory of the Brownian motion. (In this article Brownian
motion means the physical phenomenon). Holley constructs a stochastic
model for the motion of a heavy particle colliding with the light
particles of a one-dimensional gas starting in a Poisson process,
each of them independently given a velocity from a common distribution.
He proves a convergence theorem stating that for suitable velocity
distributions the process converges in distribution to the Ornstein-

Uhlenbeck process, if the mass of the heavy particle, the density of
the Poisson process and the velocities of the light particles simul-

taneously tend to infinity in a suitable normalisation. In higher
dimensions new methods were necessary, since point collisions will

in general not be possible. A first attempt has been made by Hennion

[3] for a two-dimensional system. He represents the heavy particle
by a disk and derives a convergence theorem, analogous to that of

Holley.

In this article we shall oresent a construction of an approximating

stochastic model for the velocity of a heavy particle interacting with

the light particles of a gas of arbitrary dimension via a potential of

compact support. For two reasons the process is not a Markov process:

firstly because of the positive interaction times of the single particles
and secondly because of the particles that formerly interacted with the

heavy particle. The main purpose of this article is to study the semi-

Ma.rkovian character of the non-Markovian behaviour resulting from the

first reason. The influence of the second stating will be neglected.

The idea is the following: For suitable potentials there exist times
at which no light particle interacts with the heavy particle. The

existence of these times is combined with a. queuing problem, which

will be treated separately in section 1.2. At these times the future

does not depend on the past - presuming the just-mentioned neglection.
So the process falls into interaction blocks with the property that

the blocks are separated by times with the Markov property. This is



249

mea.nt by the semi-Markovian character of the process. But in contrast

to a. semi-Markov process the paths are not constant within the blocks.
In the first section we develop a stochastic model for the distri-

bution of the interaction blocks in dependence of the initial velocity
of the heavy particle. The whole process, which consists of connected

blocks,will be treated in the third section where we construct an ab-

stract version of processes of this type and indicate methods for the

study of these processes. A more detailed introduction to the abstract

model will be given in the beginning of that section. The second section,

which serves as a preparation for the third one, introduces the space

of all paths of finite but variable length, which are right continuous

and have left limits, in a. locally compact state spa.ce with a. denumerable

base - representing the space of the blocks - and the space of all those

paths with a marked time representing the initial block with time zero.

We shall give these spaces a topology of the Skorohod type rendering them
Polish spaces, Since these spaces are interesting not only in this

context, we discuss the topology in more detail than will be necessary
for the sequel.

We got the suggestion of constructing processes which fall into

interaction blocks as a general model for the Brownian motion by a

model of von Waldenfels [8] for the pressure broadening of spectral
lines. But his assumDtions and methods are quite different from ours,
with the exception of section 1.5, where we partially follow his lines.

The author wants to thank Professor von Waldenfels for his advice and

encouragement, which were invaluable for this article.

1. The distribution of the interaction blocks

1.1 The physical situation

Consider in the £-dimensional Euclidean space IRQ a system of

particles of mass m starting in a Poisson process with density one,
each of them indeDendently given a velocity from a probability measure v

with finite first moment, or in other words: starting in the phase
space in a. À 0 v -Poisson process, where ~ is the Lebesgue
measure on The particles will move with constant velocity. Then the

system remains in a ~ ® v -Poisson process at each time.

Now suppose that a heavy particle of mass M » m moves in this

system interacting with the light particles via a given potential.. .
We assume tha.t ~ is continuously differentiable and has compact support.
We allow 03C6 to take the value +oo. Fix R > 0 with the property:

f)(x) = 0 for R. We call the closed ball around the heavy
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particle with radius R the interaction region, though we do not
claim that R is minimal. As we will derive in this section a sto-

cha,stic model for the velocity process of the heavy particle from
one time, in which no light particle is in the interaction region,
until the first time there is again no particle in it, while in the
meantime there has been at least one particle in it,- called an

interaction block -, we suppose that at time zero the heavy particle
has a given velocity Vo and no light particle is in the interaction

region. This initial situation is the same as described by Hennion [3].
Two things have to be considered: the distribution of the pa.ra-

meters of the interacting pa.rticles, i.e.,the times they enter the

interaction region and their phase coordinates at these times, and
the velocity process of the heavy particle in dependence of the para-
meters. We did not succeed in deriving an exact model for the described

situation, but for M » m it seems to be a good approximation to it.

As was mentioned above the initial situation is the same as in

Hennion [3], and it remains the same until the first time a light

particle enters the interaction region. So we can adopt his results

concerning the distribution of the interaction parameters of the first

interacting particle and the invariance property concerning the system
of the other particles at this time. The dimension is not important for
that. So let T1 be the time, (x~(T1), V1(T1» the phase coordinates
- the position relative to the heavy particle - of the first interacting
particle, then T1 and (x1(T1), v1(T1)) are independently distri-
buted. Let be the volume of the (,~-1)-dimensional unit ball

(Co - 1), set for

w w =f 0 : S R , ~~r = {x R, x,w> ~ 0~

and the surface Measure of 
W 

conceived

as a measure on !R . Then L1 has an exponential distribution with

parameter c(Vo) = (v). In order to avoid the case

that c(V ) =0 for one V , we exclude that v is the Dirac-measure

of some noint. The distribution of (x1(T1), v~(T~)) is given by

v1 (T1 ) ~ B) = _~ - 1 )(- (v)
c(Vo) 

B 

’ o

for A, B Borel sets of IRl.

Furthermore,the distribution of the system of the other particles is
the same as in the initial situation - the positions always relative

to the heavy particle. But from now on the situation is different,

as the velocity of the heavy particle is no longer constant. But as



251

for the distribution of the following interacting particles within

one block, we shall illustrate below that for M » m we can approxi-
mate it by the distribution we should get if V were constant. So

if T1+~’2 is the arrival time of the second interacting particle
and (x2(T1+T2)’ are its initial phase coordinates, then

( ~2’x2( T1+T2)’ v2(T1+T2) ) has the same distribution as (T1’x1 (T1 )’v1 (T1 ) )
with the difference that T~ is restricted to the time inter-

val, in which the first particle is in the interaction region - the

time it leaves it not included, otherwise we stop the interaction

block after the interaction of the first particle; etc. Before we

construct a probability space for the parameters of the interacting

particles of one block and discuss, under which assumptions only finite

particles are within one block with probability one, we turn over to

the motion of the heavy particle, as we need the interaction times for

that.

Let V(t) be the velocity process of the heavy particle. For 

we have V(t) = Vo. For t ~ L1 we get V(t)from the equations of
motion regarded separately between the arrivals of the single particles.
As we got the position parameters relative to the heavy particle, we

write the equations in terms of the motion of the centre of gravity
and the motions of the light particles with respect to the heavy par-
ticles. So for t between T 1 +... + T n and T 1 +... + T n+1 resp, the

end of the block we set:

vi = velocity of the i-th particle (i = 1, ..., n)

xi = position of the i-th particle relative to the

heavy particle

wi = x. = vi - V

V(n)g M V + B- -._ v

Then we get the equations:

V(n) _ 0
g n

u wi - - y I grad 03C6 (x.)
~ ~ 

j=1 ~

jti
with the reduced and y = m

For M » m we have y « 1 and may neglect the term
n

- 03B3  grad We have to do this not because more-particle-pro-

j=1j~1
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blems are not solvable - this is not important to us, since we shall not

give explicit solutions -, but because otherwise there arise too great
difficulties concerning the interaction times. The neglection of this
term means that all particles interact independently of the others,
and as a consequence the interaction time of the particles is not in-
fluenced by the other particles. If we regard this equation also for
the particles outside the interaction region and neglect this term,
too, then we shall get uw = 0, which corresponds to our approxi-
mation concerning the distribution of the parameters.

The initial conditions V(T 1+...+T n ), 
(i=1,...,n-1) are given by the final values of the preceding equation
of motion, the initial conditions are

given by the parameters of the n-th particle, but remark that in accor-
dance with our approximation we have to put

wn ( T 1 +... +’~ n ) - vn (T 1 +... +Tn ) - Vo .
From them we can derive the initial conditions V(n)(T + " +T ),

xi( T1+",+Tn), (i = 1,...,n). Since we do not regard
the position process of the heavy particle, the initial position of

the centre of gravity can be chosen arbitrarily.
From the solution of the differential equations with the given

initial conditions,we get V(t) by transforming back:

n

V(t) = V(n)(t) _ ~ 
i=1

By this we get the process V in dependence of the interaction para-
meters.

1,2 A queuing problem

Before dealing with the distribution of the interaction para-
meters, we want to treat, apart from the following, a queuing pro-
blem combined with the finiteness of particle numbers within one
block. For its description let us regard the facts we need for the

problem. Particles enter the interaction region, their interarrival
times being independently distributed with an exponential distri-
bution with parameter c = c(V ). The independence of the inter-
a.ctions of the single particles and the fact that the interaction of
each particle is governed by the same differential equation having
the same distribution of initial values imply that the times the

single particles stay in the interaction region are independent of

their arrival times and are mutually independently distributed with
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a, common distribution on provided that with probability one no

particle has an infinite interaction time. Let F = FV be their

distribution function. 
o

The described situation corresponds to a. queue with exponentially

distributed interarrival times, service times with distribution dF

and an infinite number of counters, i.e.,the service of a customer

begins directly at his arrival. We ask for the existence of times when

no counter is occupied. Let Y(t) be the time after which all custo-

mers being present at time t are served. Y(t) is a Markov process.

For if Y(t) is known, Y(t+ s) only depends on the arrival and ser-

vice times of the customers arriving at the time interval (t,t+s)
and not of those arrived before the time t, since the time after which

they are all served is known. If Y(t) = 0, then it remains 0 until

the arrival of the next customer and then jumps to his service time.

If Y(t) = x>0, then it decreases with slope -1 until the arrival

of the next customer resp. until it takes the value 0, if in the mean-

time no customer arrived. In the first case let x-~ be the value of

Y at that time. If the service time of the arriving customer is less

or equal than x- ~, then the process continues as before. If not, the

process jumps to the service time of the customer. Now let Wn(x) be

the probability that during the time of the arrival and departure of

the next n customers the process Y did not take the value 0 if

Y(t) = x. Of course, for the derivation of Wn the knowledge of the

process Y is not sufficient,since customers with a service time less

or equal than the value of Y at their arrival do not influence the

process Y.

Corresponding to our problem we are looking for a criterion where

Wn converges to 0.

Of course,we have W o (x) = 1-e-cx.
For n>,1, Wn can be derived recursively. The event that during

the arrival and the departure of the next n customers Y does not

take the value 0 implies that during the remaining service times of

the preceding customers one customer arrives. At his arrival the

situation is the same with n replaced by n-1. So we get for n~1
x oo

Wn (x) = 5 ~F(x- ~ )Wn-1 (x- ~ ) + J Wn_1 ( ~ 
o (x- ~ )+

If we set = 1, then the recursion formula is also valid for

n=0. There follows by induction that for holds.

Let W = lim Wn. Then by monotone convergence we get for W
n
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the equation:
x +~

(*) W(x)=~ce"~[F(x-~)W(x-~)+ J W(~)dF(~)]d~ 
o (x-~)+

Furthermore, W is the maximal solution of (*), which is less or
equal than 1. For let W~1 be another solution. Then by induction we
get which implies So we have to study the solutions of (*).

Lemma 1: : There exist non-negative bounded solutions of (~),
which are different from the trivial solution W = 0, iff

J ~’~ ~~ oo. In this case they are given by

W(x) = a e-c  (1-F(03BE))d03BEd03B6 with 0a = W’(0) = cf )dF(03B6 ).

Theorem 1: : lim W = 0 =>  e-c (1-F(03BE))d03BEd03B6 = +00.
n ~. 

n 

~
This is especially fulfilled if F has a finite first moment.

In the opposite case we have

lim W (x) = (e-c(1-F(03BE))d03BEd03B6)-1e-c(1-F(03BE))d03BEd03B6
Proof: The right side of the equation (*) is a convolution.

We transform it.
x °°

W(x) = f ~)W( ~) + J )dF( 
o ~~
x c

= ~ ~) + J (W(~ ) - )]d~
o ~

This shows us that W is differentiable and that (*) is equivalent
to: 

00

W’(x) = c f (W( ~ ) - W(x))dF( ~ ) with W(0) = 0.
x m

A consequence of this equation is W’(0) = ). Partial
integration yields 

~ 
o

W’(x) = c J ))W’(~ 
x
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Differentiating this equation we get a differential equation for W’

with the solutions:
x

W’(x) =a.e c ~ (1-F( ~ ) )d ~ with arbitrary a = W’(0).
But for the inverse conclusion we have to add the condition W’(x) ~ 0
for x ~ + 00. For a =t= 0 the given solution fulfills this, iff the

first moment of F is infinite since
00 00

, f dF ( E;. ).
o " 

x ~

In this case we get the final solution: W(x) =as (1-F( ~ ) )d ~ d~
o

This solution is bounded for 0, iff f e - cjo (1-F( ~ ))d~ d ~ ao .

o

Since this condition implies that the first moment of F is infinite

the lemma is proved.
Since lim Wn is the maximal solution below one, the first

assertion of the Theorem is clear. If e-c (1-F(03BE ))d03BE d03B6  ~,

x ~ 
°

then the solutions W(x) = a j (1-F( ~ ) )d ~ are monotonically
o

increasing and depend in an increasing manner on a. So lim Wn is

the solution of (*) with W(x) -~ 1 for x -~oo which is the

stated one.

1,3 The distribution of the interaction parameters

As was described in 1.1, for given Vo, the stochastic behaviour of

the interaction block only depends on the distribution of the inter-

action parameters of the particles. So they will form our basic

sample space. We shall state the parameters as the interarrival times

of the particles and their phase coordinates where it is convenient

to choose (xi ( T1 +... +Ti ) , wi(T1+...+Ti)) as phase parameters of the

i-th particle, since these are the initial conditions for the diffe-

rential equation grad f)(x.). So the space of the inter-

action parameters of one particle is 1 Z with Z = IRQ and

our sample space is the space of all finite sequences in IR+  Z,
i.e. the topological sum E - U Z)k.

k=1

In order to derive the probability measure which corre-

sponds to our assumptions, we start from the space 3 = Z)~,



256

where IN is the set of the natural numbers. Let p(1~ be the ex-

ponential distribution on 1R+ with parameter c(V )~ and let 
be the distribution on Z derived from the distribution for the
first particle as defined in 1.1 by a velocity space translation by V .
On ~ we have the probability measure ov = (p(1) 0 

°

ooo
from which we get the desired probability measure on E by stopping
after the interaction parameters of the interaction block.

For this purpose we have to study the solutions of u w - 
in dependence on the initial values in Z, especially with respect to
their sojourn time in the interaction region. Though we supposed ()
to be continuously differentiable, it may not be regular enough for
our purposes. Here we cannot give explicit conditions under which ))
is admissible, which may also depend on the measure v . We shall only
discuss the conditions arising from the probabilistic treatment. First
we ha.ve to exclude with probability one singular solutions of the
differential equation, since they are not unique and cause infinite
interaction times. So we suppose that for each V fIR! the initial
values in Z, which yield singular solutions, are pi2)-negligible.
This is for example satisfied, if 0 in the interior of the

interaction region. Now p(2) -almost every z E Z is assigned an
interaction time 03B8(z). 03B8 is p(2)Vo-measurable and the image of
p(2)Vo under 8 gives us the distribution of the interaction times.
Let FVo be its distribution function.

Concerning the problem under which conditions the interaction block
is terminated after a finite number of interacting particles with proba-
bility one, we now have the situation described in 1.2. So we have to

presume that ~ and v yield distribution functions FV with the de-

rived condition. In most cases it will amount to the finiteness of the
first moment. Here we shall only specify, for which parameters long in-
teraction times are possible. First they occur for small velocities, but
their influence is in general cancelled by the factor ~v) in the mea-

sure p(?) (see 1.1). Furthermore, they are possible for initial con-
ditions near those which yield singular solutions, and possibly for great
velocities, if 03C6 is unbounded. A possibility of avoiding this problem
would be to truncate the single interactions after a fixed time 0>0.

We are now able to finish the derivation of the probability measure.
For k  1 let k ~  be the set of interaction parameters, which

cause a stoDping of the block after the k-th particle, i.e., the set of

with the property

m in { j: T1+",+Tj>,ma,x(T1+8(z1),T1+T2 +8(z2),",,T1+..,+T.-1+6(z.-1))~=k+1
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~. pV -measurable subset for each ~o k

we define the pVo-measurable mapping 03B1k:
o 

~k ~k -~ ’
03B1k ((i,zi)i1) = (i,zi)ki=1

Since are disjoint, we can combine them getting a pVo-mea-
surable mapping a: 

a : :L== OL-~ ~~ " 

~k

The assumDtions concerning the finite numbers of particles in one

interaction block just mean Py (~f) now get our desired

probability measure P~ on Z as the image of the probability
measure p~ 

o 

restricted to the measurable sets of ~ ~ under the

mapping a.

The process of one interaction block can now easily be defined.

The lifetime of one block is given by a Py -measurable mapping § :
o

~ : E 2014~ tR~

~((r~,z~) ) =max{T~+e(z~),...,T~+...+T~+e(z~)).
Finally we get the paths V(t) (0~t ~ ) by the prescription

of 1.1. The coordinate mappings V(t) are PVo-measurable on Z ,

because of the continuous dependence of the solutions of the diffe-

rential equations from-those initial values, which yield regular solu-

tions.

We still remark that the definition of p~ easily implies that

for a Borel set A ( ~ the mapping V ~2014~ p~ (A) is measurable, and

hence for a Borel set B ( E the mapping p v o (B) is measurable.

In the third section we shall start with the final results in

order to give a canonical representation of the distribution of the inter-

action blocks and then shalljoin them to the velocity process. We shall

do this in an abstract model. For that purpose we have to introduce a

space for the blocks, which will be done in the next section.
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2 The spaces and 

Let E be a compact metrisable space and I ( tR be an inter-

val. Then by DI(E) we denote the set of all mappings E,
which are right continuous and have left limits. For I = !R~ we set

I~+(E) =: D~(E). On one can define a metric, under which D.r(E)
becomes a Polish space (see Maisonneuve f5]). We shall extend the
definitions and results to the case where the domain is not a fixed,
but a variable finite interval. We set:

D~(E) is the set of all mappings ~ : [0, ~ ) 2014~ E which are

right continuous and have left limits, even in § , where
0 ~= ~ ((jo) oo depends on w and is called the lifetime of w .

We want to define on D~(E) a metric, under which D~(E) is separable
and complete.

For 0 03B6, 03B6’  oo we denote by 03B6’03B6 
, 

the set of all mappings
T: [o, ~ ) 2014~ [o, ~*) which are strictly increasing and surjective.

For 
, 

we set IT 1:= sup {[T(t)-t) 
> 

+ sup 
0~t~ t-s

s=)=t

We have the following properties:
Lemma 2: Let 0 ~,~’,~" oo.

i) T~ r~ ~ T-~T~, I = I
ii) 03C4 ~ 03B6’03B6, 03C3 ~ 03B6"03B6’ ~ cr . T ~ 03B6"03B6, |03C303C4|  |03C3| + |03C4 I

iii) There exists a T ~.J~’ with ) r j  oo

iv) 03C4 ~ 03B6’03B6 => j I T |  |03B6-03B6’| + I 1
Proof: i) and ii) are trivial. For we may take T (t) = 

iv) In the sup of the definition of ) 1 03C4 | I we take and s=0.

Now we are able to define the metric on D~(E). For this we fix
a metric p on E, which induces the topology of E.

On D+f(E) we define the metric:

d(03C9,03C9’):= inf {|03C4| + sup 03C1(03C9(t),(03C9(03C4(t))} (03C9,03C9~D+f(E)).

The fact that d is finite follows from Lemma 2iii). The axioms of a

metric can easily be derived from Lemma 2i) and ii).

Theorem 2: D~(E) is separable and complete under d.
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Proof: Concerning the separability the set of all step functions
with values of a fixed denumerable dense subset of E and rational

discontinuity points and lifetimes form a denumerable dense subset of
Because of the finiteness of the lifetimes we do not need the

exponential factor occurring in the definition of d in [5] for it.

The proof of the completeness is just the same as in the case of
a fixed interval with two additional remarks. We have to verify that
all compositions are possible, which is trivial, and that the domain
of the limit cannot degenerate to a single point. But the log-term in
Lemma 2iv) shows that this possibility is excluded.

Now let E be a locally compact space with denumerable base. We
define in the same way as we did in the compact case. Let

E’ = be the Alexandrov compactification of E. E’ is a com-

pact metrisable space. We can imbed in a canonical way in

and supply with the relative topology. If E is com-

pact itself, then A is an isolated point and so the definitions
of and its topology are consistent. We return to the general
case.

Proposition 1: is an open subset of D;(E’).
Proof: Let c~ E D;(E). Then it is clear that

6= inf p (c~(t), ~ ) > 0

o,t ~(~)

and {~ : : d(c~,c~’ )  8 ~ I C Df(E),
This proposition implies that D;(E) is a Polish space.

We finish the discussion of by characterizing the topology
of D;(E) by continuous mappings, which also implies a characterization
of the a-algebra of the Borel sets.

Lemma 2iv) shows that ~ is continuous. Let 1T o and -rr 
F 

be the

continuous mappings:

rro : D;(E) --~ E and : D;(E) 2014~ E

(jo )2014~ oo(O) (o t-7 ~( ~-)

Finally, by continuing each mapping c~ E. on IR+ by giving it
the value A for t >, we get a mapping I from into

D+(E’ ).
Proposition 2: i) The mappings ~, 1T o and ~r~ are continuous.

ii) I is an injective continuous mapping and

I(D;(E) is a Borel subset of D+(E’).
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Proof of The injectivity of I is clear. For the proof of
the continuity let 

n~1 
be a sequence in D;(E) and w D;(E)

with d(w ,w) -7 0, which means the existence of r 1~ with

|03C4n| ~ 0 and ~ 0 uniformly on [0, 03B6(03C9)).
By + we denote the set of all strictly increasing surjective

mappings from IR+ to IR+. For T ~- ~+ we set

|| : = sup {| (t)-t| I + sup |log (t)-(s)|}  + ~.
t-s

s~t
Let T n be defined by

~ n(t) _ 
O~t ~ (c~ )

~(~n)+t_ ~ ((c) (~ )

Then Tn fT+ with I and we have p 

uniformly on IR+. This implies the convergence of I(~n) to I(W) in

the topology of D+(E’). So I is continuous.

Because of the right continuity we have

I(D+(E) ) [{ W f D+(E’ ) : inf p ((t), A) > 0} n

n { ~ E D+(E’ ) : ~ (t ) _ ~ ~ ,t > k+1.~ t {[ A]{
2n

[A] is the constant mapping (3 =A .
Since for each t ~ 0 the coordina.te mapping i~ ~ w (t) is measurable

on D+(E’), I(Df(E)) is a Borel subset of D+(E’).
Proposition 3: The topology of is the weakest one, for

which I, r and are continuous.

Corollary 1: The o-algebra of the Borel sets of Df(E) is gene-

ra.ted by the coordinate mappings Xt : c~ . ~ w(t) ( t~0 ) extended by

setting for t >, ~ ( c~).
Proof: For the proof of Proposition 3 it remains to show:

is a sequence in and W f with

I (wn) .--~, --~ ~ ( c~) and ~r ~ --~ ~ ~ (wn) ~ then c~ n--j ~ .
Let Tn with IT n~ --~ 0 and 

locally uniformly. Since is a discontinuity point of 
there exists no with Tn( ~ ( c~) ) - ~ (wn) for n ~ n . This con-
clusion is somewhat easier to prove than a similar one occurring in the

proof of Theorem 3i) So we omit it here and refer to that proof.
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For n > n let r be the restriction to the inter-

val [0, ~(~)). Then with [ and

T (t)), uniformly on [0, ~(o))), which just means

n ~" bJ~

The Corollary follows from the fact that the corresponding asser-

tion is true for D~(E*) and that § and ir 
F 

are measurable with

respect to the a-algebra generated by the coordinate mappings.
If we regard on D~(E) the weakest topology for which I is

continuous, then Proposition 2ii) implies that D~(E) is in this topo-

logy a Suslin space. By Corollary 1 the two topologies induce the

same 03C3-algebra of Borel sets. But one can easily show that in Pro-

position 2 none of the mappings can be omitted. So the topology de-

fined above is strictly finer and more adapted to D~(E).
Next we define the space of mappings w E D~(E), whereby one

point of the interval [o,~(~)) is marked, which divides D into

two parts. So we set:

0 ~u  ~ 

~(E) will not be regarded as a subspace of D~(E) x since we shall

supply it with a finer topology than the corresponding relative topology.

But for the definition of the final topology we also need this relative

topology, which in the following we shortly call the relative topology

without referring to D~(E) The reason for the construction of a

finer topology is again that we shall render mappings continuous, which

are in a natural way linked with D~(E), namely the restrictions to the
two parts of the mappings, where the restriction to the first part is

not defined on the whole space. We set

03A01 : u> 0} i 

~( H~(~. ~ )) = ~
’1~~) = 

, 9 

~( n~(~, u)) = ~(~) - u

u)(t) = Lo(t+ u) (o~t ~ ( IT ~(~, u ))

Since ~ is not defined on the whole space we cannot directly
define a topology on by n and IT 

~. 
We have to proceed

in a different way. For that purpose we define the mappings:

~: -~ E ~-: -> E

~(M,u)= (i)(u-) for u >0; ~((jo,0)==o)(0).
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Now, for topologies, which are finer than the relative topology,
the continuity of 1I1 and 1I2 and the continuity of ~ and
are equivalent. If II1 and II2 are continuous, then so are

~= ~ . ~2 and ~J~~ ~~~ . . - ~r ~ . As for the

continuity of - in the points (c~,o) we do not need the continuity
of II1 and It is a consequence of the following Theorem ~ii).
The converse of the equivalence assertion will be stated in Corollary 2.

So we supply with the weakest topology which is finer than
the relative topology and under which * and ~_ are continuous. Then

is a Polish space, too. 

The definition of the topology of can directly be trans-
formed to a definition by means of convergent sequences. We shall show
the equivalence to a formally different notion of convergence, which
yields the continuity of lI1 and II?. 

Theorem ’?: Let (00, u ) be a sequence in Df(E) and

(03C9, u) ~ +f(E).
i) If u > 0, then (~n, , u ) -~ (c~, u ), iff there exist

n E with T n ( u ) _ ( -~ 0 and

uniformly on ~0, ~ (c~ ) ) ,

ii) If u = 0, then un) --~ (ca,0), iff 

and u n ---~ 0. In this case there exists T 
n 

with I .-~ 0 and P (~n( T (t)+ un), ~ (t) ) -~ 0
uniformly on [0, s ( c~) ) .

Corollary 2: ~1 and II2 are continuous.

Proof : i ) One direction of the equivalence is trivial, namely,
that the stated conditions imply the convergence.

So assume (w, un) --~ (m, u) with u > 0.

We have to distinguish the cases, where u is a discontinuity or
a continuity point of c~,

First case: u is a discontinuity point of (i).

Let 03C4n ~ 039303B6(03C9n)03B6(03C9) with | 03C4n| ~ 0 and 03C1(03C9n(03C4n(t)), 03C9(t)) ~ 0

uniformly on 0, 03B6(03C9)). We shall show that for n great enough

T n( u ) - un holds.

Let n = u-), u )) > 0.

There exists 6 > 0 with L u - 8, u + 8 ) C ~0, ~ ( c~) ) and

p(t~(t) ), w( u))  ~ for u ~ t  u + 6

p( ~t) ) ~ ~( u’) )  ~ for u - S ~ t  u
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Now choose no such that for n >, no the following inequalities hold:

|03C4n|  
03B4 2

  a
p.(w (u )~~(u ))  ~ L
P n n ,w ( u -))  Tl ’"

n (u n -)~~ (u -))  
L

p n ( n (t))~~’(t))  n on ~~~ ~ (w))
This no satisfies Tn (u ) = u n for n > no, which we shall show

now, Let n >, no. For u - d  t  u + 8 we have:

p(~ (T (t))~~(u-))  P(~ (T (t))~~(t)) +  ~
n n n n L

and for u  t  u + S we have

p(~ n CT n Ct))~~(u))  p(cn 
n 
(T n (t))~~(t)) + P(~(t)m(u))  ~

Since p(~(u),~(u-) ) - ~ , p (x, w(u-) )  ’~ will imply > ~
and  ~ will imply p (x, w (u-) ) > ~. For u - ~ ~C t  u + S

we thus conclude:

u- d  t  u ~ ~(u-)) C
u t  u + a ~ p(wn(Tn(t)), ~(u)) 

Now let v - T 1(u ). Then we ha.ve:
n n n

i vn-un| + 1 un-u|  8

w(u)~)  ~ ~ u  vn  u + s

n(vn)-), c~ (u-) )  ~ ~ u - d  u

So vn = u qed,
Second case: u is a continuity point of c

Let a,gain T E 039303B6(03C9n)03B6(03C9) with I 03C4n| ~ 0 and ~ 0
03B6( 03C9)

uniformly on [0, 03B6(03C9)). In this case we cannot expect T n( u ) - u 
n

for n great enough, We have to take advantage of the continuity of 03C9

in u to change Tn in a neighborhood of u yielding that u is

mapped into un without changing the convergence properties. For 
this

purpose we only need the convergence of un) to u ) in the

relative topology. The change of Tn will be performed by composing Tn
with suitable Qn E ~ t c~ ) ’

The inequality + ~ I ~T n ~~ 
implies the convergence T - 1 (u ) ~ u. So we can choose d 

n 
> 0 with

an ~ 0 and 
a 

~ 0, Furthermore, we may assume
n 

IT- 1 (u _
~u - ~n, u+ n) C ~0, ~( w) ) and 

~ n ( n ) u ~ 
 1 f or all n.

n n
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We define o E ~~ ~ ~ ~ by;n ~ 

t for 0 ~ t  u - s nand u + a n  t  ~ (~ )
_1 n)

Q ( t ) _ T n (un ) + --~---~-- ( t-u ) f or u -an ~ t  u
n ~1n 

n

_ 1 u+an_ n(un)Tn(un)+ - n 
n 

(t-u) for u  t  u + s 
n

We thus get n f with an(u) = Tn(un) and 1 Q n| ~ 0.
The last fact follows from the easy estimations:

1 ~ for 0 ~  t  ~ (~’ )

Q (t)-o (s) T 1(u ) u T 
1 
u -u

log I n 

t-s 

n 
|  max(log|1 + 

n |, log| 1- n( n) l )

03C4-1n(un)-u I

 _ a n for 0  t, s  ~ (w), t ~ s

I
1-

s
n

Set T’ : n = T o Q , Then T’ E J 03B6(03C9n)03B6(03C9) with T’ (u ) - u a n d

~ -~ 0. We must still show the uniform convergence

p (wn(Tn(t) ~~(t) ) --3 0 on ~0, ~ (~ ) ).
So n

p( n(’~n(t) ) ~ ~(t) )  p (~n( Tn(Qn(t) ) ) ~ ~ (Q n(t) ) ) + p ( ~(an(t) ) ~ ~ (t) )
The uniform convergence w (s) ) --~ 0 on (0,~ (c~ ) ) implies
the uniform convergence of the first term.

For the convergence of the second term let E > 0, There exists

a > 0 with c~ (u))  ~ for  a, Let no with an  ~
for n ~ no, Then for n >, no we have p ( c~ (Qn(t) ), m (t) )  e on

[0, )).
This is trivia.l for |t-u|  8n since then Qn(t) - t.

For  on also I  dn holds, which implies

p ( ~(t) )  p(~(Qn(t)~ ~ ~ (u) )+ p~~(u) ~ ~ (t) )  e.

ii) Th e c onvergenc e w n -~ w and u n .-3 0 is f ormally w eaker than
th e c onvergenc e u n ) ~ ( w , o ) ,
So assume w and u n~ 0.
The proof of the convergence ( c~ n, u n) -~ (~, 0) and of the

additional assertion in ii) can be reduced to the continuity case
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of the proof of i ) , while defining ( w , u ) by ~ ( w ) - ~ ( c~) + 1,
u _ u + 1 =1 and

03C9(0) 0 t  1

w(t) _ 03C9(t-1) 1t03B6 (M )

and defining ( n, un) in the same way.

Then we have ~ n--~ and 1 is a continuity point
of w. Remark that in the continuity case of the proof of i) we only
needed this convergence. So there exists T E with

Tn(1 ) _ un+1 and c~ (t) ) -~ 0 uniformly on ~0, ~ (c~ ) ).
This implies

c~n( un) ~ c~ (u ) - 
~n(un-) - ~n(un-)-~ ~ (~-) - w (0)

from which the convergence ( ~n, y u ) -~ ( (jj ,0) follows.

Finally define Tn f T (t+1 )-(u +1 ). Then

I Tn [ + un --~ o and

w(t)) = p (c~(Tn(t+1 ) ), w (t+1 ) ) --~ 0 uniformly on

~0, ~(~)), which completes the proof.
The Corollary is a direct consequence of the Theorem.

3. The abstract model

In section 1 we constructed a model for the distribution of the

interaction blocks by assigning to each a probability mea-
sure Pv on 03A3 and to each V and each ~ r a path
of finite length, which we may now regard as an element of 
The measurability properties stated at the end of section 1 together
with Corolla.ry 1 make possible a canonical representation of the dis-
tribution of the interaction blocks whereby each Vo ~ IRl is assigned
a probability measure on which we call R(V .). For each

Borel set A C the mapping Vo t2014> is measurable. So

R has the properties of a kernel.
From the distribution of the interaction blocks described by the

kernel R, we proceed to the construction of a model for the whole

velocity process by joining the interaction blocks. Each block will be

given the distribution belonging to the initial velocity which results
from the preceding block. The transition from one block to the initial

value of the following is formally described by the kernel

D+(IR~’), B C (R~~ Borel set). So the inter-

action blocks form a Markov chain with state space D f(~ ) and
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transition operator Q = SR. The initial block containing the time zero,
plays a special role and will be represented by an element of 

whereby the marked time represents the time zero. Its distribution will

be given by a probability measure on 
We shall perform the described construction in an abstract model

replacing the state space IRl with an arbitrary locally compact space E 

with a denumerable base and the special kernels R and S with arbitrary !
ones. Since their composition Q = SR is the crucial kernel for the pro-
cess, we shall proceed from it and get Rand S by disintegration :

under corresponding conditions. i

Thus, our abstract model consists of processes which are divided ’
into blocks with the property that at the beginning of a block the future ’,
does not depend on the past. What we get is a generalization of semi-

Markov processes, for which the constancy within one block is not re-

quired. After having constructed these processes,we shall indicate how
methods and results originating from the theory of semi-Markov processes
can be applied to the study of the described processes. For this purpose

we associate to each one a semi-Markov process by setting the process
within one block constant to the initial value. This associated semi-

Markov process itself contains much information about the original pro-
cess, namely its global behaviour, which does not depend on the fluctua-
tions within the blocks. Furthermore, the initial values of the blocks

form an imbedded Markov chain. Results concerning the associated semi-

Markov process and the imbedded Markov chain can directly be adopted
from the theory of semi-Markov processes. But both - the associated
semi-Markov process and the imbedded Markov chain - will also be useful

for further results. This will be shown for the finite-dimensional dis-

tributions and the ergodic behaviour.

3.1 Construction

As we have just given an intuitive survey of the construction of

our abstract model, we can now restrict ourselves to its technical per-

formance.

Let E be a locally compact space with a denumerable base and

E’ = J be its Alexandrov compactification. As the canonical sample

space, on which we shall define the process, we have S~ = 

supplied with the product topology and the Q -algebra 3~ of its Borel

sets. For n = 0,1,2,... let Fn be the (j -algebra of Borel sets

depending only on the zeroth block - the block with the marked time -

and the following n blocks.
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In order to join the blocks we first define the times 

which separate them:

Tn : 03A9 ~ IR

To((03C9o,u), 03C9j) j1 
) = -u

Tn((~p~u)~ (~ ~ ~). ~>,1 ) - -u + ~(t~ o)+...+ ~(~n_1) (n >r1)

The mappings T are continuous. Furthermore, T is Fo-measurable,
and for n1 

n 

Tn is Fn-1-measurable. 
o 0

The connection of the blocks can now easily be defined by the coor-

dinate mappings 2014> E’ (t f IR+):

03C9j(t-Tj) for Tj  t  Tj+1 = Tj + 03B6(03C9j)
Xt(03C9o,u), (03C9j)j1) = / A for lim T., if it 

0 

is finite.
L 

It is clear that the mappings Xt are measurable. The corresp ond-

ing pa.ths are right continuous and - except in the time lim T., if it

is finite - have left limits. ~ "~

Now let Q be a. Markovian kernel on and p be a probabi-

lity measure on The assumptions that the distribution of (wo,u)
is given by p and that (w j; jj0) is a Markov chain with transition

kernel Q, define a unique probability measure P on ( S~, ~), analogous
to the construction of a Markov chain with the exception that the zeroth

element is supplied with an additional random variable.

Thus we have got a stochastic process ( S~ , ~’,P, (Xt)tER’~), which
is, however, too general for our purposes. We shall claim that Q is

of a special form.
For a fixed w E the image of the probability measure

Q((D, *) under the mapping fr is a probability measure on E, which

we call S(w ,.). Since for a Borel set B C E the mapping w H 

=Q( 0 -1 (B)) is measurable, S has the properties of a transition

kernel with the difference that it leads from one space to the other. For

a fixed D;(E) we can disintegrate the measure Q(w ~ ) with respect
to the mapping (see Bourbaki [1], 2.7). Our additional assumption
is now that these disintegrations can be performed independently of w .

We thus get a mapping R:

R(x,A) defined for x E E, A (D;(E) Borel set with the properties:

i) for each x~E the mapping R(x,A) is a probability measure on 
ii) for each Borel set A ( the mapping x ~ R(x,A) is measurable

iii) for each x~E we have R(x, 03C0-1o(x)) = 1
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iv) for each w E D;(E) and for each Borel set A C we have

Q( w,A) = S ( w ,dx)R(x,A).
So R is the same type of transition kernel as S with the r8le of
the two spaces interchanged, iv) can be written shortly Q = SR. Later

on we shall see that the kernel K = RS is also important to us.
This finishes the construction of our abstract model. Remark that

the times Tn are no random times in the usual sense, since they are
not definable on the paths, because each path can arbitrarily be divided
into blocks. The knowledge of the times Tn requires the information
contained in the sample space 0 . This shows us that for the notion
of our abstract model p and Q are indispensable.

As already remarked we shall associate a semi-Markov process and
an imbedded Markov chain to the constructed process. For it we need the

just mentioned Markovian kernel K = RS and the semi-Markovian kernel K
(see pinlar [2]) uniauely defined by

K(x,AxB) = ~R(x,d c~ )1 B (~ ( c~ ) ) S ( w ,A) A C E and B 

Borel sets)

i induces a. linear positive contraction K(1) on the Banach space L(1)
of real-valued bounded measurable functions on E x IR+ supplied with
the sup-norm :

(K(1 )f ) tx~ t) = (t- 1;;).
K(1) will appea.r in the formulae for the finite-dimensional distributions.

There we shall also need the more-dimensional analoga K~r), the linear

positive contractionson the Banach spaces of real-valued bounded

measurable functions on E supplied with the sup-norm:

~...,t ) _ r = i ~...,t r -~)1 R +(t 1 -v~..1 R +( ~r -~)
Theorem 4: i) The random variables Yn = XT n = (n~1 ) form

a Markov chain with state space E, transition kernel

K = SR and initial distribution v = Su where uo
is the marginal distribution of w o. .

ii) The random variables Zn = (XT , Tn) (n~1) form a

Markov cha.in with state space nE xlR+, transition

probability uniquely defined by:

n+1 
E A x 

n 
Tn)) = 

n 
, Ax (B-Tn))

and initial distribution v’ :

w ~ ( ~ )) S (~ ~A)
(A( E and B C!R+ Borel sets).
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Proof: For n1, Y1,...,Yn are Fn-measurable. Let 
For n~1, we have o(Y~...,Y~) ( ~~ ( ~~’ This implies for each

Borel set A ( E:

Since ( 00 ) 
njl 

is a Markov chain with transition operator Q, we have:

= = 

= = 

which implies by the definition of conditional distributions:

E(S( = E(E(S( = 

So (Y ) 
n~1 

is a Markov chain with state space E and transition

operator The assertion about the initial distribution is clear.

The proof of ii) is analogous.
Now we define the process ’ 

t~IR 
.on ( Q, ?BP) by:

t = XTn for Tn  t  Tn+1

Xt = A for t  lim Tn~ 

Then Theorem 4ii) just means that is a semi-Markov pro-

cess with the kernel K. We call it the associated semi-Markov process.

The Markov chain is called the imbedded Markov chain.

It is clear that it is also the imbedded Markov chain to the associated

semi-Markov process. Analytically this is expressed by the property:

xtR+) = K(x,A) (x ~. E, A ( E Borel set).

3.2 Finite-dimensional distributions

The probability measures R(x,’) define the distributions of the

blocks in dependence of their initial values. We may regard their finite

dimensional distributions R~"’~r (t~~~t~ ~ T). For r ~ 1 fixed

they define a linear positive contraction on the Banach space

of real-valued bounded measurable functions on E~ supplied with the

sup-norm into the Banach space 

(R~f)(x,t~...,t~) = R~’~~f = ; a)(t~),..., 
where we set f( ~(t~),..., = 0, if t~ ~ ~(a)) for at least

one i (i = 1,...,r).
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From the finite-dimensional distributions of the blocks we derive

the finite-dimensional distributions of the process (Xt)t + by choosing
the "right" blocks. For this we only need the associated semi-Markov pro-
cess.

We start with the one-dimensional distributions. So let f be a

real-valued bounded mea.surable function on E. For t E IR+ we have:

f(XtC( ~o~ u )~ ( wj) ) - ~ f( c~ n (t-Tn) ) 1 T ~T )(t)j >,1 n=0 
C n n+1

Ef( ~T )(t)n ~ n n+1
n=0

For shortening the notation we always set (t)) - 0 for

c~ E D f(E) and t0 or t>, ~( c~ ). Then:

~ T n ~T n+ 1 )(t) - n(t_Tn)).
For n=0 we ha,ve

Ef( c~o(t-To)) - ~ ~(d( ~o, u ))f(c~ o(t+u))
and f or n>,1

Ef( n(t-Tn)) -
- J u(d(w 0 ,u)) ~Q(wo,d~1 )l.~,.j~(c~n_1 (~on(t-[-u+~(~o)+...+~ (wn_1 )J ).

We shall transform this representation.

jQt n_1 ~d n)f ( n(t-Tn) ) _ ~ 

=J 
n )(R(1)f)CY n 

~ R( n_2~d n_1 ) ~ Q( c~_1 ( 

= S(03C9n-2,dyn-1)R(yn-1,d03C9n-1)S(03C9n-1, ,dy ) n (R(1 (yn,t-Tn-1 - 03B6(03C9n-1))

=!S(wn-2,dYn-1)(K (1) R (1) f) ( Yn-1,t-Tn-1 . )
By recursion we get for n~ 1:

Q(03C90,d03C91)...Q(03C9n-1,d03C9n)f(03C9n(t-Tn) = S(03C90,dy1)(K(1 )n-1R(1 )f)(y1 ,t-T1)

Ef(Xt) = ju(d(w o (t+u))+  (d(03C90,u)) S(03C90, dy1)(K(1)nR(1) f )(Y1 , t- (-u+03B6(03C9 0 ))
n=0
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. Let be the strong limit I N~ is intensively

n=0

studied in Çinlar [2]. Since |R(1)f)(x,03C4)| I  t! f !t . >03C4}),
one easily sees that Proposition (9) 

of [2] can be applied, which shows

that exists. We get the final result:

Ef(Xt) = ;p(d(~,u))[f(~(t+u))+ ;S(~,dy)(N~R~f)(y,t+u-~))].
In a similar way we obtain the more-dimensional distributions.

Let f be a real-valued bounded measurable function on E . For

~e have

Ef(Xt1,Xt2,...,Xtr) =

= E ... f(03C9n1(t-Tn1),03C9n1+n(t-Tn1+n2),...,03C9n1+...+nr(t-Tn1+...+nr))
n1=0 n2=0 nr=0

Using the same methods as before,we can derive analogous formulae.

Besides the operators and they will contain combinations

of them, acting on some coordinates like R~ ~ and on some like 

and leave the rest unaffected. Since the prinbiple is clear, but the

formulae become too confusing, we shall not perform their derivation.

3.3 Ergodic behaviour

A basic tool in the study of semi-Markov processes is the method

of the imbedded Markov chain. By means of the associated semi-Markov pro-

cess we can directly adopt the results for the imbedded Markov chain 

Furthermore, we can use the imbedded Markov chain for the derivation

of results about the original Markov chain namely those con-

cerning the ergodic behaviour, as we shall show now. By this we can

apply ergodic theorems for Markov chains with a locally compact state

snace with a denumerable base to the imbedded Markov chain and trans-

fer the results to the Markov chain ( ~) ~ 11~ 
We shall start with invariant measures on E resp. D~.(E). The

kernel R[s] maps measures on D~(E) into measures on E [vice versa].
We shall show that by means of this mapping Q-invariant measures will be

mapped into K-invariant measures [vice versa] and that for invariant

measures these correspondences are inverse. The mapping -rr ~ maps

measures on D~(E) into measures on E. For invariant measures this

mapping is the same as the one induced by the kernel R.
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Proposition 4: i) If p is a Q-invariant measure on then

7T ( p ) = pS~ and this measure is K-invariant.
ii) If v is a K-invaria.nt measure on E, then v R

is Q-invariant.

iii) The correspondences between Q-invariant and K-in-
variant measures defined in i) and ii) are inverse.

Proof: i ) We have p = Q = 1J SR.

Let v = ~ S. Then v = u S = 1J SRS = v RS = v K. So v is K-in-

variant.

Now let B C E be a Borel set.

~ 0 ( ~ ) (B) - u ( ~ 0 ~(B) ) - ( u sR) (~ 0 ~(B) ) - ~ ( u ° 

= 1B(x) = ( u S) ~B) - v (B).
The proof of ii) is analogous to the first part of the proof of i).
iii) Let 1J be Q-invariant. Then 1J is assigned the measure v = 1J S,
and v is assigned the measure v R =  SR = u Q = u, The inverse re-

lation will be gained by starting with a K-invariant measure v in the

same way.

Proposition 4 can especially be utilized for the questions con-

cerning the existence and uniqueness of invariant measures.

If p is the distribution of . then u = u oQn is the dis-

tribution of . and vn+1 = nS is the distribution of Yn+1’ If

we proceed otherwise from v1, the distribution of Y1, then v n+1 - vlKn
is the distribution of Yn+1, and 1Jn = vnR is the distribution 

We shall show that the weak convergence of un to a limit p implies
the weak convergence v n to a limit v. For the inversion, which is

the interesting one, we need an additional supposition. The measures 1J

and v are Q- resp. K-invariant and are in relation to each other

according to the preceding proposition.
Proposition 5: i) Let p be a measure on D;(E). If the measures

1J n 
= 1J Q converge weakly to a measure 1J, then

the measures v n+1 - nS converge weakly to the

measure v = 1J S.

ii) Suppose that for real-valued bounded continuous
functions f on D;(E) the functions Rf are

continuous on E. Let v1 be a measure on E. If

the measures v n+1 = v 1 K n converge wea.kly to a

measure v, then the measures 11 n = v nR converge

weakly to the measure p = v R.


