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BRANCHING PROPERTY OF MARKOV PROCESSES

Masao Nagasawa

Introduction

In a probabilistic treatment of semi-linear parabolic

equations key steps were to construct a certain class of Markov

processes on a "big" state space and to prove the branching

property of semi-groups of the processes (cf. Ikeda-Nagasawa-

Watanabe [1]). In this paper branching property will be

characterized in terms of multiplicativity (or decomposability)

of semigroup of a Markov process on a multiplicative state space

(cf. § 1 for definitions). This characterization will then be

applied to branching Markov processes with age and sign in § 2,

and to a branching Markov process treated recently by Sirao

[7] in § 3.

1. Multiplicativitv of Markov processes

Definition-1_1. A measure space J is called multiplicative

if a multiplication with a unit is defined in it~ i.e. if

(1) for a, a multiplication is defined and

measurable~

(2) there exists a unit "3 E ,,~ such that

~ . a = a . ~ a for every a ~ 8.

Given a multiplicative space ,~ , y taking N = f 0,1,2,...~
and J ={ 0,1~, the state space E of Markov processes treated
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in this section is one X J, and 8 x N x J .

Theorems will be stated for E but all arguments

are valid for other cases. Only we need to do is to get rid of

unnecessary variables.

We denoted the space of measurable functions on E by

~,(E) (and ,~,(~$ ) etc.) and ~,+ denotes the space of non-

negative elements of Xr.

Definition-12. Fe L(E) is said to be multiplicative if

(3) = 1 ,

(4) 

where F(a) = and

(5) ( -1)~~t-k

for a fixed positive constant x . *)

Let (Xt,Bt,P, ) be a strong Markov process ~~) on the

state space E k E N, j E J ~ are traps and

let 2 be a fixed quasi-hitting time ***) satisfying

(6) P, ~ ~ - t] = 0 for all 

Introducing a sequence of Markov times

(7) ~o _ 0

1"1 =1

~n = ~n-1 + y 2y35...,

we define kernels; for a measurable subset B of E,

*) We will take À = 2 in, applications .
**) Xt is supposed to be measurable.

***) A Bt Markov time 03C4 is said to be quasi-hitting time
if implies T = t+ T*~? where 9t is the
shift operator.



179

(8) U~(.,B) = > ~~~~~r+1~ r=0,1,2,... ;

for a measurable subset in 

(9) ~(’,/~xB) 

Let n. and p be finite measure on E. We assume in

addition the support of ~ is ~fx N Then a product

measure /~~ on E is defined by

(10) ~(d(~,k~j))f~(d(~k~0))~
~E "E -E

’F(~~ ’~?k~ +k~,j) , >

for F E ~.(E) . ~~/~. can be defined in the same way inter-

changing the order in (10).

When  is a finite measure on X E, and 03BD

depends on t and measurable in t, then a product measure

~%~(/~XB) is defined by

(11) ~ 
[0,~) E

= * 

[0,co)xE 
>(d S , d (c1, k1, j ) ) 03BDS (d (c2, k2O)) F S ; c1 . c2,k1 +k2,j )

for F e ~([o,co)~E)~ .

In this section we assume that the Markov process 

on E satisfies the following two conditions:

The support of U~((~0,0),B) is >

and for Fe ~(E) of the form = where

= F(~0,0),
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(12) ~ U~~((~~,kJ),d(~))F(-)
E

= i

E

*) For of the form

F(s,a,k,j) = where F(s,) = 

t

0 E

= 

~ 0 E

and 03C8((~,k,j),.) has no mass on 

Remark. As a special case of (13)?

t t

0 E 0 E

All equalities in the paper should be so understood, unless

otherwise stated 3 that if the left hand side has definite value

then so does the right hand side and both sides coincide.

Let F 6 ~C.(E) be multiplicative, , then

= r=0,1,2,.~
~ ~ 

i=o

where stands for °

*) The condition 1 and 2 are rephrasing of Property B.III. of

[1], P. 262.
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Proof. When r=0~ (14) is implied by (12). Assume that

(14) holds for 0~1)2~...~) then by the strong Markov property

and the induction hypothesis

t

U~~F(~~,k,j)= ~JY~-b ~ 

0 E 

= g(k.j) ~J~~,0,0),ds,d(c~k~j~)ju~~(~,0,0),d(~,k~,0))~ 0 E E

’ Z 
i=o

t

+ ~f~((~,0,0),ds,d(~,k~,j’)){u~~((n.0,0),d~~k~0))
0 E 

~ 

E

- Z; g~i~)U~~F(~~g(k~,j’)U~;~F(c~){ .i=o ~~ ~ ~~ ~ 

J

On the other hand, because

t

U~U~F(.) = ~ ~ ~ ~ 
s E 

by the strong Markov property and because it is continuous in s

by the assumption (6)~ we have

= .(k.J) E [~(-U~U~)F(~)U~~~~ (b)
o 

S ~S " S ~S "

+ U~)u~F(H)d(-U~)u~-~F(b))~ ] ,
where d applies to s, but since d(-U~U~F) ~ 0 because
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= does not depend on s, it takes the follow-

ing form

g(k,j) 
~"~ 

0 
s t-s - s t-s ’ 

-

= g(kj) &#x26; 
i=o ’ 

" " 

which completes the proof.

Let F e ~(E) be multiplicative. If

(15) = ij U~’F(.)~ r=o
has definite value, then it is multiplicative, i.e.

(16) = 

where = 

Proof is straightforward by summing up both sides in (14)

over r=0~2)...;

UtF(a.b,k,j) = g(k,j)  U(j)tF(a)U(r-i)tF(b)

= g(k,j)UtF(a)UtF(b).

§ 2. Branching Markov processes withaxe and sign *)

Given a metric space S, let

9 = ’~ 
n=o

where

*) Lemma 5.1 in Nagasawa [2] is valid only when qo = 0.
We can correct the lemma modifying the definition of branch-
ing law, but simpler construction is given in this section
and Theorem 1 in § 1 will be applied to show the branching
property.
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~~ ~ , 3 an extra point, and

Sn = S x ... x S, n-fold Cartesian product of S. *)

If we define a multiplication of x = (x1,...,xn) and y =

(y~ , ... , ym) by

X * y = 

and

= (X.~ ~ ... , Xn) ,

then d turns out to be multiplicative.

Given a strong Markov process (W,Bt’Xt,Px, XES) with

right continuous paths on the state space S, the canonical

realization of n-fold direct product of it is defined on the

fundamental space 

W x ... x W, n-fold product of W .

When w = (w~,... ,w ) e we put

xt (w ) - (x~(w~)~...,x~(w~))~ 9 and

P(x1,...,xn) = Px1 x Px2 x ... xPxn .

Then (Wn,Nt,xt,Px, x~Sn) **) is a strong Markov process with

right continuous paths. (cf. Theorem 3.1 of (1 ~ . )

Let At be a right continuous non-negative additive func-

tional of xt, then

At (w) - At(w1) +...+ At (wn)

*) In [1] and [2], symmetric product was employed instead
of Cartesian product. However arguments becomes simpler if
we take usual Cartesian product as pointed out by Sawyer M.

**) Nt = .
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is that of xt(~). Taking up a Poisson process (W’,Pt,Pk)
with rate 1 which is independent of xt, define

~~n = W x W’ ,

P (x~k) ~ ~ X Pk ~
and for (w, w’ ) E I1n

Z.°t (Wsw’ ) - (xt (w) , pA w (w’ ) ) , if At (~) ~ o0

= 4 (an extra point), if =00.

Then (,~,n,Z.°~,Pox ~~) is a strong Markov process on 

(cf. [2] , where a different construction is given and it is

called a Markov process with age since pA t can be understood

as "age" of particles.)

A strong Markov process with right continuous paths on

E is defined on

oo

03A9={03C9~k;}~(~1 03A9n J) ~{03C9a}
~ n=1

by

i) l ( a ,k, j ) ~ k E N, j are traps,

ii) ’’

iii) for w = (w, w’ , j ) E ,~I.

Zt ( ~’ ) - (Xt (W) ~ PA (w (w’ ) ~ J )

(1) ~’ak. } - (~ sk9 ~ )

Zt( wo) _ 6.

The next step is to define a branching distribution. Given

a sequence of measurable functions {qn(x)} on S with
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00

(2) ~ ) ( I = 1, XES,
n=o 

where t~n~~~~n~ ~"~n~~ and ~n" ~-~n~~ > and

given a system of kernels on S)( Sn, which is a

probability measure in dy and measurable in x, we define

+i and -i for by, when x~Sn (n~1) ,

(3) 

= qo(xi)F(x1,...,xi-1,xi+1,...,xn,k,j±)

~ 

+ 

n~=1 "m +

~i+1 ~’’’ ~ ~n ~ ~ J ~ ) ,

where the first term is q~(x)F(3 ~j") when n=1, and j
and j" are functions of j defined by the table 1.

Table 1 .

Furthermore we F(2 ,k,j) .

Let e1,...,en be n-random variables *) independent of

each other and Z.°~ with exponential distribution 

and set

(4) sup ~ t ~ 

~) We can always assume the existence of such random variables
enlarging W and Bt if necessary.
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and

(5) ~(w)= min 
~ " "

~~ is the life time of k-th particle killed by a multiplica-

functional e *~t .
Then a branching distribution is defined by

(6) = ~I~=~](/~C~B) +~(Z~B)) . .

Because / is an instantaneous distribution (cf. defi-

nition 2.1 of D~)) we can construct a big Markov process on

E by piecing path Z~ together by the distribution .

Then the big process is strong Markov with

right continuous paths *) (Theorem 2.2 of D~ and cf. Chap-

ter 3 of M) .

From construction it is easily seen that the big process

on E satisfies condition 1 and 2 in § 1.

If we define for fE 

(7) = 

where

~ n

(8) = Ff t(xj), if x = (x1,...,xn)
j=1 

= 1 , if x = ~

= 0, if ~ = ~ )

then ?~~ is multiplicative, and therefore applying The-

orem 1, we have

*) B~ is not equal to N. ~ in general. ~ is

B~ Markov time but not necessarily N.. Markov time.
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Theorem 2. The big Markov process (Zt’P.) on E has the

branchin property

(9) Utf = (Utf) |S . *)

Corollary. If Utf(x,0,0) has definite value, u(t,x) =

Utf(x,0,0) is a solution of

(10) u(t,x) = Ttf(x) + t~K(x,ds,dy)  qn(y) xn(y,dz)ut-s(z) ,

0 Sn

where .

Ttf(x) = s

K(x,ds,dy) = .

Remark. As for applications cf. Sirao [6], Nagasawa-

Sirao [3], 9 and Nagasawa [2].

§ ~. . Branching Markov processes with differential space **)

Let S be a locally compact Hausdorff space with a count-

able open base with C°°- structure. A big state space ,,~ is

defined constructively as follows: t

S (0) = 0 s~ ,~ 

n=o

(we use the notation S(0)9 which was denoted as $ in § 2).

Introducing an operation D, the role of which will be speci-

fied later on, S(1) is defined to be the collection of all

el ement s of the form

*) For a function F on E, FL is a function on S de-

f ined by F ’s(x) - F(x,0y0) 9 x E S .

**) The construction and the proof of branching property given
in this section are simpler but essentially the same as
Sirao’s [7] . In r7~ ~ multiplication is assumed to be
commutative.
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" ’ ~~m~ ~ m=1,2,...,

where xi ~ S(0), at least one of xi (i>0) is not equal to

~, and of all elements obtained by possible permutation of

components. When 2 and DO) appear in the components,

they must be erased off, for example,

(~,D(~),D~,D(~)) 2014~ (D(~),D(~)) : t

After §~~§~B...,g~~ are defined, is the collec-

tion of all elements of the form

),...,D(~)) , m=1,2,...,

where ~~~U§~~-.US~~~j6g~~(j~1), and of

all elements obtained by possible permutation of components:

Then finally we put

(n).(D = ~ S(n).

n=o

Elements of j~ can be expressed by diagrams, for example,

The stripping operator ’~‘ is a mapping

from d to which maps to an element in 

obtained by stripping off all D operation in a .

For example, when a = >

a = (x ,x ,...,x ) E S(~) . .
The Cartesian product topology is given to Sn. Collecting

all elements of the same form, we consider it as a subspace of
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J and give the induced topology by ’f -1. For example,

(x1,DX2) belongs to a subspace S x DS with the induced topo-

logy from S2 by ~’ 1, ((Dx1,x2) belongs to a different sub-

space DS X S). All different subspaces of J should be con-

sidered as discrete. Then 4 is a locally compact Hausdorff

space with a countable open base.

If we define a multiplication in 4 by

(2) yb = for a, b 

~-~ = g-3 = § ) ,

D’ 3 = 3 ,

then  is multiplicative.

Given a strong Markov process (W,Xt’Px’ x ~ S) on S with

right continuous paths and let Tt(x,dy) be the transition

semi-group of the process.

We assume in this section that

(3) TtD = DTt

where D is a first order differential operator.

Remark. For example, 3 when S is n-dimensional Eucledian

space and if Tt(x,dy) is given in terms of a C°°- function

Pt (x) which vanishes at oo by

where dy is the Lebesgue measure, then the assumption is

satisfied.

Step-1. For each subspace 9 first we define a

Markov process on 81 as follows o If = (x1 y ... , xn) , aE 
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taking n-fold direct product (Wn,t,p) of the given Markov

process on S, put

~ Xt = r’~t ’
~= °

Then is a right continuous strong Markov process

on ~~ and the transition semigroup is given by

(5) Tt ( r~(x~...,x~d( )r~(y~...,y~))
= 

... >

where y is the stripping operator from to Sn o

Secondly, taking a Poisson process with rate

nc (c is a positive constant) which is independent of 

put

Z~(~,w’,j) = (X~(~),p~(w~)J) , ,
°

Finally, collecting the processes thus defined on all subspaces,

we can get a big (but still "minimal") Markov process

on E = 8 x N x J, which is strong Markov with

right continuous paths, where /T~~ = U 
I 

(union over all

subspaces ~f~ 
Now, consider Zot on a subspace 81 ~  and

assume j~~ = (x~...,x~), ~6~~. We define the first branching

time t in the same way as in the previous section; taking n-

random variables e~....,e independent of each other and Z~
with exponential distribution, put
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(6) 9

~ = °

For §6~~ 9 (x~...~x.)~ 9 we define

as follows t

i) a°° is an element obtained by replacing xm in a by "0 y

ii) amq (p ~ 0 or q ~ 0) is obtained by replacing x. in

a by

xm ... xm D(xm) ... D(xm).

Given constants c with

|cpq | = 1 ,

kernels +m are defined by

(7) +m((a,k,j),d(b,k’,j’))=|cpq|03B4(apqm,db).03B4k,k’.03B4j+,j’,

and -m replacing by Cpq .. 0 and j+ by j- on

the right hand side of (7), where j+ and j are defined

by table 1 in § 2. Then a branching distribution is given by

(8) (03C9,B) = 03A3I[03C4=03B6m]( +m(Zo03C4,B) + -m(Zo03C4,B) .

Applying Theorem of piecing out to the Markov

process (Z,P) and the branching distribution ~ ~ we can

construct a "big" Markov process on E which is

strong Markov with right continuous paths. (Theorem 2.2 of [1]~
cf. Chapter 3 of ~4~ ) . It is not difficult to see that by

construction the big Markov process satisfies the condition 1 and
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2 in § 1, and therefore the bi~ Markov process is multiplicative

by Theorem 1.

For f E C°° (S) , we define a function f on E inductive-

iy.

(9-1) f(c~) - 1

A n

f (x1, ... , xn) - ~ f (xi ) ;i=1

when a = (xo, D (x1), ..., D (xm)) ~ S
(1)

(9 - 2 ) f (a) = f(xo)Df (x1) ...Df (xm),
where

" n

C9 - 3 ) Df (x19 ... , xn) - ~ Dlf {x19 ... , xn)i=1

and Di is a first order differential operator applied to the

i-th variable xil

when a = (ao,D(a1),...,D(am)) ~ S(n)

(9 - 4) f (a) = f (ao )Df (a1) ...Df (am)

where D is operated to f(a.) regarded as a function of
m

f inally we d e f ine f by

N 
. 

k~
(9 - 5) f (~,9k, j ) - ( -1 ) ~ ~’L ~ 0, a fixed constant.

N

f thus defined is multiplicative.

Let and 03C8 be defined for the big Markov process

(Zt, P. ) as in § 1. Then we have

Lemma=3.1. For F E ~,,( ~0, oo) X E) 9

(10) 03C8((a,0,0),ds,d(b,k,j)) (-1)j2kF(s,b)
OE
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Proof. Because

x ~ dy] 
= cds and

s~] = 

if ~~= (x~...~x~)~ denoting ~= (y~-’~y~~ the left

hand side of (10) takes the following form

Exm[m ~ ds, x03B6m ~ dym]  EX1[ES ~ dy1 , s  03B61]

. e-nct (2nct)n n’ cpqF(s,bpqm)Ao ~~ P~ ’ "~’

= E~ ~ ~(s.b~)
t

= cds  Ts(a,db) F(s,bpqm) ,

~0 ~ P~ 

which completes the proof.

Lemma 3 02 . For t 6 C~ (S) ,

(11) U~~(D~) = fo~ ~~-3 , r=0,1,2,...,

where U(r)tf(a) stands for U(r)tf(a,0,0) .

When r=0) by definition of f and we

have
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U(O)tf(Da) = U(0)t ((Da,0, 0) ,d (Db,k, 0))f(Db,k,0)

= U(O)t((a,0,0),d(b,k,0))Df(b,k,0)

= DU(O)tf(a),

where ve applied commutativity in the last step.

Assume (11 ) holds for 0,1 ,2, ...,r, then by t£e strong
Markov property of (Z~,P. ) and lemma 3.1,

~(r+I 

= 03C8((Da,0,0),ds,d(Db,k,j))U(r)t-sf(Db,k,j)
0 

t

= j cds  T (Da,d (Db)) £ [ 
~ 

~ ~ ~ 

m p,q 
P’~ ~~ 

t

= j cds  Ts(a,db) £ £ c 
o 

S * * 

m p ’ q 
Pq -S *m 

’

But here, firstly, D commutes with by induction hypo-

thesis: secondly because

03B3bpqm=(y1,...,ym-1,ym,...,ym,ym+1,...,yn) if 03B3b = (y1,...,yn),

ve can write as

= f D. 

where D. operates to y.> and then D = L D. commutes
~ ~ ~ 

i=1 
wi th T~ o

Finally ve have
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t .

0 
" 

~ P~q

= 

completing the proof.

Summing up (11) over r = 0,1,2,...,

Lemma 3.3. When Ut f(Da) = U(r)t(Da) converges,
r=o

(12) = for a =~ ~ .

Theorem 3. When Ut f(a) has definite value, it has the

branching property:

(13) Utf(a,k,j) = (Utf)|S

(a,k,j).
Eroof. Because is multiplicative and satisfies (12),

we can decompose it into multiplication and differentiation suc-

cessively until we get the right hand side.

For example~ when a = (x~...,x 
x1, ...,xn,y1, ...,ym ~ S,

(14) Utf(a,0,0) = Utf(xi,0,0)  DUtf(yj,0,0),
which will be of use in the following

Corollary. Choose 03BB = 2 in (9-4). If has

definite value, then

(1~) = 

is a solution of

t

(16) u(t,x) = °

0 S P~
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pr_oof_. By the strong Markov property applied to the first

branching time , we have

t

u(t,x) - Ttf(x) + cds TS (x,dy) 03A3cpq Ut-sf(y,...,y,Dy,...,Dy) .

Because of (14),

U - ,ts

and hence u(t,x) - Utf (x,0,0) is a solution of (16) . 0
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