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BRANCHING PROPERTY OF MARKOV PROCESSES

Masao Nagasawa

Introduction

In a probabilistic treatment of semi-linear parabolic
equations key steps were to construct a certain class of Markov
processes on a "big" state space and to prove the branching
property of semi-groups of the processes (cf. Ikeda-Nagasawa-
Watanabe [1]). In this paper branching property will be
characterized in terms of multiplicativity (or decomposability)
of semigroup of a Markov process on a multiplicative state space
(cf. § 1 for definitions). This characterization will then be
applied to branching Markov processes with age and sign in § 2,
and to a branching Markov process treated recently by Sirao

(71 in § 3.

1. Multiplicativity of Markov processes

Definition_1.1. A measure space J is called multiplicative

if a multiplication with a unit is defined in it, i.e. if

(1) for a, be f a multiplication a-be J is defined and

measurable,
(2) there exists a unit 2 € 4§ such that
2+ a2=238°*'2 =2 for every ge,}.

Given a multiplicative space .f , taking N ={0,1,2,...}

and J ={ 0,1}, the state space E of Markov processes treated
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in this section is one of . , §xN , § X J, and 8x NxJ.
Theorems will be stated for E = S x NxJ, but all arguments
are valid for other cases. Only we need to do is to get rid of

unnecessary variables.

We denoted the space of measurable functions on E by
L(E) (and L(8) ete.) and ' denotes the space of non-

negative elements of X% .

Definition 12. Fe L(E) 1is said to be multiplicative if

() F(a-b,k,3) = gk, §)F(@)F(p) ,
where F(a) = F(g,0,0) and

(5) (-1nIxk

oQ
~~
=
[}
~r
i

for a fixed positive constant A . *)

Let (Xt’Bt’P' ) Dbe a strong Markov process **) on the
state space E where { (2,k,j); keN, jeJ } are traps and

let T be a fixed quasi-hitting time *¥**) satisfying
(6) p,[T=t]l=0 for all t20.

Introducing a sequence of Markov times

(7) To =0
T1 =T
't-n= 'Cn—1 + T°O't y for n=2,3,...,

n-1

we define kernels; for a measurable subset B of E,

*) We will take X = 2 in, applications.

**) X, 1is supposed to be measurable.
*XH) A B, Markov time T is said to be quasi-hitting time
if t < dimplies T = t+ 't-Gt, where Qt is the

shift operator.
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(8) U,Er)(-,B) =P [X eB, T <t<T, ], r=0,1,2,... ;

for a measurable subset /" XB in [0,m)XE,
(9) ¥(-, rxB) = P, [Ter, X, €B]

Let M and p Dbe finite measure on E. We assume in
addition the support of y is £Hx N x{ 0} « Then a product

measure M*Y on E 1is defined by

(10) gﬂ*v(d(g,k,j))F(g,k,j) = ﬂ(d(g1,k1,j))j w(d(ey,ky,0))-
E “E E
'F(g1‘g2,k1*'k2,j) 9
for Fe £(E)+ . Ve can be defined in the same way inter-

changing the order in (10).

When M is a finite measure on [0,0) XE, and v
depends on t and measurable in t, then a product measure

MxV (/7XB) is defined by

an S pxy (ds,d(e,k, §))F(s,c,k,J)
[0,0)XE

0,00)xE E

for Fe J( l:O,oo))(E)+

In this section we assume that the Markov process (Xt’Bt’P')

on E satisfies the following two conditions:

Condition 1. The support of Uéo)((g,0,0),B) is & xNxio},
and for Fe L(E) of the form F(a,k,j) = gk,j)F(a), where
F(é) = F(§)070))
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(12) § 0l (@b, 5),a(-1F()
E

= g0, § 082 ((2,0,00,a(-))x0{*) ((3,0,0),a(-)IF(-)
E

Condition 2. *) For Fe€ J.([0,00)XE) of the form

F(s,a,k,j) = g(k,j)F(s,a) where F(s,a) = F(s,a,0,0),

t
(13) [ [ $((a-pyks3),85,a())F (s, )
0O E

t
= g(k,j){ § | ¥(@,0,0,a5,a+))#0{* ((2,0,0),a())F (s, )

O E
t

+ [ ] ol (@,0,0),a0))% \f((g,o,O),ds,d(-))F(s,-)},
0O E

and  Y((2,k,j),*) has no mass on [0,m)xE.

Remark. As a special case of (13),

t
f (#(ax,5),a8,a(-)IFCs, ) = g, 3)
0O E

O ct+

{ ¥((2,0,0,ds,a - JF (s,) .
E

All equalities in the paper should be so understood, unless
otherwise stated, that if the left hand side has definite value

then so does the right hand side and both sides coincide.

Lemma_1.1. Let Fe J(E) be multiplicative, then
T N .
(14) Uér)F(g-__b,k,j) = glk,3) 2 Uél)F(g)Uér"l)F(Q), r=0,1,2, ...,
1=0

where U{VF(a) stands for U{PF(s,0,0) .

*) The condition 1 and 2 are rephrasing of Property B.III. of
[11, p. 262.
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(12). Assume that

Proof. When r=0, (14) is implied by

(14) holds for 0,1,2,...,r, then by the strong Markov property

and the induction hypothesis

t
k,3) = § [ W(ab K, 3),ds,d (e k3 TR ( k!, 30)

U€r+1)F(é-
0 E

ct

(089 ((2,0,0),a(e,,%,,00)

= g(k,j)i ]'5 V((g,O,O),ds,d(g1,k193'))
0 E

z gy, 3NUER (e ) g ey, U V()

{ ¥((2,0,0,d50 (25,5, 3 [ U ((2,0,0),a gy 514,00)
E E

+
ot

r .
-3 g(k1,O)Ué};F(gﬂg(kg,j')Uéf;i)F(_—‘Ez)} .
=0

On the other hand, because

t
o0y = | § ¥ auake el r@x D
s E

by the strong Markov property and because it is continuous in s

by the assumption (6), we have

v (e b,k, 9)

t
r
- et 2 [ [ {a-ulu{ Ve e
=% o

+ 100 r(@ac-vOu{rHt- i)F(b))]]

where d applies to s, but since d(-U§O)Ué9;F) = 0 Dbecause
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Uéo)UéggF = UéO)F does not depend on s, it takes the follow-

ing form

t
r+1 s 3

g(k,3) E: §aC-vPur(@)u{@u{Tt-Dp )

0

r+1 :
=0

which completes the proof.

Theorem 1. Let Fe J(E) be multiplicative. If

(e0]
(15) UFC) = ) uR()
r=0

has definite value, then it is multiplicative, i.e.

(16) UF(a+b,k,3) = gk, HUF(2)UF () ,
where U,F(g) = U,F(g,0,0)

Proof is straightforward by summing up both sides in (14)

over 1r=0,1,2,...3

R R Ch) (r-1)
glk,§) J, 2 U F(a)uy ~F(p)

UtF(g-Q,k,j)
r=0 i=o

1

i}

gk, )UF(2)UF(D) .

§ 2. Branching Markov processes with age and sign *)

Given a metric space S, 1let
@

4= U,
n=o

where

*)  Lemma 5.1 in Nagasawa [2] is valid only when q_ = O.
We can correct the lemma modifying the definition 8f branch-
ing law, but simpler construction is given in this section
and Theorem 1 in § 1 will be applied to show the branching

property.
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SO

{'a} , @ an extra point, and

Sn

SXx...x8, n-fold Cartesian product of S. *)

If we define a multiplication of x = (x1,...,xn) and y =

(Fys-+esTg) DY

115

c ¥ = (XqyeesX ) VqreeasVy)
and

D x= (Xqye009Xy)
then . turns out to be multiplicative.

Given a strong Markov process (W’Bt’xt’Px’ x€S) with
right continuous paths on the state space S, the canonical
realization of n-fold direct product of it is defined on the
fundamental space

Wl = Wx...xW, n-fold product of W.
When w = (w1,...,wn) eW?, we put

:__gt(g) = (xt(w1),...,xt(wn)), and

)(’...)lPx .

P =P P
(x1,...,xn) x1x X, n

Then (wn’Nt’-—}gt’p;c’ _}__(ESn) **) is a strong Markov process with
right continuous paths. (cf. Theorem 3.1 of [1].)

Let Ay be a right continuous non-negative additive func-

tional of X then

Ay = AgGwy) oot AGwp)

*) In [1] and [2], symmetric product was employed instead
of Cartesian product. Havever arguments becomes simpler if
we take usual Cartesian product as pointed out by Sawyer D+]

*%) N, = m(xs,sgt) .
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is that of =xh(g). Taking up a Poisson process (W"pt’Pl'{)
with rate 1 which is independent of b define

L1, = Wwxw,

0 -
Ple,k) = Px %Pk

and for (w,w') e}

Zg(g,w') (%(t(y-’)’pAt(g)(w'))’ if A, (W<

4 (an extra point), if At(g) = 0.

0 0 .

Then (n'n’zt’P(;c,k)) is a strong Markov process on SUXN

(cf. [2], where a different construction is given and it is

called a Markov process with age since p, can be understood
t

as '"age" of particles.)

A strong Markov process with right continuous paths on

E= 4 xNxJ vi{s} is defined on
Q
L = {w7kj &U(anj‘] ﬂnx J)U{“&,;

by
1) {(2,k,3); keN, jeJ } are traps,
. o _ o0
1) Pryiei) = PlwX @55
iii) for w = (w,w',j) € (L

Z3(w) = (__:_ct(y),pAt(!)(W'),j)
(M zg(wakj) = (2 ,k,3)

Zg( wA) = 4 .

The next step is to define a branching distribution. Given

a sequence of measurable functions {qn(x)} on S with
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[0 0]
(2) Z an(x)|=1; X€eS ,
n=o

+ ., - + -
where |aq | =q +q;, q,=q,v0 and g = (-q )v0, and
given a system of kernels Z‘.‘n(x,dg) on SXSn, which is a
probability measure in dy and measurable in x, we define

M5 and p] for Fe L(E)T by, when xes® (n21)

@ pIreD = ( pIGr DAk, DFEK I

/ .t

= qo(xi)F(x‘I""’Xi-1’xi+1’""xn’k’J )
284 t

+ 2, f ap (%) 7t (x5,dy 9 X - en xdym)F(x1,...,xi_1,y1,...,ym,
m=1 gm

t
e SFETRDRPS S I ),

+
where the first term is q (x)F(3 ,k,j”) when n=1, and i
0

and j~ are functions of j defined by the table 1.

it g

0 0 1

1 1 0
Table 1.

+
Furthermore we put M7F(2,k,J) = F(2,k,]) .
Let eq,...,e, be n-random variables *) 1independent of
each other and Zg with exponential distribution Px[t <ek|Nt] =
e't, and set

(&) Gy (i) = sup{ t; A Gn) Leyls

*) We can always assume the existence of such random variables
enlarging W and Bt if necessary.
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and

(5) T W = min Z,(w) .

1£ken
Klk is the life time of k-th particle killed by a multiplica-

Ay
tive functional Mt = e .

Then a branching distribution is defined by

(6) M(w,B) = Zij Treoy, ] (F1 (@) + M1 (2g,B)) .
1

Because M is an instantaneous distribution (cf. defi-
nition 2.1 of [1]), we can construct a big Markov process on
E by piecing path Zg, t £ T together by the distribution Mo
Then the big process (Zt,Bt,P(ch,k,j)) is strong Markov with
right continuous paths *) (Theorem 2.2 of [1] and cf. Chap-
ter 3 of [4]).

From construction it is easily seen that the big process

(Zt,P,) on E satisfies condition 1 and 2 in § 1.

If we define for f e J4(S)

7) Tk, = (-0 ak
where
R n
(8) f(x) = ]_[1 f(x5), if x= (Xqye0e,%)
J:
= 1, if x= 79
= 0, if x= 4,

then Te L(E) 1is multiplicative, and therefore applying The-

orem 1, we have

*) By is not equal to N, = 0"(Zs;s_<_t) in general. < is

Bt Markov time but not necessarily I\It Markov time.
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Theorem 2. The big Markov process (Zt,P,) on E has the

9 UL = (Utf)| .®)

Corollary. I1f Utf(x,o,o) has definite value, u(t,x) =

t

(10) u(t,x) = th(x) + J S'K(x,ds,dy) ﬁqn(y) S ’/Yn(y,dg)ut_s(g.) y
o n=o el

where

T, f(x) = E [f(x)]

K(x,ds,dy) =ZEX[Idy(xs)dAs] .

Remark. As for applications cf. Sirao [6], Nagasawa-

Sirao [3], and Nagasawa [2].

§ 3. Branching Markov processes with differential space *%)

Let S Dbe a locally compact Hausdorff space with a count-
able open base with ¢%®- structure. A big state space AS is

defined constructively as follows:
fee}

5(0)= U Sna
- n=o

(we use the notation é(O), which was denoted as .§ in § 2).
Introducing an operation D, the role of which will be speci-
fied later on, §(1) is defined to be the collection of all

elements of the form

¥)  For a function F on E , FIS is a function on § de-
fined by Flg(x) = F(x,0,0), x€S5.

*%*)  The construction and the proof of branching property given
in this section are simpler but essentially the same as

Sirao's [7]. In [7], multiplication is assumed to be
commutative.
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(§07D(§1)’--'7D(__}Sm)), m=1,2,...,

where x; eg(o), at least one of x; (i>0) is not equal to
2, and of all elements obtained by possible permutation of
components. When 9 and D(9) appear in the components,

they must be erased off, for example,
(?,D(§1),D2,D(§3)) — (D(x),D(x3)) ¢

arter g0 sM 5™ e defined, 5™ is the collec-

tion of all elements of the form
(29>D(2¢)5---,D(ap)) m=1,2,.0.,

0 1 -1 -1 R
where goeg( )U_§_( )U...Ug(n ) ’ gje__s_(n ) (i z1), and of
all elements obtained by possible permutation of components:

Then finally we put

0o
n=o
Elements of o can be expressed by diagrams, for example,
X.] X2 X3 X]+
(x1,x2,Dx3,DxL+) «— 1 1 ' | l
g 23
2 Led

Definition 3.1. The stripping operator ¥ 1is a mapping
from o to __S_<O) which maps a€ ¥ to an clement in §(0)
obtained by stripping off all D operation in a.

For example, when a = (xo,x1,Dx2,D(x3,D(xl+,x5))) 5

0]
Ya-= (xo,x1,...,x5) e§( )
The Cartesian product topology is given to s, Collecting

all elements of the same form, we consider it as a subspace of
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,J and give the induced topology by Y'1. For example,
(x1,Dx2) belongs to a subspace S xDS with the induced topo-

logy from 82

by Y‘—1, ((Dx4,%,) belongs to a different sub-
space DS XS) . All different subspaces of ) should be con-
sidered as discrete. Then .f is a locally compact Hausdorff

space with a countable open base.
If we define a multiplication in J by

(2) a'b = (a,b) for g, __bEJs

2°2 =239 =2,
D2 = 2 ,
then . is multiplicative.
Given a strong Markov process (w,xt,Px, Xx€S) on S with

right continuous paths and let T (x,dy) Dbe the transition

semi-group of the process.
We assume in this section that

(3) T,D = DT

where D is a first order differential operator.

Remark. For example, when § 1is n-dimensional Eucledian
space and if Tt(x,dy) is given in terms of a ¢%®°- function

pt(x) which vanishes at o by

ITt(x,dy)f(y) = Ipt(x-y)f(y)dy )

where dy 1is the Lebesguc measure, then the assumption is

satisfied.

Step_1. For each subspace <f1C<Y, first we define a

Markov process on ,J1 as follows: If ya= (x1,....,xn),§e .31,
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taking n-fold direct product (Wn’§t’Px) of the given Markov

process (Xt’Px) on S, put
(W) Xt = 7“—1;( ’

Pa=Pya-

Then (wn,Xt,Pa) is a right continuous strong Markov process

on _31 and the transition semigroup Tt(g,dg) is given by
-1 -1
(5) Tt(r (X1,...,xn),d(Y (Yo],...,yn))

= Ty (xq,dy¢)x ... th(xn,dyn) ¥

where ¥ is the stripping operator from ., to st

Secondly, taking a Poisson process (W',pt,Pi) with rate
nc (c is a positive constant) which is independent of (Xt’Pa)’

put

,(),11 = Wik W' xJ, J=1{0,1}

Zg(&l,W',j) = (Xt(‘_/__*’)apt(w'))j) )

1

O —
P(g,k,j) = ng Pr .

Finally, collecting the processes thus defined on all subspaces,
we can get a big (but still "minimal") Markov process
(£),B3,2g,P)) on E= JxNXJ , vhich is strong Markov with
right continuous paths, where fL° = U f]g1 (union over all
subspaces .f; of .4 ).

assume ya = (x1,...,xn), 2€ 441. We define the first branching
time T in the same way as in the previous section; taking n-

random variables €q5eees@ independent of each other and Zg

n
with exponential distribution, put
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(6) C;k= sup { t; ct<e, },
= min .
1sksn.Ck

Step_3. For ae.d, ra-= (x1,...,xn), we define

gpqe {f as follows:

i) a2°

an is an element obtained by replacing X in a by 9

ii) __aﬁq (p4 0 or q#4 0) is obtained by replacing x  in

a by
Xy e Xp D(xm) D(xm) .
~—” S~
D q
Given constants cpq with
2 el
c =1,
p,a=0 P4

kernels f"‘:n are defined by

x

+ . .

(7))Lm((§,k,3),d(;b,k"J')): zj_‘,'cpqlg(glﬁq’d'—?).sk,k'. §.+ )
p,Qq=0 J 5d
pq2°

- . A+ -
and /um replacing cpqzo by cpq40 and J by ] on

the right hand side of (7), where 57 and j~ are defincd

by table 1 in § 2. Then a branching distribution is given by

@) pw,B) = L Tp_, 1(py(2,B) + pup(ze,B)
m m

Step Y. Applying Theorem of piecing out to the Markov
process (Z%,P,O) and the branching distribution/u, , We can
construct a "big" Markov process (Zt.,Bt,P.) cn E which is
strong Markov with right continuous paths. (Theorem 2.2 of [1],
cf. Chapter 3 of [4]). It is not difficult to see that by

construction the big Markov process satisfies the condition 1 and
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2 in § 1, and therefore the big Markov process is multiplicative

by Theorem 1.

For feC® (8), we define a function T on E inductive-
ly:
A
(9-1) f(o) =1
A n
f(x1,...,xn) = ﬂ f(xi) ;

when g = (x,,D(x4),...,D(xy)) €§(1)

9-2 @ = T fE)...0f @) ,
where

A n
(9 -3) DE(XqyeeeyXy) = 12;1 Dif(XqyeeerXy)

and Di is a first order differential operator applied to the
i-th variable X35

when g = (go,D(g1),...,D(§m)) eg(n)

A
9-% T =T()0f...08

£ £0 £ £m
where D is operated to 'f‘(gi) regarded as a function of
ra; s finally we define ’f\' by
(9-9% T(a)k,3) = (- 1) zlkf(g), A >0, a fixed constant.
T thus defined is multiplicative.

Let U,Er) and )" be defined for the big Markov process

(Zt,P,) as in § 1. Then we have

Lemma 3.1. For Fe XL([0,0)XE),

(o) {§ ¥((2,0,0),ds,d (b,k,3)) ( - 1)I2¥F(s,D)
0 E
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t
= T pq
= | cdsSTS(g,dQ)/_‘ i cpq Flssby™) -
0 m p,q=0
Proof. Because
Ex[geds, Xy edy] = cds Ts(x,dy)e'cs, and
Ex[xsedy, s<z ] = Ts(x,dy)e_cs 5
if ya-= (x1,...,xn), denoting Yb = (y1,...,yn), the left
hand side of (10) takes the following form

4 t ¢ n .
mZ=£1 jOJEXm[Z;meds, xzmedym] 1%71 Exl[xsedyl, s<]
1m

. -nct (2nct n &,
£ emet Lt § e Pis,BR)

=0 ’ pP,Q=0

t
n
= D
= Zm"g cds‘( T o (xp,dy7) 2. cqu(s,‘gmq)

1=1 Psq
t
- Pq .
= ‘( cdsJTs(g,dg) v g F(s,bp") 5
0 m p,q

which completes the proof.

Lemma 3.2. For fec®(s) ,

(11) Uér)?(Dg) = DU,EP)?'(Q) for a 472, r=0,1,2,...,
where Uér)f('g) stands for Uér)f(gso,o) .

©

Proof. When r=0, by definition of £ and U
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U(O)f(D_a_.) SU(O)((DQ,O 0),d(Db,k,0)) ¥ (Db,k,0)

ol ((2,0,00,a(0,%,00)0F (g, ,0)

- (9% ,

where we applied commutativity DU£0)= UéO)D in the last step.

Assume (11) holds for 0,1,2,...,r, then by the strong
Markov property of (Zi,P,) and lemma 3.1,

u{T* ¥ (pg)

t

= j ) V((Dg,o,o),ds,d(D__t_),k,j))Uél_";?(D__t;,k,j)
0
: (r)

_ r pq

- _g cds (T, (Da,d(Dp)) Zm; pZ:q ¢y UST) F0pRY,0,0)
t

= j cdsJTs(g,dg) ; qu Chq Uél‘; Df(}gﬁq,o,o) .
0 ) :

(r)

But here, firstly, D commutes with U by induction hypo-

thesis: secondly because

}‘bpq (Y1re00r¥ _1,y ,...,ym,ym+1,...,y) if ¥D= (¥qseeenyy)s

+q

we can write as

(r) - (r) D
pu,”) F(@Pd,0,0) 2 D; UZ r(ph%,0,0)

where D; operates to y;, and then D = Z, D; commutes

with Ty (a,db).

Finally we have
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t

D feds (T (a,ap) J ) vl s (PY,0,0)
0 N m p,q

Uér+1)?(Dg)

o %)

completing the proof.

Summing up (11) over r=0,1,2,...,

0
Lemma_3.3. When U, F(pa) = ). Uér)?(Dg) converges ,
r=0

Theorem 3. When Ut ?(g) has definite value, it has the

branching property:

~ o
(13) U f(a,k,j) = (Utf)ls(g,k,j) .

Broof. Because Ut? is multiplicative and satisfies (12),

we can decompose it into multiplication and differentiation suc-

cessively until we get the right hand side.

For example, when a = (x4,...3%X ,Dyq5.+3Dy, ),
ESEEREEE S STRTERES €S ,
(14) U,f(a,0,0) = iTT1 Ut (x;,0,0) Tl1 DU F(y4,0,0) ,
1= J=
which will be of use in the following

Corollary. Choose A =2 in (9-4). If U.f(x,0,0) has

definite value, then
(15) u(t,x) = U,f(x,0,0)

is a solution of
t

(16) u(t,x) = th(x) + j cdsins(x,dy) Z}cpq(u(t—s,y»p(Du(t—s,y»ﬁ.
0 S} Pyq



196

Proof. By the strong Markov property applied to the first

branching time @ , we have

t
u(t,x) = T,£(x) + é) cds é Ts(x,dy)Zcqut_Sf(y,\.:/,y,DyuDy)
P q

Because of (14),

Uy gT v os¥,D¥5 - 0sDy) = (ut-s,y)P (Dult-s,y)? ,

and hence u(t,x) = Ut'f"(x,0,0) is a solution of (16) .
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