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Randomness and determinism : a mathematical approach 

by 

Michael KEANE 

If one accepts the hypothesis that the mechanisms 
of natural phenomena are deterministic, as all scientists do prac
tically vhen working at a microscopic level, then it is not imme
diately seen that probability and statistics enter the picture at 
all. In fact, given enough information about the system to be 
studied and enough time and ability in calculation, all of the desired 
results can be determined. The idea of randomness and the techniques 
of probability and statistics, however, are very useful in such si
tuations, and this usefulness arises in particular when the observer 
of such a system can describe the deterministic mechanism involved, 
but does not have enough knowledge concerning the initial data or 
the parameters of the system, or enough calculatory power, to des
cribe the future with precision. In other words, and this is a point 
wich we shall make more precise below, whether a phenomenon "appears" 
random or not ot an observer, depends to a great extent on "how much" 
information he has collected concerning the phenomenon. 

In these lectures, I shall endeavor to describe an 
ongoing mathematical effort to classify and recognize different 
types of randomness in deterministic situations of a special type. 
First of all, let me state clearly that I am assuming a "classical" 
situation (as opposed for instance in physics to a "quantum" situa
tion whose description inherently contains probabilistic matter at 
present), in which the observer has complete knowledge of the de
terministic mechanism involved, but lacks information on the initial 



state and power to observe the system completely at any given time. 
For simplicity, I shall also assume that time is discrete. After 
describing the basic ideas of the general theory, I would like to 
present a few examples from my personal research which I deem inte
resting for further study. 

§ 1. DYNAMICAL SYSTEMS 

In the following definition, what I have in mind is a 
deterministic physical system which can assume a certain collection 
of possible states, and which obeys a rigid rule in moving from sta
te at successive time units. The total knowledge which is possessed 
concerning the initial state is contained in a probability distribu
tion on the set of possible states, and I consider the simple case 
in which this probability distribution is stationary w.r.t. the mo
vement of the system. (Hence we should be able to estimate the proba
bility distribution from previous manipulation of the system). 

Definition : 

A (discrete time stationary) dynamical system is a 

triple (fi,P,T) where 

1) Í! is a compact metric space (the set of possible states 
of the system) 

2) P is a probability distribution on (the Borel sets of) ft 

3) T is a homeomorphism from S?i to 9\ , where Í2i is a 
residual subset of ti whith P (9\) = 1, and T preserves 
the probability distribution P. (the state a) e ííi 
changes to the state T(co) e fii after one time unit). 

To be precise, one should call the above concept an 
"almost topological dynamical system", to distinguish it from a 
mesurable dynamical system (in which ( Í5,P) is simply an abstract 
probability space and T a (measurable) automorphism of (f),P) and 
from a topological dynamical system, in which T is e measure preser
ving homeomorphism of 9,. 
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From a conceptual point of view, there are (at least) 
two "different" types of dynamical systems. One the one hand, there 
are systems airising from deterministic situations in the physical 
sciences, such as a gas in a box, billiards on different types of 
"tables", population models in biology, etc. On the other hand, 
dynamical systems such as two-sided infinite coin tossing, Markov 
chains (finite state space) with stationary distributions, e t c , 
are well-know to probabilists and exhibit clearly a probabilistic 
nature. It is clearly of interest, both philosophically and practi
cally, to be able to "see" the probabilistic structure in the second 
type of examples inside of the first type of examples. This is the 
basic goal in the following definition. 

Definition : 

Let (fi,P,T) and (fi l,P ,,T l) be two dynamical systems. A 
finitary^homomorghisme from (ft,P,T) to (ft',P 1,T 1) is a continuous 

map <J> : Q2 + &z , 

where 

1) £l2 c~ fii and Qz c fii are residual subsets of full 
probability in fi and ft1 

2) cj>P = P' and <J) o T = T f o <f) 

-1 1 1 

If cj) is a homeomorphism (i.e. <f> : Qz fli exists and is conti
nuous) , then cf> is a finitarY^isomorphism. 

For a complete discussion of the technical details in
volved in the definitions above, we refer to £ D - K ] . An immortant 
distinction between the framework above and that of classical ergodic 
theory is that the former gives us at least some hope of physically 
recognizing the probabilistic nature of a mechanical system, in view 
of the continuity assumptions. 

§ 2. MEASUREMENTS 

When observing a dynamical system, I shall thake the 
point of view that the observation yelds only a finite number of 
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possible results, and that continuity of measurement is to be 

expected. 

Définition : 

Let ( P,P,T) be a dynamical system. A petition K (i.e. 

a means of observation, or a measuring instrument) is an ordered 

finite collection £ = (£ Q , £1 , . . . , £^ ^) of open disjoint subsets 

of 9 such that 

n-l 
P ( U Ç ) = 1 

j=o J 

If ? is a partition of (ft,P,T) and if co is a state of 9, 

then we can associate to co the total sequence of past, present and 

future measurements of it by ? . Let 

cf) ( c o ) = x = (..., X Q , * L F •••) 

defined by 

x t = k iff T t ( c o ) e £ k . 

Then <\> ( c o ) is well-defined for P-almost all points co e 9' , and if we 

let X denote the closure of (<J>(co) : co e P , (j) ( c o ) defined} in the in-

finite product space ( 0 , 1 , n-l} , S the shift transformation 

on X, and Q the image of the probability distribution P under 4> , 

then (X,Q,S) is a dynamical system and <J> is a finitary homomorphism 

from ( P,P,T) to (X,Q,S) . 

Définition : 

The dynamical system (X,Q,S) is called the finitary_factor 

associated to £ . The partition £ is called a finitar;Y__2SD?E5t2E ^ f 

<f> is a finitary isomorphism. 

Obviously, the measurement Ç will (eventually) extract 

the totality of information contained in the dynamical system ( P,P,T) 

and it is interesting to know when this is possible and how to obtain 

a finitary generator (with prescribed properties). 
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§ 3. ENTROPY 

The average of information contained in an ongoing 
measurement is called its entropy. The idea of applying information 
theory to dynamical systems is due to Kolmogorov. 

Let £ = (£ o, £1 C ĵ ) be a partition of ( P , P , T ) . 

The entropy of £ is defined as 
n-1 

H(C) = - E P(C ) log P(g ) . 
j=o 3 3 

The partition 

t t -r 
r=s 

where " V " denotes common refinement, corresponds to measuring 
the system between times s and t . It is not hard to show that the 
limit 

h U ) = lim i H U * " 1 ) 
t + 0 0 

exists, using subadditivity properties of the function H ; the 
quantity h(£) is called njean^entrog^ °f £ • Obviously 0 < h ( £ ) llog n . 
Finally, the §ntrogY_hjT)_of_the_dynamical_SYstem ( P,P,T) is defined 
as 

h(T) = sup h(Z) 

K 

the sup being taken over all partitions. 

If <fr is a finitary homomorphism from (fi,P,T) to (9* ,T') 

and if £ 1 is a partition of (ft1 ,P',T') , then (f)""1 5 ' is a partition 
(modulo P) of (ft,P,T) and h ( £ f ) = h((()""1C,). Therefore entropy of 
dynamical systems does not increase under finitary homomorphisms, 
and is invariant under finitary isomorphism. 

One of the basic theorems of entropy theory, due to 
Sinai, is that if £ is a generator, then h(T) = h(£) . 
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§ 4. THE GENERATOR THEOREM 

If a dynamical system (fi,P,T) possesses a finitary 
generator, then its entropy h(T) is obviously finite. There is one 
other obstruction to the existence of a finite generator, and that 
is the existence of a set of periodic points with positive probabi
lity. The dynamical system (fi,P,T) is said to be aperiodic if the 
set of periodic states has probability zero. 

Theorem (see [D-K] , [p] ) : 

If (ft,P,T) is aperiodic and if h(T) < 0 0 , then (fi,P,T) 
has a finitary generator £ = (^^i,...,^^^) with 

n = [ e h ( T ) ] + 1 

The reader should be cautioned that this theorem is 
an existence theorem, and that in general it is not easy to find a 
"nice" generator. If, however T is ^xgansive (i.e. there is a posi
tive number 6 such that for any co, c o Q with co =f= co 1 , there existe 

t t 
t with d(T co , T c o 1 ) > 6 ) , then any partition whose sets all have 
diameter less than 6 will be a generator. This case often arises 
in practice. Finally, we remark that the hypothesis h(T) < 0 0 is 
satisfied for a large class of dynamical systems ([Ku]). 

§ 5. ERGODICITY 

For measurable dynamical systems, one generally defines 
ergodicity as the absence of a measurable set of states invariant 
under the motion T and with probability strictly between zero and 
one. A more natural and equivalent definition in the situation des
cribed above is to say that (ft,P,T) is ergodic if the weak of large 
numbers holds for every measurement (partition) of the dynamical sys
tem. It then follows that the strong law of large numbers holds for 
any IL1 - function on (fi,P) (individual ergodic theorem). Thus ergo
dicity is the property which allows us to use the law of large numbers 
for measurements on the system or, in other words, which insures that 
almost all sample paths of the system have the same average behavior. 
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Thus it is important to determine whether a given dy
namical system is ergodic. In general, this problem is difficult, 
even for simple systems, and I shall give some examples in the second 
part. 

A homomorphic image of an ergodic system is ergodic, 
so that ergodicity is an isomorphism invariant. A particular type 
of ergodicity occurs in a dynamical system when the strong law of 
large numbers holds for each measurement and eyerY_initial state 
o) e fl. A dynamical system which this property is called strictly 
ergodic. An interesting open problem in this direction is given in 
the second part. 

§ 6. ASYMPTOTIC INDEPENDENCE 

It is never true for a dynamical system that every 
measurement on it (in the above sense) satisfies the central limit 
theorem, or the law of the iterated logarithm. To obtain such results, 
it is necessary to impose some asymptotic independence contidion 
(in general, exponential decay) on the partition itself. I shall not 
describe in detail such results (see e.g. [ I , L ] , [ G ] ) . Recent work 
( [ D - K ] ) has shown that if a smooth dynamical system ( C,P,T) is fini-
tarily isomorphic to a Bernouilli scheme ( Í 2 I , P , , T ' ) (= infinite coin 
toss) , and if the isomorphism <f> satisfies a "finite expected coding 
time" property, then "smooth" measurements on ( f2,P,T) do satisfy the 
central limit theorem and the law of the iterated logarithm. This 
shows that certain types of isomorphisms between "deterministic" 
systems and independent processes will imply probabilistric behavior 
of a large class of measurements on the deterministic system. 

One of the long-outstanding open problems in classical 
ergodic theory concerne asymptotic independence. 

A dynamical system is k-miwing if for any measurable sets A^,....A^, 

lim P (A, A T 1 A 0 T 1 A / . . . ^ T K ~ X A. ) = II P(A.) 
t +oo 1 2 3 K D 
j 3 = 1 

1< j<k 

It is unknown whether there exists a dynamical system which is 
2-mixing but not k-mixing for some k > 2. 
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§ 7. BERNOULLI SCHEMES 

A Bernoulli_scheme is a dynamical system ($?,p,T) 
where Q is the set of all two-sided infinite sequences whose terms 
can take finitely many values, P is a product measure on ft, and T 
is the (left) shift transformation on Q. If ( o ,1,.•.,n-l } is the 
set of values, then the Bernoulli scheme is uniquely determinde by 
a probability vector p = (p Q, p± p ±), and is a probabilistic 
model for infinite independent repetition of an experiment whose 
outcomes are 0,1,...,n-1 with respective probabilities 
P Q , P n _ i • T h e partition £ of f into points o.: i .having 

the same coordinate at zero is a finitary generator, and 
n-1 

h(£) = - £ p. log p. because of independence. 
i=o 

Thus Sinai's theorem (§3) yelds 

n-1 
h(T) = - £ p i long p i 

i=o 

for the Bernoulli scheme (ft,P,T) determined by the probability 
vector p. It is not hard to see that Bernoulli schemes are ergodic, 
and even k-mixing for all k > 2. 

Now suppose that (ft,P,T) and (ft f,P',T l) are two dy
namical systems and f is a finitary homomorphism from (S7,P,T) to 
( f t , , P , , T l ) , and suppose that (fl f,P f,T f) is a Bernoulli scheme with 
probability vector p = (p Q P n - B^) and zero coordinate parti

tion ) . Then the partition £ = cfT1 (£') of (ft,P,T) 
° n-1 

obviously "looks" like That is, the sequence of measurements on 
(ft,P,T) using the partition £ is essentially an independent repeti
tion of an experiment with probabilities p = (p Pn_]_) • That, 
if we measure (ft,P,T) with the partition £ and if our only knowledge 
of the initial position is contained in the probability distribution 
P, we shall see a probabilistic (independent) experiment, even 
though (fi,P,T) is deterministic One of the basic goals of the study 
of dynamical systems is to determine, for a given (ft,P,T), which 
Bernoulli schemes it has a homomorphic images and what the corres
ponding partitions (J)""1(C) are like. This study is in its beginning 
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stages, and very few results are known, especially in the case of 
physical systems. 

I would like to finish this paragraph with a discussion 
of a problem which arises naturally in the above setting. This is 
the question of when two different Bernoulli schemes are finitarily 
isomorphic, or more generally, when is one a finitary image of the 
other. In more probabilistic language, how many kinds o f "complete" 
randomness exist ? 

In the case of dynamical systems on sequence spaces 
with the shift transformation (i.e. shift dynamical systemsp), fini
tary homomorphisms and isomorphisms have a natural interpretation in 
terms of sequential coding. If co = ( . . . , c o _ ^ , teQ, c o ^ , . . . ) e 9 and 

(f>(co) = c o ' ( . . . , c o ^ , c o ^ , co^ , . . . ) e ft1 where <J> is finitary, then <f> 

can be described as follows. We begin by examining the zero coor
dinate 0)q of co , then the coordinates c o _ ^ , GO , coi o f co , etc. 
and we suppose that we have a stogging^rule x : ft + N (finite a.e.) 
which will tell us to stop at the examination of 

( C O - T ( C O ) 0 0 o A ) T ( o » ) -

For each value m e IN , we also suppose that we have 
a "dictionary" 6 given, which tells us for each stopped sequence 
(co , . . . , co ) of length 2m + 1 what the coordinate co' = <f> (co) -m m o o 
should be if T (co) = m, i.e. if co is stopped at time m 

6 ™ ( c o n, ' • • • ' ^ 1 = WA m -m m o 

It is not hard to see ( [ D - K ] ) that any finitary homomorphism <J> between 
shift dynamical systems can be described with the aid o f a stopping 
rule T and a set of dictionaries 6 . (To obtain the k t h coordinate 

m 
co£ of the image co 1 = $(&>), simply shift the original point co by k 
and apply the above procedure). Thus a finitary homomorphism is a 
seguential code, in the above sense, and our question concerning dif
ferent kinds of randomness can also be formulated as : when can a 
stationary sequence be transformed into another type o': stationary 
sequence by means of a sequential code ? (The words "stationary", are 
important h e r e ) . 
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This problem was solved recently in two articles 
([K-S] 1977 and 1978) . 

Theorem ; 

If (ft,P,T) and (f?f ,P',T') are two Bernoulli schemes 
with corresponding probability vectors p and p 1 , and entropies 

h = h(T) = - E p. log p. 
i 

h ' ^ h ( t f ) = - £ p! log p! , 
i 

then, 

a) There is a finitary homomorphism cfr from (ft,P,T) to 
(fi',P',T') iff h > h f , 

and 

b) there is a finitary isomorphism <f> between (ft,P,T) 
and (ft',P',T') iff h = h' . 

The proof is constructive, but the homomorphisms (iso
morphisms) obtained are far from being unique, and it would be in
teresting to try to reduce the arbitrary nature of <t> by imposing 
additional conditions• 

Several extensions of these results have recently ap
peared [A-DJR] , [ DJ ] , [ K-S ] 1979), and in particular it has 
been shown that ergodic automorphisms of the two-torus possess in
dependent open generators. An interesting open problem is whether 
this result remains valid for higher-dimensional tori or other 
compact groups. 

§ 8. MEASURABLE DYNAMICAL SYSTEMS 

In the preceding presentation, I have violated the 
historical sequence of events in presenting concepts and results 
in the framework of almost topological dynamical systems, a relatively 
recent concept. My reason for doing this is to be able to describe 
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the potential usefulness of this theory for applications. It would 
not be fair to do so without giving essential credit to the deve
lopment of the basic ideas of dynamical systems where it was first 
done, namely in measurable dynamical systems. In particular, §3 
comes from measurable ergodic theory and is due to Kolmogorov and 
Sinai, the measurable counterpart of the theorem of §4 is due to 
W. Krieger (here W. Parry should also mentioned, and an essential 
idea in the proof of Krieger comes from K. Meshalkin's construction), 
and the measurable counterpart of §7 has been developed by Ja. Sinai 
and D. Ornstein. The results in the almost topological theory should, 
in my opinion, be viewed as (perhaps interesting and hopefully use
ful) improvements and in some cases simplifications of the basic 
results in the measurable case, developed by the above and many other 
authors. 

§ 9. EXAMPLES AND PROBLEMS 

Instead of giving a set of examples which have been 
completely studied, I shall try to indicate the major directions of 
research, at the risk of omitting important items. This list should 
therefore not be considered as complete and certainly reflects the 
tastes of the author. The first example is the standard motivation 
for the study of dynamical systems. 

2 

Let ft the unit squarein tR , with uniform distribu
tion P. The transformation T consists of first cutting ft into two 
equal pieces along the line x = \ , then contracting each piece by a 

1 
factor 2 i n the y direction and expanding each piece by a factor 2 in 
the x direction, and finally putting the right piece above the left one: 

I | r I f | <r -

\ 

1 2 -» 1 2 - > | [ I " 
1 2 

2 
-> — 

1 
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It is not hard to see, using the binary expansi:is of the coordina
tes x and y of co = (x,'y) e ft that the above pa * :ition into sets 
1 and 2 is a finitary generator and that the co responding finitary 
isomorphism cj> (see §2) has as image the Bernoul L scheme with proba
bility vector ( ~ , ~ ) . 

1. GaA in a box 

Consider the dynamical system of V molecules which 
are situated in a box and undergo elastic colli: ons with each other 
and with the walls of the box. At the outset, ti system is assumed 
to have a fixed energy, and ft is the set of all /ectors in [R (three 
position coordinates and three velocity coordi jtes) having the given 
energy. Liouville's theorem yelds a probabili* ' distribution P on ft 
invariant under motion, and T : ft ft denotes che passage of a time 
unit (which we may fix arbitrarily). 

In the case N = 1 it is easy o see what happens (here 
(ft,P,T) is not ergodic) . If N = 2 , it was aown by Sinai that (ft,P,T) 
is ergodic and work of Gallavotti and Orr / ein shows that (ft,P,T) 
is measure theoretically isomorphic to a 'ernoulli scheme. To my 
knowledge, nothing further is known. 

3. Smooth dynamical t>ij6t<im& 

A smooth dynamical system is a dynamical system (ft,P,T) 
where ft is a compace C°° -manifold, P s a probability distribution 

oo 

having a smooth density function on f - and T is a C -diffeomorphism. 
The basic question here is : what typ.:s of dynamical systems can 
arise from smooth dynamical systems Outside of inite entropy, no 
obstructions are known either in the leasurable or almost topological 
framework. Pecin has shown that if ; im ft = 2 ans if h(tT) > 0 , 

(ft,P,T) ergodic, then (ft,P,T) brea>: up into a finite number of com
ponents which are measure theoreti 3.1 ly isomorphic to Bernoulli 
schemes, and his results have been used to construct smooth dynamical 
systems on any compact manifold wh zh are measurably isomorphic to 
Bernoulli schemes. 

Another open questic i is whether a compact manifold 
can admit a strictly ergodic difficmorphism of positive entropy, 
preserving the natural measure. 
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4. Billiard* in polygon* 

Consider one billiard ball moving at a fixed velocity 
in a fixed polygon. If the angles of the polygon are not all rational, 
no example has been shown either to be ergodic or not ergodic. This 
problem (for right triangles) is connected to the motion of two mas
ses m^ and m 2 on the unit interval with elastic reflections from, 

1 r^l 
each other and from the end points of the interval. If — arc tgy — 

is irrational, is this system ergodic ? The entropy of these systems 
is zero. 

5 . Intzsival axchanqt tuanb ^otimationb 

An interval exchange transformation is a map T : Q -> 9 
with 9 = [ o , l J , wich consists in cutting up 9 into a finite number 
of pieces and permuting these pieces in a given order. Thus T depends 
on a vector a = (a^ a ) and a permutation a : { 1 n } •+ {1,..., n} 
where a gives the length of the pieces. Something is known concerning 
interval exchange transformations, but the following interesting 
question remains open : if a is irreductible (in the sense that 
a ( { l,...,k}) = { l,...,k} implies k = n) , then is T strictly ergodic 
for almost all vectors a ? 

6. Zla*hi nidation 0(5 dynamical *y*t<tmt> with infinite, maaJbaKz 

2 

A recurrent random walk on 22 (or % ) gives rise to a 
dynamical system (ft,P,T) in a natural manner, where P is not a pro
bability measure but an infinite measure (corresponding to the in
finite invariant initial "distribution" which is counting measure 
on 72). These systems seem to be natural generalisation of Bernoulli 
schemes in the infinite measure case. Their entropies can be defined 
in a reasonable way and are all infinite. II we restrict ourselves 
to the class of recurrent walks with finite variance, then it is not 
known whether any two such walks are isomorphic or not. (Here the 
isomorphism may multiply the measure by a constant factor, since 
the measures are infinite). 

I have tried in the above to give a short sample, 
without references, of some interesting problems concerning dynamical 
systems, and I shall gladly supply references on request. 
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