## SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

# BERNARD MAISONNEUVE PHILIPPE MORANDO

## Temps locaux pour les ensembles régénératifs

*Séminaire de probabilités (Strasbourg)*, tome 4 (1970), p. 151-161 <a href="http://www.numdam.org/item?id=SPS\_1970\_4\_151\_0">http://www.numdam.org/item?id=SPS\_1970\_4\_151\_0</a>

© Springer-Verlag, Berlin Heidelberg New York, 1970, tous droits réservés.

L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.



Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

### INSTITUT DE RECHERCHE MATHÉMATIQUE AVANCÉE

Laboratoire Associé au C.N.R.S.

Rue René Descartes

STRASBOURG

1969-70

- Séminaire de Probabilités -

## TEMPS LOCAUX POUR LES ENSEMBLES RÉGÉNÉRATIFS.

par

#### B. MAISONNEUVE et Ph. MORANDO

Cet exposé constitue une rédaction détaillée de la note [2] et fait suite à l'exposé de P.A. MEYER intitulé : Ensembles régénératifs, d'après Hoffmann-Jørgensen. Après avoir repris brièvement les résultats de cet exposé, nous établissons l'existence d'un "temps local" pour un ensemble régénératif parfait d'intérieur vide. Il en résulte alors que l'ensemble régénératif coîncide (à peu près) avec l'image d'un subordinateur tué à un temps exponentiel.

#### I. NOTATIONS - RAPPELS.

Nous dirons d'une fonction continue à droite  $\omega$  de  $\overline{R}_+$  dans  $\overline{R}_+$  est une fonction en dents de scie, si l'ensemble  $M(\omega)=\{t:\omega(t)=0\}$  est un fermé de  $R_+$ , si de plus la fonction  $\omega$  est linéaire de pente 1 dans tout intervalle contigu à  $M(\omega)$  et si  $\omega(+\infty)=+\infty$ . La fonction constante égale à  $+\infty$  sera également appelée fonction en dents de scie et notée  $\omega_\infty$ .

Désignons par  $\Omega$  l'ensemble de toutes les fonctions en dents de scie. Posons  $A_t(w)=w(t)$  pour tout t de  $\overline{R}_+$  et tout w de  $\Omega$ . Soit  $\overline{s}_t^0$  la tribu engendrée sur  $\Omega$  par les fonctions  $A_s$ ,  $s \le t$  (nous noterons

 ${\bf 3}^{\rm O}$  la tribu  ${\bf 3}_{\infty}^{\rm O}$ ). L'ensemble  $\Omega$  est encore muni d'opérateurs de translation  ${\bf 0}_{\rm t}$  de la manière habituelle :  ${\bf A}_{\rm S}({\bf 0}_{\rm t}|{\bf w})={\bf A}_{\rm S+t}({\bf w})$  pour tous s et t de  $\overline{\bf R}_{\bf t}$  et tout  ${\bf w}$  de  $\Omega$ .

Notons que si  $0 \in M(w)$  nous avons la relation :

$$A_t(\omega) = t - \sup \{s : s \le t, s \in M(\omega)\}$$
.

Remarquons que l'on peut associer de manière unique à tout fermé  $F \ de \ R_+ \ contenant \ 0 \ une fonction en dents de scie f telle que <math display="block">F = \{f = 0\} \ . \ Nous \ définirons \ donc \ un \ \underline{ferm\'e al\'eatoire \ canonique} \ \ (contenant \ 0)$  par la donnée d'une loi P sur  $(\Omega \ , \ \mathcal{F}^O)$  telle que  $A_O = 0$  p.s. . Nous dirons que le ferm\'e al\'eatoire est  $\underline{r\'eg\'en\'eratif}$  si, pour tout temps d'arrêt T de la famille  $\mathfrak{F}^O_{t+}$  tel que  $T(w) \in M(w)$  p.s. sur l'ensemble  $\{T < \infty\}$ , tout  $A \in \mathfrak{F}^O_{T+}$  contenu dans  $\{T < \infty\}$  et tout  $B \in \mathfrak{F}^O$  on a :

$$P(A \cap \theta_T^{-1} B) = P(A) P(B)$$
.

Nous nous limiterons ici aux seuls ensembles régénératifs donnant lieu à une notion de temps local intéressante : ceux pour lesquels M(w) est p.s. un ensemble parfait d'intérieur vide. Voici alors un sommaire des résultats obtenus par Hoffmann-Jørgensen :

- a) Posons pour tout  $x \in \overline{\mathbb{R}}_+$   $T_x = \inf\{t > 0 : A_t = x\}$ .  $T_x$  est un temps d'arrêt de la famille  $(\mathfrak{F}_{t+})$   $(\mathfrak{F}_t$  est la tribu engendrée par  $\mathfrak{F}_t^0$  et les ensembles P-négligeables de  $\mathfrak{F}^0$ ). Il existe  $c \in ]0$ ,  $\infty]$  tel que x < c entraîne  $T_x < \infty$  p.s. et  $x \ge c$  entraîne  $T_x = \infty$  p.s. .
  - b) Pour tout borélien B de  $\overline{\mathbb{R}}_+$ , posons

$$P_t(x,B) = P\{A_{T_x+t} \in B\}$$
 si  $x \in [0,c[$   
=  $I_B(x + t)$  si  $x \notin [0,c[$ 

Alors  $(P_t)$  est un semi-groupe de Markov fellérien pour la topologie droite de  $\overline{R}_+$  . En particulier le semi-groupe  $(P_t)$  transforme les fonctions boréliennes en fonctions boréliennes et possède des versions fortement markoviennes à trajectoires continues à droite.

c) Le processus  $(A_t)$  est pour la loi P un processus de Markov en dents de scie, issu de O et admettant  $(P_t)$  comme semi-groupe de transition. Il satisfait de plus la propriété de Markov forte par rapport à la famille  $(\mathfrak{F}_{t+})$ .

#### II. CONSTRUCTION DU TEMPS LOCAL.

Nous allons commencer par construire une <u>réalisation de semi-groupe</u>  $(P_+) \text{ : posons pour tout } F \in \mathfrak{F}^{\mathsf{O}} \text{ :}$ 

$$P^{X}(F) = P\{\theta_{T_{X}}^{-1}(F)\}$$
 si  $0 < x < c$   
 $= I_{F}(\omega_{x})$  si  $x \ge c$ 

où  $w_x$  désigne la fonction  $t \rightarrow x + t$ .

Soit f une fonction borélienne bornée de  $\overline{R}_+$ . La relation  $E^X(f\circ A_{s+t}\mid \mathfrak{F}_s^0)=P_t(A_s,f)$   $P^X$  p.s. résulte, pour x< c, de ce que  $(A_{T_x+t})$  est un processus de Markov adapté à la famille de tribus  $(\mathfrak{F}_{T_x+t})$ , et pour  $x\geq c$ , de ce que les deux membres sont égaux  $P^X$  p.s. à f(x+s+t). Par suite,  $(A_t)$  est pour toute loi  $P^X$  un processus de Markov admettant  $(P_t)$  comme semi-groupe de transition et issu du point x. Comme de plus  $P^*(F)$  est une fonction borélienne pour tout F de  $\mathfrak{F}^0$ , le système  $(\Omega,\mathfrak{F}^0,\mathfrak{F}_t^0,A_t,P^X)$  constitue une réalisation continue à droite du semi-groupe  $(P_+)$ .

Les notations suivantes seront fondamentales pour la suite : posons sur  $\Omega$  et pour tout  $x\in\overline{\mathbb{R}}$ 

$$S = \inf(t > 0 : A_t = 0)$$

$$R_x = \inf(t > 0 : A_{T_x + t} = 0) = S \circ \theta_{T_x}$$
(on a  $R_x = +\infty$  sur  $\{T_x = \infty\}$ ).

On a alors  $E(e^{-R}x) = E^{X}(e^{-S})$  et nous noterons  $\phi(x)$  cette fonction sur  $\overline{R}_{+}$  .

Remarquons que 
$$\phi(0) = 1$$
 
$$0 < \phi(x) < 1 \qquad \text{si } 0 < x < c$$
 
$$\phi(x) = 0 \qquad \text{si } x \ge c$$

#### Proposition 1 .:

- a)  $\phi$  est une fonction continue à droite sur  $\overline{\mathbb{R}}_+$  .
- b)  $\phi$  est uniformément 1-excessive pour le semi-groupe (P<sub>+</sub>) .

#### Démonstration:

a) Il suffit de démontrer que l'application  $x \to R_x$  est P p.s. continue à droite. La continuité en tout point x > 0 résulte de celle de l'application  $x \to T_x$  et de la relation  $T_x + R_x = T_y + R_y$  vraie pour x > 0 et tout y > x assez voisin de x.

Passons au cas x=0: soit  $\varepsilon>0$  et  $\delta(\varepsilon)=\sup_{0\leq s\leq \varepsilon}A_s$ . La variable  $\delta(\varepsilon)$  est p.s. strictement positive, car  $M(\omega)$  est p.s. un ensemble parfait d'intérieur vide contenant 0. Or  $R_y<\varepsilon$  dès que  $y<\delta(\varepsilon)$ , d'où la continuité p.s. de  $R_x$  au point 0.

b) La démonstration de ce deuxième point est classique : la fonction  $\phi$  est 1-surmédiane à cause de l'inégalité  $t+S\circ\theta_t\geq S$  et de la propriété de Markov ; elle est 1-excessive car on a de plus  $\lim_{t\to 0} (t+S\circ\theta_t)=S$  . Enfin, elle est uniformément 1-excessive, car, étant donnés  $\varepsilon>0$ , et  $\delta>0$  choisi de façon que

$$P_t^1 \phi(0) \le \phi(0) \le P_t^1 \phi(0) + \varepsilon$$
 pour tout  $t \le \delta$ 

nous avons aussi pour tout  $t \le \delta$ :

$$P_{t}^{1} \phi \leq \phi = P_{S}^{1} \phi \leq P_{S}^{1} (P_{t}^{1} \phi + \epsilon) \leq P_{t}^{1} \phi + \epsilon$$

puisque la mesure  $P_S^1(x, dy)$  est concentrée en  $\{0\}$  .

<u>Proposition 2</u>:  $Z_t = e^{-t} \phi$  o  $A_t$  est une surmartingale par rapport aux tribus  $\mathcal{F}_+^0$  positive continue à droite et régulière.

Etablissons maintenant la régularité de la surmartingale  $(\mathbf{Z}_{\mathbf{t}})$ : soit  $\mathbf{T}_{\mathbf{n}}$  une suite croissante de temps d'arrêt, dont la limite  $\mathbf{T}$  est p.s. finie. Nous voulons montrer que  $\lim_{n\to\infty} \mathbf{E}(\mathbf{Z}_{\mathbf{T}}) = \mathbf{E}(\mathbf{Z}_{\mathbf{T}})$ .

Pour cela il suffit de montrer que

$$\lim_{n} E(\phi \circ A_{T_{n}}) = E(\phi \circ A_{T})$$

ou encore que

 $\lim_n E(U_p \ \phi \circ A_T^{}_n) = E(U_p \ \phi \circ A_T^{}) \quad \text{, pour tout } p>0 \quad \text{,}$  puisque,  $\phi$  étant uniformément 1-excessive, q  $U_{q+1}^{}$   $\phi$  converge uniformément

vers  $\phi$  lorsque  $q \rightarrow + \infty$ .

La fonction  $U_p \phi = \int_0^\infty e^{-pt} P_t \phi$  dt est continue à droite, car le semi-groupe  $(P_t)$  transforme les fonctions bornées continues à droite en fonctions bornées continues à droite. De la même façon que pour le processus  $(\phi \circ A_s)$  on montre donc que  $(U_p \phi \circ A_s)$  est un processus continu à droite.

On peut donc appliquer le théorème d'arrêt de Doob à la martingale  $e^{-ps}$   $U_p \phi \circ A_s + \int_0^s e^{-pu} \phi \circ A_u du$  et au temps d'arrêt  $T_n$ :  $e^{-p} {}^T_n U_p \phi \circ A_{T_n} = E \left[ \int_{T_n}^\infty e^{-pu} \phi \circ A_u du \mid \mathfrak{F}_{T_n} \right]$ 

d'où

$$E\left[U_{p} \phi \circ A_{T_{n}}\right] = E\left[\int_{T_{n}}^{\infty} e^{-p(u-T_{n})} \phi \circ A_{u} du\right]$$

Lorsque  $n\to\infty$  le second membre converge alors vers  $E\left[\int_T^\infty e^{-p\left(u-T\right)}\phi\ o\ A_u\ du\right]\ ,\ par\ application\ du\ théorème\ de\ Lebesgue,\ et\ ce\ dernier\ terme\ vaut\ \ E[U_D^{}\phi\ o\ A_T^{}]\ .$ 

Nous sommes maintenant en mesure d'établir l'existence du "temps local" de l'ensemble régénératif.

Théorème 1 : Il existe une fonctionnelle additive continue parfaite ( $L_t$ ) adaptée à ( $\mathfrak{F}_t^0$ ) , unique, telle que :

$$\phi(\mathbf{x}) = \mathbf{E}^{\mathbf{x}} \left[ \int_{0}^{\infty} e^{-\mathbf{s}} d\mathbf{L}_{\mathbf{s}} \right] .$$

#### Démonstration :

1) D'après le théorème de décomposition de Doob, le potentiel régulier et borné  $(Z_t)$  est, pour la loi P, engendré par un processus croissant continu  $(B_t^*)$  adapté à la famille  $(\mathfrak{F}_t)$ . La démonstration de T 37 de Meyer [3] ch. VII nous montre de plus que  $\sup_t \left| B_t^{(h)} - B_t^* \right|$  converge en probabilité vers 0 lorsque  $h \to 0$ , où l'on a posé pour h > 0

$$B_{t}^{(h)} = \int_{0}^{t} e^{-s} \frac{\phi - P_{h} \phi}{h} \circ A_{s} ds \qquad \bullet$$

Il existe alors une suite  $\binom{h}{n}$  tendant vers 0 telle que  $\binom{h}{n}$  lim sup  $\left|B_t\right|-B_t^*\right|=0$  en dehors d'un ensemble P-négligeable N .

Posons  $B_t = \lim_{n \to \infty} B_t$  sur l'ensemble de convergence de cette suite et  $B_t = 0$  ailleurs. La variable  $B_t$  est  $\mathfrak{F}_t^0$ -mesurable, puisque  $B_t$  l'est pour tout n.

- 2) Soit  $C = \{\omega : \limsup_{n \to \infty} |B_t^{(n)} B_t| = 0 \}$ . Montrons que  $P^{X}(C) = 1$  pour tout x :
- Si  $x \ge c$  ,  $A_s \ge x$  pour tout  $s \ P^x$  p.s. et comme  $\phi(y) = P_h \phi(y) = 0$  pour  $y \ge c$  on a  $B_t^{(h)} = 0 \ \forall \ h > 0$  ,  $t \ge 0 \ P^x$  p.s. donc  $B_t = 0$  partout et  $P^x(C) = 1$  .
- Si x < c: la relation  $B_{t+s}^{(n)} = B_t^{(n)} + e^{-t} B_s^{(n)} \circ \theta_t$  (1) vraie partout montre que  $\theta_t^{-1}(C) \supset C$  pour tout  $t < \infty$ , et comme  $\theta_{\infty} w = w_{\infty}$  cette inclusion vaut pour tout  $t \in \overline{\mathbb{R}}_+$ . On a donc aussi  $\theta_{T}^{-1}(C) \supset C$ , et par suite  $P^X(C) \ge P(C) = 1$ . D'où  $P^X(C) = 1$ .
- 3) Sur l'ensemble C le processus  $(B_t)$ , limite uniforme de la suite h de processus croissants continus  $(B_t^{\ n})$ , a toutes ses trajectoires croissantes et continues. D'autre part sur l'ensemble C, la relation (1) donne par passage à la limite en n:

$$B_{t+s} = B_t + e^{-t} B_s \circ \theta_t \quad \forall s \in \overline{R}_+ , \forall t \in R_+$$

et cette relation est encore vraie pour  $t = + \infty$ 

Les points 2) et 3) montrent donc que  $(B_{\mathsf{t}})$  est une fonctionnelle 1-additive continue parfaite.

4) Soit  $L_t = \int_0^t e^S dB_S$ .  $(L_t)$  est évidemment une fonctionnelle additive continue parfaite. La relation de décomposition  $e^{-t} \phi$  o  $A_t = E \left[ B_\infty - B_t \mid \mathcal{F}_t^0 \right]$  s'écrit alors  $e^{-t} \phi$  o  $A_t = E \left[ \int_t^\infty e^{-S} dL_S \mid \mathcal{F}_t^0 \right]$ . En arrêtant au temps d'arrêt  $T_X$  la martingale continue à droite  $e^{-t} \phi$  o  $A_t + \int_0^t e^{-S} dL_S$ , il vient :

$$e^{-T_X} \phi \circ A_{T_X} = E \left[ \int_{T_X}^{\infty} e^{-S} dL_S \mid \mathcal{F}_{T_X} \right]$$

d'où pour x < c

$$\phi(\mathbf{x}) = \mathbf{E} \left[ \int_{0}^{\infty} e^{-\mathbf{s}} dL_{\mathbf{T}_{\mathbf{X}} + \mathbf{s}} \right]$$
soit 
$$\phi(\mathbf{x}) = \mathbf{E}^{\mathbf{X}} \left[ \int_{0}^{\infty} e^{-\mathbf{s}} dL_{\mathbf{s}} \right]$$

et cette relation reste vraie pour  $x \ge c$   $(B_t = L_t = 0 P^x p_*s_*)_*$ 

5) <u>Unicité</u>: Soit (L<sub>t</sub>) une fonctionnelle additive continue parfaite adaptée à  $\mathfrak{F}_t^o$  telle que  $\phi(x) = E^x \left[ \int_0^\infty e^{-S} dL_s^t \right]$ ,  $\forall x$ .

Si  $x \ge c$  , cette relation impose  $L_s^* = 0$   $P^X$  p.s., donc  $L_s^* = L_s$   $\forall$  s  $P^X$  p.s. .

Le processus  $(A_+)$  étant markovien pour la loi P , on a :

$$\phi \circ A_{t} = E \left[ \left( \int_{0}^{\infty} e^{-s} dL_{s}^{i} \right) \circ \theta_{t} \mid \mathfrak{F}_{t}^{o} \right]$$

$$e^{-t} \phi \circ A_{t} = E \left[ \int_{t}^{\infty} e^{-s} dL_{s}^{i} \mid \mathfrak{F}_{t}^{o} \right] .$$

Il résulte alors de l'unicité de la décomposition de Doob du potentiel  $(Z_{t})$  à l'aide d'un processus croissant continu que  $(L_{t})$  et  $(L_{t}^{!})$  sont P-indistinguables. Par suite de la propriété d'additivité parfaite de  $(L_{t})$  et  $(L_{t}^{!})$  on a  $L_{t}^{!}$  o  $\theta_{T_{X}} = L_{t}$  o  $\theta_{T_{X}}$   $\forall$  t P p.s., donc ces deux processus sont  $P^{X}$ -indistinguables pour tout x < c.

## III. PROPRIÉTÉS DU TEMPS LOCAL.

La fonctionnelle  $(L_t)$  sera appelée temps local de l'ensemble régénératif par analogie avec le temps local d'un processus de Markov tel qu'il est défini par exemple dans Blumenthal et Getoor [1]. Les propriétés classiques du temps local peuvent être transposées à la fonctionnelle  $(L_t)$  et nous renvoyons à ce livre pour leurs démonstrations :

- 1) Pour presque tout w , la fonction  $L_{\bullet}(w)$  est constante sur tout intervalle contigu à M(w) et croît strictement en tout point de M(w) .
- 2) Si l'on pose  $S_t = \inf(s:L_s > t)$  (+  $\infty$  si cet ensemble est vide), le processus  $(S_t)$  est équivalent à un subordinateur tué à un temps exponentiel (rappelons qu'un subordinateur est un processus continu à droite, à accroissements indépendants, positifs et stationnaires).

Cette dernière propriété peut-être établie rapidement à l'aide de la propriété de régénération ; on a en effet la relation  $S_{s+t} = S_s + S_t \circ \theta_{S_s}$  sur  $\{S_s < \infty\}$  et  $S_s$  est un temps d'arrêt de la famille  $(\mathfrak{F}_{t+})$  dont le graphe passe dans M, donc pour tous boréliens A et B de  $R_s$ :

$$P(S_s \in A, S_{s+t} - S_s \in B) = P(S_s \in A) P(S_t \in B)$$
.

Cette relation écrite pour  $A=B=\mathbb{R}_+$  montre que  $P(S_S<\omega)=e^{-\lambda S}$   $(0\leq \lambda<\omega)$  .

Les mesures de probabilité sur  $R_+$   $v_t = e^{\lambda t}$  P o  $S_t^{-1}$  forment un semi-groupe de convolution faiblement continu en 0 et permettent de définir un subordinateur. En le tuant à un temps exponentiel de paramètre  $\lambda$  et indépendant de lui, on obtient le résultat cherché.

Ce résultat constitue une réciproque du résultat, démontré par Meyer dans son exposé, suivant lequel l'image d'un subordinateur est un ensemble régénératif (non canonique).

On sait qu'un ensemble régénératif est ou bien p.s. borné, ou bien p.s. non borné . Comme  $L_{\infty}$  est une variable exponentielle de paramètre  $\lambda \ (\{L_{\infty} > t\} = \{S_{t} < \infty\}) \ , \ \text{on a alors les équivalences suivantes :}$ 

#### Proposition 3:

M p.s. borné  $\Leftrightarrow$   $\lambda > 0 \Leftrightarrow L_{\infty} < \infty$  p.s.

M p.s. non borné  $\Leftrightarrow \lambda = 0 \Leftrightarrow L_{\infty} = \infty$  p.s.

⇔ (S<sub>t</sub>) est un subordinateur.

En particulier (S  $_{t})$  est un subordinateur si c <  $\varpi$  , puisqu'alors M est p.s. non borné.

#### **BIBLIOGRAPHIE**

- [1] BLUMENTHAL et GETOOR. Markov Processes and Potential Theory.

  Academic Press. 1968.
- [2] B. MAISONNEUVE et Ph. MORANDO. Temps locaux pour les ensembles régénératifs.

  C.R. Acad. Sc. Paris, t. 269, p. 523-525, sept. 69.
- [3] P.A. MEYER Probabilités et Potentiel. Herrmann. 1966.
- [4] P.A. MEYER Processus de Markov. Lecture Notes in Mathematics.

  Springer. 1967.