SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

MICHEL WEIL

Résolvantes en dualité

Séminaire de probabilités (Strasbourg), tome 1 (1967), p. 177-189

http://www.numdam.org/item?id=SPS_1967__1__177_0

© Springer-Verlag, Berlin Heidelberg New York, 1967, tous droits réservés.

L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail.mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

DEPARTEMENT DE MATHEMATIQUE STRASBOURG

Séminaire de Probabilités

Février 1967

RÉSOLVANTES EN DUALITÉ

(par M. Weil)

I. INTRODUCTION.

Soient E un espace localement compact, à base dénombrable et \mathcal{C} sa tribu borélienne. Nous désignerons par \mathcal{B} (resp. $\mathcal{B}_{\mathbf{L}}$, \mathcal{C} , $\mathcal{C}_{\mathbf{Q}}$) l'ensemble des fonctions numériques mesurables (resp. mesurables à support compact, continues, continues et nulles à l'infini, continues et à support compact) sur E. L'exposant $^+$ affecté à ces divers espaces indique que seules les fonctions positives sont considérées (par exemple \mathcal{C}^+). Un noyau sur E opèrera à gauche sur les fonctions, à droite sur les mesures (Af, \mathcal{L} A, A (x, dy)) s'il n'est pas surmonté d'un $^+$; par contre un noyau, avec $^+$, opèrera à droite sur les fonctions et à gauche sur les mesures (fÂ, Â \mathcal{L} , Â (dy, x)). Si \mathcal{L} est une mesure sur E, on désigne par $^{<}$ f, g $^{>}$ \mathcal{L} l'expression \mathcal{L} f(x) g(x) \mathcal{L} (dy) où f, g $^{<}$ \mathcal{L} B $^{+}$. Les noyaux A et \mathcal{L} seront dits en dualité par rapport à la mesure positive \mathcal{L} si :

$$\langle f, Ag \rangle_{\mu} = \langle f \hat{A}, g \rangle_{\mu}$$
 $f, g \in \mathbb{B}^+$.

Considérons alors deux résolvantes sous markoviennes $(U_p)_p \geqslant 0$ et $(\hat{U}_p)_p \geqslant 0$ et une mesure de Radon positive : m sur E. Le préfixe co-servira à distinguer les objets relatifs à la résolvante (\hat{U}_p) (fonctions, mesures coexcessives...) de ceux relatifs à la résolvante (U_p) .

Nous ferons, dans toute la suite, les hypothèses suivantes :

Hypothèse

Pour tout p > 0:

- 1) Les mesures $U_p(x, dy)$, $U_p(dy, x)$ sont absolument continues par rapport à m, quel que soit $x \in E$.
 - 2) <u>Les noyaux</u> U_p et Û_p sont en dualité par rapport à m.

Remarque(1): Ces hypothèses peuvent paraître fortes. En fait il suffit de les supposer pour p=0 et de savoir que l'image de qua U et Û est dans \mathcal{E}_{o} .

En effet, supposons d'abord que U_0 et \hat{U}_0 soient bornés, absolument continus par rapport à m et en dualité par rapport à m. Alors l'hypathèse H est satisfaite : les noyaux U_p et \hat{U}_p majorés par U_0 et \hat{U}_0 sont absolument continus par rapport à m; en outre si f, $g \in \mathcal{C}_{\mathcal{H}}^+$ alors les fonctions analytiques réelles $\langle f, U_p g \rangle_m$ et $\langle f, \hat{U}_p, g \rangle_m$ coïncident au voisinage de o, donc pour tout p>0. (cf. méthode de Hunt dans Meyer [1] chap. X T 10 page 256).

Supposons ensuite que U et \hat{U} appliquent \hat{U} dans \hat{U} et satisfassent aux hypothèses d'absolue contuinité et de dualité par rapport à m, alors H est encore satisfaite. Soit en effet $a \in \mathcal{C}_0^+$, une fonction strictement positive, telle que \hat{U} a et a \hat{U} appartiennent à \hat{U} et posons

$$a_{k} = k \ a \wedge 1 \qquad k \in \mathbb{N}$$

$$m_{k} = a_{k} \cdot m$$

$$W_{o}^{k} f = U_{o} (a_{k} f)$$

$$f \hat{W}_{o}^{k} = (a_{k} f) \hat{U}_{o}$$

On sait d'après (Meyer [1], chap. X, T.10) qu'il existe des résolvantes $(W_p^k)_p$, $(\hat{W}_p^k)_p$ telles que :

(1) Remarque due à R. CAIROLI.

$$W_o^k = \lim_{p \downarrow o} W_p^k$$

$$\hat{W}^k = \lim_{p \downarrow o} \hat{W}^k$$

$$\hat{\mathbf{w}}_{o}^{k} = \lim_{\mathbf{p} \downarrow o} \hat{\mathbf{w}}_{\mathbf{p}}^{k}$$

Or W_0^k et W_0^k sont en dualité par rapport à m_k . Si donc f, g éléments de G_k^+ ont leur support dans $\{a_k = 1\}$, on aura d'après ce qui précède :

$$\langle f \hat{W}_{p}^{k}, g \rangle_{m_{k}} = \langle f, W_{p}^{k} g \rangle_{m_{k}}$$

puisque W_0^k et \hat{W}_0^k sont bornés ; donc

$$\langle f \hat{W}_{p}^{k}, g \rangle_{m} = \langle f, W_{p}^{k} g \rangle_{m}$$

puis en faisant tendre k vers l'infini, f \widehat{W}_p^k et W_p^k g tendant en décroissant vers f \widehat{U}_p et U_p g (Meyer [1], chap X, T.11) on a

$$\langle f \hat{U}_p, g \rangle_m = \langle f, U_p g \rangle_m$$

Ces préliminaires étant établis, nous allons mont rer plusieurs résultats dûs à H. Kunita et T. Watanabe [1] et [2]. Ces résultats montreront que l'on peut toujours "bien" choisir les densités de U_p et $\stackrel{\circ}{U}_p$ par rapport à m. Ils indiqueront également une certaine correspondance entre les mesures excessives et les fonctions coexcessives. Enfin pour terminer on montrera que pour toute mesure n excessive sur E il existe une résolvante $(\stackrel{\circ}{V}_p)$ en dualité avec (U_p) par rapport à n.

2 . RÉSOLVANTES EN DUALITÉ

Le premier théorème s'énonce :

Théorème 2.1. - (Kunita Watanabe [1]). Les hypothèses sont celles du § 1; on a alors:

1) La mesure m est à la fois surmédiane et cosurmédiane i. e.

$$m (p \mathbf{U}_p) \le m \text{ et } p \hat{\mathbf{U}}_p m \le m$$
 pour tout p

2) Pour chaque p>0 il existe une fonction positive mesurable u_p (x, y) sur $E \times E$ telle que :

a)
$$U_{p}(x, dy) = u_{p}(x, y) m(dy)$$

$$U_{p}(dx, y) = m(dx) u_{p}(x, y)$$

b) pour tout x, la fonction up (x, ·) est p-coexcessive, la fonction up (·, x) est p-excessive. Une telle fonction est unique et

c) si p < q
$$u_p(x, y) = u_q(x, y) + (q - p) \int u_p(x, z) m(dz) u_q(z, y)$$

$$= u_q(x, y) + (q - p) \int u_q(x, z) m(dz) u_p(z, y).$$

Nous énoncerons d'abord un lemme qui est évident :

Lemme: Si la fonction mesurable f est m-négligeable alors on a U_p f (x) = 0 et f \hat{U}_p (x) = 0 pour tout x. En particulier U_q f = f \hat{U}_q = 0 pour tout q.

Il en résulte immédiatement que deux fonctions p-excessives (resp. p-coexcessives) égales m-p.p. sont égales partout.

De ceci déduisons <u>l'unicité</u> de la fonction u_p du théorème 2.1. Considérons deux fonctions u_p et u_p' satisfaisant au théorème 2.1. 2 a) et 2 b). Si $f \in \mathfrak{B}^{\uparrow}$ on a alors :

$$U_{p} f(x) = \int u_{p} (x, y) f(y) m (dy)$$

$$\int u'_{p} (x, y) f(y) m (dy)$$

donc:

$$u_p(x, \cdot) = u_p^1(x, \cdot)$$
 m p. p.

donc partout puisque ce sont des fonctions p-excessives.

Démonstration du Théorème :

1) Soit f un élément de B⁺; on a

$$m (p U_p) f = \langle m (p U_p), f \rangle = \langle m, p U_p f \rangle = \langle 1, p U_p f \rangle_m$$

$$= \langle 1 (p \hat{U}_p), f \rangle_m$$

$$\leq \langle 1, f \rangle_m \qquad d'après le caractère sous markovien$$

$$= \langle m, f \rangle$$

d'où m $(pU_p) \le m$. On montre de même : $p \hat{U}_p m \le m$.

2) Montrons maintenant l'existence d'une fonction u_p satisfaisant au théorème. Si F est une fonction mesurable sur $E \times E$ on posera :

$$U_{p} F (x,y) = \int U_{p} (x,dz) F (z,y)$$

$$F \hat{U}_{p} (x,y) = \int F (x,z) \hat{U}_{p} (dz,y).$$

Ces fonctions sont encore mesurables sur E x E.

Choisissons une fonction v_p (x, y) positive mesurable sur E \times E telle que

$$U_{p}(x, dy) = v_{p}(x, y) \text{ m (dy)}$$
 ou encore
$$U_{p} f(x) = \langle v_{p}(x, \cdot), f \rangle_{m} \text{ si } f \in \mathbb{G}^{+}$$

Si $f \in \mathbb{B}^+$ on aura:

$$q < \mathbf{v}_{p} (\mathbf{x}, \cdot) \hat{\mathbf{U}}_{p+q}, f >_{m} = q < \mathbf{v}_{p} (\mathbf{x}, \cdot), \mathbf{U}_{p+q} f >_{m}$$

$$= q \mathbf{U}_{p} \mathbf{U}_{p+q} f (\mathbf{x})$$

$$= q \mathbf{U}_{p+q} \mathbf{U}_{p} f (\mathbf{x})$$

$$\leq \mathbf{U}_{p} f (\mathbf{x})$$

$$= \langle \mathbf{v}_{p} (\mathbf{x}, \cdot), f \rangle_{m}$$

Donc

$$v_{p}(x,\cdot) (q \hat{U}_{p+q}) \leqslant v_{p}(x,\cdot)$$
 m-p.p.

La fonction $v_p(x,\cdot)$ est donc $^{t\!t}m$ -presque p-cosurmédiane", on en déduit que la fonction

$$u_p(x,\cdot) = \lim_{q \uparrow \infty} v_p(x,\cdot) (q \hat{U}_{p+q})$$

existe (limite croissante) et est <u>p-coexcessive</u>. La démonstration est la même que lorsque $v_p(x,\cdot)$ est cosurmédiane et on a $v_p(x,\cdot) = U_p(x,\cdot)$ sauf sur un ensemble de copotentiel nul. Enfin la fonction $u_p(x,y)$ est évidemment mesurable sur $E \times E$.

Alors la formule (2.1.):

$$\langle v_p(x,\cdot) q \hat{U}_{p+q}, f \rangle_m = q U_{p+q} U_p f(x).$$

donne par passage à la limite lorsque q ↑∞ .

(2.2).
$$\langle u_p(x,\cdot), f \rangle_m = U_p f(x).$$

donc

$$U_p(x, dy) = u_p(x, y) m(dy)$$

et par conséquent up est une densité à droite de Up.

Si f, $g \in \mathbb{B}^+$, on a d'après (2.2).

$$\int m (dx) g (x) u_p(x, y) f (y) m (dy) = \int g (x) U_p (x, f) m (dx)$$

$$= \langle g, U_p f \rangle_m$$

$$= \langle g \hat{U}_p, f \rangle_m$$

donc

$$g \hat{U}_p (y) = \int m (dx) g (x) u_p (x, y)$$
 m - p.p.

Il suffit alors d'appliquer l'opérateur q \hat{U}_{p+q} au deux membres

$$g \hat{U}_{p} (q \hat{U}_{p+q}) (y) = \int_{m}^{m} (dx) g (x) u_{p} (x,z) q (\hat{U}_{p+q}) (dz, y)$$

et de faire tendre q vers l'infini pour avoir :

$$g \hat{U}_{p} (y) = \int m (dx) g (x) u_{p} (x, y).$$

car up (x, ·) est p-coexcessive. La fonction up est donc densité à gauche pour Up.

Il reste à montrer que u p (', y) est p-excessive. Or

$$u_{p}(x, y) (q \hat{U}_{p+q}) = q \int u_{p}(x, z) m (dz) (q u_{p+q}(z, y))$$

$$= q U_{p}(u_{p+q}(x, y)).$$

Le deuxième membre, donc le premier, est une fonction p-excessive. Mais si $q \uparrow \infty$ le premier membre tend en croissant vers $u_p(x, \cdot)$, et comme la limite d'une suite croissante de fonctions p-excessivesest p-excessive, on en

déduit que u (·, y) est p-excessive.

Enfin, pour x fixé et p < q, l équation résolvante en U_p donne :

$$u_{p}(x, y) = u_{q}(x, y) + (q - p) \int u_{p}(x, z) m(dz) u_{q}(z, y) m - p.p.$$

mais les deux membres sont des fonctions q-coexcessives (en y). Il sont donc égaux partout, ce qui achève la démonstration.

Remarque: Cette dernière relation entraîne que u_p croit avec $\frac{1}{p}$. On en déduit l'existence de la densité u_o de U_o et \hat{U}_o par rapport à m.

3. RELATION ENTRE MESURES EXCESSIVES ET FONCTIONS COEXCESSIVES.

Si μ est une mesure positive sur E et si

$$\mu \hat{U}_{p}(y) = \int \mu(dx) u_{p}(x,y)$$

alors il est clair que cette fonction $\begin{picture}(100,0)(0,0) \put(0,0){\line(0,0){100}} \put($

Théorème 3.1. - (Kunita et T. Watanabe [2]). Soit n une mesure de Radon positive sur E, excessive par rapport à la résolvante (UD) i.e.:

- (3.3) 1) $n (p U_p) \leqslant n$ pour tout p > 0
- (3.4) 2) $\lim_{p \to \infty} n (p U_p) = n$ (voir remarque plus loin).

Il existe alors une fonction v coexcessive unique telle que :

$$n(dx) = v(x) m(dx)$$
.

Remarque: les mesures n (pUp) croissent avec p (d'après (3.3) et l'équation résolvante). Il existe donc une mesure n telle que:

$$\langle n(pU_p), f \rangle \xrightarrow{p \uparrow \infty} \langle \overline{n}, f \rangle$$
 $f \in \mathbb{B}^+$

Si de plus, on suppose que p U_p f $\xrightarrow{p\uparrow\infty}$ f pour $f\in \mathcal{C}_{p}^+$ alors on a d après le lemme de Fatou :

donc $n \leq \overline{n}$ et par suite $n = \overline{n}$. Dans ce cas la condition (3.4) est inutile.

Démonstration du théorème :

Posons:

$$v_{p}(y) = p \int n(dx) u_{p}(x, y)$$
.

C'est une fonction p-coexcessive et on a

$$n (p U_p) (dy) = v_p (y) m (dy).$$

Comme n (p U p) croit avec p, la relation p \leq q entraine $\mathbf{v}_p \leq \mathbf{v}_q$ m-p.p. mais les deux membres sont des fonctions q-coexcessives, par conséquent $\mathbf{v}_p \leq \mathbf{v}_q$ partout. Donc la fonction :

$$\mathbf{v} = \lim_{\mathbf{p} \to \infty} \mathbf{v}_{\mathbf{p}}$$

existe, et on vérifie que c'est une densité de n par rapport à m. De plus c'est une fonction coexcessive : en effet si $f(B^{\dagger})$:

Lorsque p ↑ ∞ on aura :

$$\angle v (q \hat{U}_q), f>_m \langle \langle v, f \rangle_m$$

donc

$$v (q \hat{U}_q) \leqslant v \qquad m-p.p.$$

Par conséquent la fonction \forall :

$$\mathbf{w} = \lim_{\mathbf{q} \uparrow \infty} \mathbf{v}(\mathbf{q} \stackrel{\wedge}{\mathbf{U}_{\mathbf{q}}}) = \lim_{\mathbf{q} \uparrow \infty} \lim_{\mathbf{p} \uparrow \infty} \mathbf{v}_{\mathbf{p}} (\mathbf{q} \stackrel{\wedge}{\mathbf{U}_{\mathbf{q}}})$$

est <u>coexcessive</u>. Comme les deux limites sont croissantes, on peut les intervertir:

$$\mathbf{w} = \lim_{\mathbf{p} \uparrow \infty} \lim_{\mathbf{q} \uparrow \infty} \mathbf{v}_{\mathbf{p}} (\mathbf{q} \hat{\mathbf{U}}_{\mathbf{q}})$$

$$= \lim_{\mathbf{p} \uparrow \infty} \lim_{\mathbf{r} \uparrow \infty} \mathbf{v}_{\mathbf{p}} (\mathbf{p} + \mathbf{r}) \hat{\mathbf{U}}_{\mathbf{p} + \mathbf{r}})$$

$$= \lim_{\mathbf{p} \uparrow \infty} \lim_{\mathbf{r} \uparrow \infty} \mathbf{v}_{\mathbf{p}} (\mathbf{r} \hat{\mathbf{U}}_{\mathbf{p} + \mathbf{r}})$$

c. q. f. d.

4. CHANGEMENT DE MESURE DE BASE.

Le théorème 3.2 va nous permettre de déduire le

Théorème 4.1 (H. Kunita et T. Watanabe [2]). Soit nune mesure de Radon positive sur E. Il existe alors une résolvante (\hat{V}_p) sur E en dualité avec la résolvante (\hat{U}_p) par rapport à la mesure n.

Démonstration: Posons

$$\hat{V}_{p} (dx, y) = \begin{cases} v(x) \hat{U}_{p} (dx, y) \frac{1}{v(y)} & \text{si } y \in \{0 < v < \infty\} \\ 0 & \text{si } y \in \{v = 0\} \\ \frac{1}{p} \in_{y} (dx) & \text{si } y \in \{v = \infty\} \end{cases}$$

Nous avons:

$$f \hat{V}_{p} (y) = \begin{cases} (f v) \hat{U}_{p} (y) \frac{1}{V(y)} & \text{si } y \in \{0 < v < \infty\} \\ 0 & \text{si } y \in \{v = 0\} \\ \frac{1}{p} f (y) & \text{si } y \in \{v = \infty\} \end{cases}$$

 (\hat{V}_p) est bien une résolvante : en effet il suffit de vérifier l'équation résolvante :

$$f \hat{V}_{p} - f \hat{V}_{q} + (p - q) f \hat{V}_{p} \hat{V}_{q} = 0$$
 $f \in \mathbb{B}^{+}$

Or si $y \in \{v = 0\}$ c'est évident, si $y \in \{v = \infty\}$ on a :

$$(q - p) f \hat{V}_{p} \hat{V}_{q} (y) = (q - p) \frac{1}{p q} f (y)$$

$$= (\frac{1}{p} - \frac{1}{q}) f (y)$$

$$= f \hat{V}_{p} (y) - f \hat{V}_{q} (y),$$

tandis que lorsque $y \in \{0 < v < \infty\}$:

$$\begin{split} f \, \hat{\nabla}_{\mathbf{p}} \, \hat{\mathbf{V}}_{\mathbf{q}} \, (\mathbf{y}) &= \int f \, \hat{\mathbf{V}}_{\mathbf{p}} \, (\mathbf{x}) \, \hat{\mathbf{V}}_{\mathbf{q}} \, (\mathbf{d}\mathbf{x}, \mathbf{y}) \\ &= \int f \, \hat{\mathbf{V}}_{\mathbf{p}} \, (\mathbf{x}) \, \mathbf{v} \, (\mathbf{x}) \, \hat{\mathbf{U}}_{\mathbf{q}} \, (\mathbf{d}\mathbf{x}, \mathbf{y}) \frac{1}{\mathbf{v} \, (\mathbf{y})} \\ &= \int f \, \hat{\mathbf{V}}_{\mathbf{p}} \, (\mathbf{x}) \, \mathbf{v} \, (\mathbf{x}) \, \hat{\mathbf{U}}_{\mathbf{q}} \, (\mathbf{d}\mathbf{x}, \mathbf{y}) \cdot \frac{1}{\mathbf{v} \, (\mathbf{y})} \, & \text{car} \, \{ \, \mathbf{v} = \emptyset \} \text{est m-né-} \\ & \{ 0 \, \langle \, \mathbf{v} \, \langle \, \circ \rangle \} \, & \text{gligeable} \end{split}$$

$$&= \int (f \, \mathbf{v}) \, \mathbf{U}_{\mathbf{p}} \, (\mathbf{x}) \, \frac{1}{\mathbf{v} \, (\mathbf{x})} \, \mathbf{v} \, (\mathbf{x}) \, \mathbf{U}_{\mathbf{q}} \, (\mathbf{d}\mathbf{x}, \mathbf{y}) \cdot \frac{1}{\mathbf{v} \, (\mathbf{y})} \\ &= \{ 0 \, \langle \, \mathbf{v} \, \langle \, \circ \rangle \} \, & \text{gligeable} \end{split}$$

Mais $v \hat{U}_p = 0$ sur $\{v = 0\}$ puisque $v (p \hat{U}_p) \{v. D' \text{ autre part } \}$

On a:
$$f v = v \operatorname{sur} \left\{ v = 0 \right\}, \operatorname{donc} f v = \sup_{k \uparrow \infty} ((f v) \land k v), \operatorname{d'où}_{k \uparrow \infty}$$

$$(f v) \hat{U}_{p} = v \hat{U}_{p} = 0 \operatorname{sur} \left\{ v = 0 \right\}$$

Par conséquent

$$\begin{split} f \, \hat{V}_{p} \, \hat{V}_{q} \, (y) &= \, \int^{1} (f \, v) \, \hat{U}_{p} \, (x) \, \hat{U}_{q} \, (dx, y) \frac{1}{v \, (y)} \\ &= \, \frac{(f \, v) \, \hat{U}}{q} \frac{(y) - (f \, v) \, \hat{U}}{p - q} \frac{(y)}{v} \cdot \frac{1}{v \, (y)} \\ &= \frac{1}{p - q} \, (\, (f \, v) \, \hat{V}_{q} \, (y) - (f \, v) \, \hat{V}_{p} \, (y) \,) \, \text{ si } y \in \, \left\{ \, 0 < v < \infty \right\} \end{split}$$

(V_p) est donc bien une résolvante et il est clair qu'elle est sous markovienne.

Il reste à montrer la propriété de dualité.

$$\langle f \hat{V}_{p}, g \rangle_{n} = \langle f \hat{V}_{p}, g V \rangle_{m} \qquad f, g \in \mathbb{R}^{+}$$

$$= \int_{E} f \hat{V}_{p} (y) g (y) v (y) m (dy)$$

$$= \int_{E} (f v) \hat{U}_{p} (y) \frac{1}{v (y)} g (y) v (y) m (dy)$$

$$= \int_{E} (f v) \hat{U}_{p} (y) g (y) m (dy)$$

$$= \int_{E} (f v) \hat{U}_{p} (y) g (y) m (dy)$$

par le même raisonnement que ci-dessus. Donc :

$$\langle f \hat{V}_{p}, g \rangle_{n} = \langle (f v) \hat{U}_{p}, g \rangle_{m}$$

$$= \langle f v, U_{p} g \rangle_{m}$$

$$= \langle f, U_{p} g \rangle_{n}$$

Q. E. D.

BIBLIOGRAPHIE

H. KUNITA ET T. WATANABE:

- [1] Markoff processes and Martin boundaries:

 11. J. of Math. n° 9, 1965 (485-526).
- [2] On certain reversed processes and their applications to potential theory and boundary theory: J. of Math and Mech. n° 15,1966 (393-434).

P.A. MEYER:

[1] Probabilités et potentiel Hermann, Paris, 1966.

