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Nilpotency in group theory and topology
by

Peter Hilton

0. Introduction

Our object in this paper is to illustrate certain key features of
the methodology of mathematics by means of the example of the development of
the concept of nilpotence. We hope thereby to help to dispel certain
impressions created by the pontifical utterances of those om the fringes of
mathematics-~philosophers, physicists--who see mathematics as a static
entity and who have no real corception of the nature of mathematical aetivity,
which is a dynamical process involving dialectical change leading to higher
syntheses.l

The methodological features to which we wish to draw special
attention are generalization, relativization, application and reasoning by
analogy. All these will be illustrated in the course of the mathematical
development of the nexﬁ three sections, but we would wish to say a few
words here by way of introduction btefore embarking on the mathematical
discussion.

As to generalization, this process is, of course, familiar to
}all mathematicians. It is an art, in the sense that there is no unique
choice of generalization of a given concept——the criteria determining the
validity of a given gemeralization reside in a2 subtle blend of the scope
of the generalizaticn and the availzbility of significant theorems analysing

the generalized concept. Generalization is also an art in the sense that

Lie borrow here what is valuable from marxist terminology.
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there can be no algorithmic rule determining when it is appropriate to
generalize and which collecﬁion of familiar concepts should be subsumed in
a common zenerazlization. The satisfaction of the following principles is
clearly necessary (and just as clearly not sufficient) to justify 2 given
generalization: '(a) the 'collectiom of familiar concepts' should be bigger
than a singleteon set, (b) theorems in the generalized context should cast
light on speclal cases where the assertions contained in those theorems
were hitherto uunknowm.

It is, of course, trve that relaitivizaiicn is a special case of
generalizaticon——in other words, 'generalization' is a gemeralizatiom of
'relativization'! Nevertheless, it does seem to deserve explicit mention
since it is a common or, as one might dare to say, a sterdard type of
generalization.‘ The classical method of relativizing was to pass from a
single object X to a pair of objects (X,Y), where Y is a subobject
of ZX; moreover, it might be necessary to impose some special condition om
Y as a subobject. We give an exarmple of this‘type of relativization in
connection with Definition 1.1 where we consider a pair (N,N') comsisting
of a group N and a normal subgroup N' of XN. ther important examples
éonsist of a topological space X and a closed subspace Y of X; and a
manifold M and its boundary @M. However, the categorical point of view
suggests that we should not confine ocurselves to pairs of objects (X,Y)
in which T is a subobject of X. Rather we should broaden the concept
of relativization as follows. Given any category ¢, we form the category
Cr of C-morpnisms; thus an object of Cr is a morphism f: Y+ X of (,
and a morphism of Cr’ froe f to f' is a pair of morphisms (g,ﬁ) such

that the diagram
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commutas. Composition of morphisms in Cr is defined in the obviocus way.
Then a relattvization of ¢ 1is a £ull subcategory of Cr. This definiticn

is impliﬁitly brought into play in Section 2 when we relativize the noticm of
nilpotent space to obtain the notion of nilpgotent filre map; since the coticn
of nilpotent space is a hcmotcpy (rather than a hemolegy) notiom, the
'prineciples' of Eckmann~Hilton duality dictate that, in relativizing, we pass
from spaces to fibre maps. Another example where relativization involveé

maps which are not erxbeddings is in the concept of relaiive projective in
homological algebra; thus an object is described as E-projective if it is
procjective relative to a class E of epimorphisms.

It is paéticularly appropriate today, when there is so much
emphasis placed on applied mathematics, to highlight, in an article devoted
to an exemplification of mathematical method itself, the role of application
inside mathematics. In the text of this article we show how group-theoretical
theorems nay be applied to topology and how topological ideas and situatioms
and constructions may be applied in group. theory. Of course, we could give
macy examples of the application of topological theorems to.algebra; let us
only instance the famous result cof Adams on the non-existence of real
division algebras of dimension # 1, 2, 4, 8 over R. Thus it might be
¢laimed that, within mathematics, the method of progress by successful
application is even richer than in sc-called spplied wmathematics, since we

may make ucrestricted fwo-wagy applicatioms. It is true that mathematics
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¢an provide theorems in physics, and physics can provide inspiration for
mathematics. But there seems to be no sense in which physics, or amy other
extramathematical discipline, can provide thecrems of mathematic;. At least
it will be claimed that the mezinods of applied mathematics are by no means
specizl to applied mathematics, but instead form part of all gocd mathematics.
There is, of course, an important philosophical distinction in that, when we
form a2 mathematical model of a 'real', non-mathematical situation, there is
no meaning to the demand for accurate and precise mathematical description

of the problem situation; wheresas, when we apply a2 mathematical theorem

from one mathematical domain to study another mathematical domain, the

strict relevance of the theorem can be assured. Thus our motives in studying
the significacce of a theorem for our particular mathematical purposes, do
not coincide wi;h the set of motives of the theoretical scientist who must
beware that the mattematical model may have been so crude an approximation toreality
that the conclusions drawn from it are unacceptable. Nevertheless, it would
appear that no case can be made out for separating cff pure and applied
mathematics as separate disciplines. There should only be mathematicianms,

and students of rwathematics, learning how to do mathematics, to make
mathematics and to use mathematics.

The pattern of development in the subsequent sections of this
article illustrate one point which, it would seem, it is very necessary to
emphasize, in view of the expectations entertzined by many advocating more
emphasis on applied mathematics, and in view of the claims made for problem-
solving as a dominant thread in cathematical education. I refer to the fact
that applications first make their appearance relatively late in our exposition.
The reason is clear: in order to make useful applications there must be a
substantizl body of theory to apply; and, in order to solve significant

problems, it must be pessible Zo set those problems iz an appropriate theoretical



context. In the traditional method of teaching applied mathematics, tke
necessity for a strong theoretical base in mathematics 1is usually masked by
one of two devices. FEither the zpplication is given immediately following
the elaboration of the appropriate mathematical theory, or the appropriate
theory i; simply presented to the student more or less ready-made and he is
left to wonder how it was so clear (to the textbook writer or the lecturer)
that that was indeed the appropriate théory. It seems fair to say that,

by those devices, it is possible to describe soclutions of problems already
solved but not to describe how problems are solved. Genuine applied math-
enatics ig very difficult; and an essential prerequisite is a strong math-
ematical preparation.

In talking of reasoning by aralogy we do mot intend to convey the
impression tbat we use analogy to achieve mathematical proof--although we
would also not wish to deny the possibility of doing so im a speéific math-
ematical context. Here, in this article, we confipme ourselves to the
elaboration of a situation in which we employ intuition and experience to
suggest that an idea, taken from a cartain mathematical situation, might
prove fruitful, if intelligently interpreted, in a somewhat different
situation. This type of reasoning is, of course, of the very stuff of
rational behavior, and we owe to René Thom the observation that a principal
defect of an elementary mathematics education based on elementary set theory
(Venn diagrams) is precisely that it is bound to igmore reasoning by analogy.
We also owe to Thom the exciting possibility of building reasoning by analogy

itself on the foundation of mathemazical analysis.l

l'All these points show what limitations are set by set theory for the

description of the usual thought precesses. Our usual thinking depeands on
deep psychic mechanisms, as for example 'analogy', which cannot be reduced to
set-theoretical operations. An important role is played in such cases by the
organizing isomorphism between semantic fields which are connmected by homology
with eachk other'. (my transiciion) R. Thom, 'Mcderne' Mathematik-Eir erzieher-
ischer und philosophischer Irrtum?, Mathematiker {iber die Mathematik, Springer
(1974}, p. 388.
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This article would become inordimately long wera we to include all
proofs. We have sketched some, totally cmitted others. The results ciﬁed
are to be found in published articles by the author, Guido Mislin, Joseph
Roitberg and David Singer, together and severally; the main part in the
menograph [EMR]. Since our principal purpose is to illustrate certain
characteristic methods of wathematics in action, 2nd not to announce new
results in group theory and topology, we have felt justified in departing
from the usual canons of mathematical exposition, and hope that no loss of
clarity will result.

I would like to thank M. Maurice Loi for inviting me to speak in
his seminar at the Ecole Normale Supérieure,and thus stimulating me to give

thought to the problems adumbrated in this article.
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1. Concent of nilpotence in group theory

Leat N be a group. We define the lower central series of N

by the rule
(1.1) iy =y, ¥y - nrhe, 121

and we say that N is nilrotent of class =c¢, and write nil N = ¢,

if Fc+lN = {1}. Thus the concept of nilpotent group generalizes that
of commutative group: N is commutative if and only if nil N =< 1. We
write N for the category of nilpotent groups, Nc for the full

subcategory of groups N with o2il W = c.

Examples (a) Let N = N(p) = {a,blap = pP = (a,b]}, where p 1s a fixed
prime number. It is easy tc see that the centre, 2ZN, of N coincides
with the commutator subgroup [N,N] = FZN, and is cyclic of order p.

For [a,b]P = [2,bP] = 1. Moreover N/ZN is generatad by the residue
classes E, b of a, b and L Ep = 1, Thus we have a central

extension
(1.2) Z/p > N(p) —> Z/p x Z/p,

showing that |N| = p° acd il N=2. If p=2, N is ‘the celebrated
quaternionic group of order 8.

(b) Let F = F(xa) be the free group on the symbols (xa)
and let H(xa) = F/Fc+lF. Then N(xa) is the free nilpotent group of
elcss ¢ on the symtols (xa). Every group in Hc is the homomeorphic
image of N(xa), for some suitable choice of (xa). This example also

shows that there are groups of arbitrary nilpotency—hardly surprising!
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Cur first main result gereralizes the observation, based omn

(1.2) in Example (a), that N(p) € NZ'

Theorem 1.1. Let N' >> N —>> N" be a central extensicn of groups
. . e - . 1
(that is, N' 1s in the center of N and N/N' = N"). Then

il ¥ = nil N = pnil ¥" + 1.

Proof. That =nil N" = nil N is obvious from (1.1) and requires mo
hypothesis of centrality. ' Ca the other hand, if F°+1N" = (1}, then
rtly C N' and FC+ZN.S (N,¥'] = {1}, since N' is central.

We now seek to gereralize Theorem l.1. We must bear in mind
that, given an extension of groups N' > N —=> N", we cannot infer
the nilpotence of N from that of N' and N" (the converse implication,
on the other hand, obviously hold;). For let N = S3, the symmetric group
on 3 syﬁbélﬁ, 1, f, 3. If x 1is the cyclic permutation (123),
then x generates a normal subgroup N' =2Z/3 apd N" = N/N' = Z/2.
Thus N' and N" are nilpotent--indeed, commutative--but N is not
nilpotent. For an easy calculation shows that PiN = N', 12 2., Thus
our generalization cannot consist of simply discarding the centrality
condition in Theorem l.l; we must weaken it judiciously. We are indeed

led to the following relativization of the concept of nilpotency.

Definition 1.1. Let N' be normal in N, written N' < N. Then the

(relative) lcwer central series of N in N' 4is given by

(1.3) I'i'IN' -y, I‘§+1N' - [N,Fé‘N'], 121,

lOur result remains valid if we adopt the convention, as we will
henceforth, that N not nilpotent e nil N = =,
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We say that the embedding of N' 1in W dis nilpotent of class =c¢ and
write ail X' sc if S = (1

Notice that we have simultaneously rslativized nilpotency

' 4s central in N 1if and

i P
(FiN = I''N) and generalizec centrality (¥
&
only if nilVN’ = 1). Notice also that each F¥$' is normal im N.
& N

We ncw generalize Theorem 1.1.

Theorem 1.1g. Let N' > N —>> N" be an extensicon of groups. Then

max(nil N, ail N') = nil ¥ = il X" + nile'.

Proof. We easily generalize the argument of Theorem l1.l1. Im particular,
g0 1ty . 1), SN = 1), then rMhwewt s rhw, A e R, L,
potdtly ¢ ¥y . (1.
- N
Let G De a group. In the theory of G-modules, there is
also a notion very much akin to that of the lower central series. Indeed,
if A 1s a G-module, we define the lower central G-sertes of A by the rule

1 141
(1.4) Tgh =&, ToA = gp(a=xa), x €6, a € ToA, 12 1;

and we say that A 1is G-nilpotent of class <c, written nilGA <e,

¢+l
if FG A = {0}, Notice that each PéA -1s a submodule of A, and that

(1.5) ré*lA = ré(réA),
Just as nilpotency generalized commutativity (c=1), so here the case
c =1 1is the case of trivicl action of G on A. This brings the ideas of
nilpotency and G-nilpotency very close, since a commutative group 1s precisely a
group N such that the acticn of N on itself by conjugation is trivial.
As we shall see in Section 2, the two concepts of
nilpotent group and G~nilpotent module are the essential ingredients
in our application of nilpotency to topology. Here we pursue our

programme of generalizing our concepts, here motivated by the desire

to £find a useful ccmmon zeneralizztion of the two concepts just
2
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mentioned; of course, we should select such 2 gemeralization to irnclude
also relative nilpotency as expressed in Definition 1.1.

This last remark provides the clue. For if N' ¢ N then N
operates on N' by conjugaticn; thus we may hope to find a fruitful
generalization of Defiriticn 1.1 and of the lower central G-series of
a G-module by supposing ¥ to be a G-group, tkat is, a group on which

the group G acts, acd definipg a lower central G-series of N.

Definitiom 1.2. Let N be a G-group. We define the lower central

G-series of N by the rule
(1.6) TN =%, I7N = gp(axb.a™d ), 2 €N, b € Io¥,x €6, 12 1;

and we say that N d1s G-nilpotent of class =c, written nilGN =e,
i 1SN = (1), |
It is immedlately obvious that this definition coincides
with (1.4) above if N 1is commutative. It is also easy to see that
Definition 1.2 generalizes Definition 1.1. For suppose N 9 G and
let G operate on N by conjugation. We then have, from Definitions
1.1 and 1.2, two definitions of PéN, and to see that they coincide,
it suffices to verify that i{f M ¢« G and if K = gp(axbx-la—lb-l), a €N,
b €M, x € G, then K = [G,M].
The following remarks are also pertinent: (2) if N 1is
G-nilpotent it is certaialy nilpotent (as a group) and nil N = nilGN;
(b) each PéN, in (1.6), is a normal G-closed subgroup of N;
() Te™hr = gp([N,rg¥], xb.b™h), x €6, b € Iel; (d) (1.5) does not
generalize——on the other hand, we still have the inequality Pé(réN)fiFé+1N,

80 that we may infer


http://gpCa.xb.a~V%221

-11-
(1.7) nilGFéN S il ¥ - 1.

The relation (1.7) is, naturally, very usefil in fashioning
preofs by induction onm G-nilpotency class.
A more surprisirg observation is that not only can Definition
1.1 be subsumed under Definition 1.2, but also the other way round!
For let N be a G-group. We form the semidirect prodictof N and G;
thus P = N] G 1s definad as follows. The underlyirng set of P
is the cartesian product of the underlying sets of N and G, and the

group operation in P is given by
(1.8) (al,xl)(az,xz) = (al.xlaz,xlxz).

There s an obviocus embedding ¥ >—> P and a projection P —> G,

giving rise to a group extemnsion
(1.9) ' o N >>P —> G

which splits on the right in the sense that there is a section homo-

morphism G -+ P (the obvious embedding). We then have
Theorem 1.3. F;N - FGL.

Proof. We argue by induction on i, the case i = 1 being trivial.

Now if we conjugate a € N by (c,x) €P, ¢ € N, x € G, we obtain

c.xa.c-l. Thus, let us assume PéN = FéN, for some {1 2 1. The

preceding remark, together with Definition 1.1, immediately shows that a

system of gemerators of F;+1N consists of elements of the form a.xb.a_lb-l,

a €N, Dbc¢ FéN, X € G, establishing the inductive hypothesis and the theoremn.
We next draw an irmediate comsequenca from Theorems l.lg

and 1.3.
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Corollary 1.4, Let N bDe c G-group and let P be the semidirect

Gy

preduct of N ard G. Then P <s nilpotent if ard only if G <

nilpotent ard N is G-nilpotent. Irdeed,
max(nil G,nilGN) S pil P £ nil G + nilGH.

We close this section with 2z theorem which shows that the
G-nilpotence of a group N 1is, in a very strict semse, determined by
the nilpotence of N and the G-nilpotence of Nab’ the zbelianization
of ¥. It is thus a generalization of a very apt kind of the two

nilpotency concepts which led to its formulatiom.

Theorer 1.5. Let N De a G-group. Then N <& G-nilrotent if and cnly

if N <s a nilpotent group and N, 8 G-nilpotent.

b

Proof. 'The entire argﬁﬁént is eséentialiy due to Derek Robimson [R],
although he considered a very slightly different situation. Certainly if
N 1is G-pilpotemt it is nilpotent; and, just as certainly, if N is
G-nilpoctent then aﬁy G-homomorphic image, and so in particular Nab’ is
G-nilpotent, Conversely, let Na

that then 8# Nab’ the i-fold tensor power of M

b be G-nilpotent. It 1s easy to see
ab’ with diagonal action,
b

is also G-nilpotent. But FiN/Fi+lN, as a G-homcmorphic image of @ Nab’

is also G-nilpotent. Since N 1is nilpotent and

(1.10) rhy/ Py o— w/rP Ty — wry

is a central extension of G-groups, Theorem 1.5 follows from (1.10) by

induction on 1, using the follcwing easy gereralizaticr of Theorez 1.1.

Theorem 1.1g'. Let N' > N —> X" be g central extension of G-groups.

Then
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max(nilGN",nil §') < nilGN < nilGH" + nilGN'.

G

The reader should rnow feormulate 2 common generalization of Theorems

l.1g and 1l.1g"'.
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2. Coucent of nilpotence in tovologcy

The concept of a ntlpctent space is due to E. Dror. We
consider the homotory category of (based) spaces of the homotopy type of
a connected polyhedron and (based) homotopy classaes of continuous maps.
Then a space X 1s said to be nilpotent if its fundamental group nlx
ls a2 pilpotent group and operates nilpotently on the higher homotopy

groups nnx, n 2 2. Notice that this definition involves precisely the

first two definitions of Secticn 1, sirce wuX is abelian for n = 2.

Examples (a) If X 4is simply-conmmected it is, of course, nilpotent.

(b) A comnected topolegical group is nilpotent; indeed, any
stmple space (in the classical sense) is nilpotent.

(¢) Let G be a nilpotent Lie group (not necessarily commected)
and ieﬁ BG be its ciéssifying épace. Thez BG is a nilpotemt space.

(d) Let X be nilpotent, let Y be compact, and let C be a
component of the functicn space KY. Then C 1is nilpotent. Note, in
this example, that, even if we took X to be simply-counected, we could
still cnly conclude that C 1is nilpotent.

Nilpotent spaces are of interest in topology because they include
important classes of spaces, as the examples show (in particular, they
constitute the smallest class containing the simply-connected spaces and
closed under the construction of fumction spaces).

Since the notiorms of nilpotent group and nilpotent m-module turn
out to be relevantin topology, it is to be expected that their commomn
generalization, embcdied in Definition 1.2, will alsc be relevant. Indeed,

it is precisely what we need to relativize the definition of a milpotent
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space. Since this latter concept is a homotepy concept (rather thaan a

homology concept), it is to be expected that the relativization will be

to a fifre map, rather than to a pair of spaces. Now if f: E+ B is a

fibre map with fibre ¥, then le operates ou thke homotopy grcups of F.

This relativizes the absolute situvation, to be interpreted as X -+ o, where

the '"fibre' is again X and we have the operatiom of ﬂlX on itself by

X ou the higher hamotopy groups

conjugation and the usual operation of ﬂl

X, 1= 2.

i

Definition 2.1. The fibre map £: E -+ B, with fibre ¥, is nilpotent if all

spaces are connected and if w_E operates nilpotently o w_ F, i = 1.

1
Note that the operatiom of =«

i

E on n.F 1is to be nilpotent in

1 1
precisely the sense of Definition 1.2. To demomstrate the 'correctness'
of Definition 2.1 we enunciate two theorems, of.which the second 1is the

relativization of the first. For an interpretation and proof of these

theorems see [EMR;Corollary II.2.12 and Theorem II.2.14].

Theorem 2.1. The space X <8 nilpotent if and only if its Postnikov

system acdmits a prineipal refinement.

Theorem 2.1r. The map £ <is nilpotent if ard only if its Mcore-Postnikov

system admits a principal refinement.

The following result may be regarded as in analogy with Theorem 1l.1l.

Theorem 2.2. Let f£: E— B be a fibre map with fibre F, all spaces

beirg conrected. Ther F {8 nilpotent if E <is nilpotent. Indeed,

nilﬂ F"iF = nilﬂ EﬂiE + 1.

1 1

The analogy is very close; for, in the 'fibration'
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(2.1) B~ F » E,

where (B 1s the space of loops on B, the image of wlﬂB is the center

of vl? so we may regard (2.1) as a 'central fibratiom'.
We turn now to Theorem 1.5, Let us recall that we may associate

with a group N the Eilenberg-Maclane spzce K(N,1l), characterized by the

property that
(2.2) le(N,l) = N, wiK(N,l) =0, 12 2.

It is easy to see that K(N,l) is nilpotent if and only i{f N 4is nilpotent.
Moreover, if G operates on ¥, then G operates as a group of homotopy
classes of self-homotopy equivalences em XK(N,1). Then Theorem 1.5 asserts

that, if X = X(N,1), then G operates nilpotently on #. X if and only if

1
X 1is pilpotent and G operates nilpotently onl HIX. Now it is plainly ocut

of the question that; for an arbitrary connected space X on which G

operates, the fact that G operates nilpotently on n.X, or indeed on

1
nix, 1 =41i=<n, where n = =, could imply the nilpotence of X. For, if

G operates trivially, it operates nilpotently on n,X, 1{ = 2, and it

i

lX is nllpotent. Thus

if we seek to generalize Theorem 1.5 in the direction of nilpotent spaces it

operates nilpotently on ﬂlX provided only that =«

will be neceésary to postulate the nilpotence of our space X. Indeed, we

then find the following theorem [H]:

Theorem 2.3. Let X be a ntlpotent space on which G cperates, cnd let

n 2 2. Then the following stciements cre equivalent:

1Recall that, for any connected space X, Hl

X 1is obtained by abeliznizing =, X.
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(1] G operates nilpctertly on "% 1=41<m;

(iZ) G operazes rnilpotenily on HBX, 1 =1 <n.

We point out that not ounly does Theorem 2.3 generalize Theorem 1.5;
it also aprlies it. TFor we are not going to be able to pass from statement
(11) to statement (i) without using Theorem 1.5 to infer from (ii) that G
operates nilpotently on uix.

There is arother essential ingredient in the proof of Theoram 2.3.
We have the group G acting (as a group of self-homeomorphisms or as a group
of homotopy classes of self-homotopy equivalences) on the space X. Then, for

a given 121, G acts on n.X ard on ﬁiX, and an acts on ﬂiX. It

1
is important to ask how these acticns are related. It turns out that,writing

K for ﬂlX and N for nix, the single controlling relatiom is
(2.3) - x(a.b) = xa.xb,x € G, a € K, b € N.

We are thus led to mzke the following definition.

Definition 2.2. The G-group K ocperates on the G-group N 1if K operates

as a group on the group N, subject to the relation (2.3).

We will study some consequences of this definition in the next
section. For now we note that, whereas Theorem 2.3 involves an application of
group theory to topology, Definition 2.2 makes a movement in the cpposite
direction, from topology back to group theory.

Our firét observation in this section 1is that Theorem 2.3 may be
applied to the study of nilpotent fibrations (Definiticm 2.1). In any fibratiocm
F~+E—>B we have, classically, an action of n,B on the Zomolcgy groups of

1

F. Ve may the prove:
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Corollary 2.4. Let F - E-= B be a jibraiticn with all spcces connected.

-~ o

Ther the [ii

nilpotent I and only i{f F <s nilpotent and 3B

(%)
Oy
3
N
ot
[e]
O
3
.
[

orercites nilzotently on HF, 12 1.

Note that it makes no differencs here whether we speak ¢f the

o rati
operatiocn of nlB on hiF or of the operation of ﬁlE on HiF' The

former formulation is better since we normally have better control oum the
operation of nlB; but the lattar sets in better evidence the resemblance
of Corollary 2.4 to Theorem 1.5. Note also that the conditiom that ﬁlB

operate nilpotently on HiF appears to be precisely the condition enabling
us to apply the classical spectral sequence methods of Serre and Eilemberg-
Moore to the study of the homology groups associated with a fibration; see,

for example, [ER2].
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3. Further results

Let us return now to group theory. We place ourselves in the
context of relatiom (2.3), that is, we have the G-group K acting on the
G-group N in suck a way that (2.3) is satisfied. Form, as in Section 1,
the semidirect product P = KJG and define an operation of P on N by the

Tule
(3.1) (a,x)b = a.xb, x € G, a € K, b € N.

Propositicn 3.1. The rule (3.1) defines a group actiom ¢f P on N <if and

only if (2.3) holds. The rule (3.1) then gives the unique action of P on
N exterding the given cotioms of X and G.

We may now generalize the results of Section 1 from groups to G-
groups. Theorem l.lg' was already such a generalizatiom, namely of Theorem 1l.1—
but we may ncw'generalize Theorem 1.1l.g! First note that if N <« K in the
category of G-groups, then conjugation is an action of the G-group K on the

G-group N in the semse that (2.3) holds,

Theorem 3.2. Let N' >—> N —>> N" be an extension of G-grours and let

P = N|G. Then

max(nilGN",uil.PN’) < nil N = nilGN" + nilPN' .

G

Again, we may generalize Corollary 1.6 to

Theorem 3.3. Let N, K be G-grcups witn N < K. Then K <18 G-nilpotent
if and enly i N 1is nilpotent and K/(¥,N] <s G-nilpotent.

Note that we do not need to postulate ¥ to be G-nilpotent in
Theorem 3.3. For if K/[N,N] 1s G-nilpotemnt, so too is Nab' Thus, by
Theorem 1.5, if also N {is nilpotent, then N is G-nilpotent.

Reverting to (3.1) ome may prove the following result.
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Theorem 3.4. Let the G-grcup X act on the G-group N so that (2.3)
is satiafied and let P = K|G et on N By (3.1). Thern N is P-nilpotent

tf and cnly if N <8 K-ntlrotent and G-nilpotent.

-

Indeed, Stammbach has proved that

h \] \]

(3.2) nilPN = (nilKJ)(uilGN)
From this and Theorem 3.2 we infer

Corollary 3.5. Let N' >—> N —=> N" be an extenston of G-groups. Then

N s G-nilpotent if and only if ¥N', N" are G-nilpotent and N' <sg
N-nilpotent.
We may improve this statement by observing that, given any
£

extension N' > N ——> N" there is always an induced actiom of X"

on N;b, given by

ca.b'[N',N'] = ab'a T[¥',N'], a € N, b' € N'.
Then Theorem 1.5 enables us to deduce, from Corollary 3.5,

Corollary 3.6. Let N' >—> N —> N" be an extension cf G-groups. Then

N s G-nilpetent if and only if N', N" are G-nilpotent ard N;b is
N"-nilpotent.

The advantage of this formulation is that the condition given for
N to be G-nilpotent makes no gzention of G. Thus we may regard the
statement of Corollary 3.6 as follows. Suppose given a nilpotent action
of N" om N;b and let N' >— N —>> N" be any extension cf G-groups
compatible with this action. Then XN is G-nilpotent if and only if W'

and ¥ are G-nilpotent. Manifestly, the assertion in this ferm is a

'G~generalization’.
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Finally let us return to topology. Theorems of the type of Theorem
2.3, asserting that the homotopy grcups of a space have a certain property
up to a given dime:siou if and only if the homology groups have the same
property up tc the same dimernsion, are familiar in homotopy theory. The
classical result of this kind is due to Hurewicz who proved that the Romoltopy
groups of a2 simply-conmected space X vanish in dimensions 1 < an if and
only 1f the homology groups vanish in the same &imensions. Moreover, &as
Burewicz proved, the so-called Hurewicz homomorphism hi wnx - an is then
an iscmorphism. Serre [S] derived a bveautiful generalizction of the
Burewicz Theorem. He defired, axiomaticslly, a2 class of abelian groups C
(the trivial groups form a class) and proved that the homotopy groups of a
simply-connected space ¥ belong to C ir dimensions 1 < n 1if and only
if the homology groups of X, in the sazme dimensiouns, belong io C, and that
then the Eurewicz homomorphism t1:knx - EnX is a C-isomorphism, meaning
that the kermel ané cokermel of h are groups in C. A nilpoteant versiocn
of this result was proved in [ED] and [HR1]: given a suitable definition
of a class of nilpotent groups, then it may be proved that the homotopy
groups of a nilpotent space belong to C, in dimersions i < n, if and only
if the homology groups of X, in the same dimensions, belong to C, and
that then the Hurewilcz homomorphism h induces a C-isomorphism
X Ykilled; thus

1

n;X = nnX/FiﬂnX, wkere 7w = 7,X. The formulation of Theorem 2.3 suggests

h': uAX + B X, where n;X is vnx with the operators frem

the following:
(a) It should be possible to formulate axiomatically a definitiom of a

class C of nilpotent G-grcups;

(b) The G-nilpotent G-groups shculd then satisfy the axioms for such a

class;
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(¢) There should be a theorem of Hurewicz type for nilpotant G-spaces,
that is, nilpotent spaces X on which G acts, asserting that the -
homotopy groups of such a space X belong to the class C, in dimemnsions
i < n, 1f and only 1f the homology groups of X beleong to C in the same
dimensions, and h': w;K - HnX is then a C~isomorphism.

It turns out that this programme can be carried out, so that Theorem
2.3 1s exhibited as a partizl statement of a special case of a genmeral
Burewicz Theorem mod C for nilpotent G-spcces. Crucial to this programme
is the cobservation that ocur cornditien (2.3)--in the case that ¥ is
commutative-—is precilsely the condition mesdad to ensure that G acts ou
the homology groups Hm(K,N). Thus we may build into our theory of G-groups

the usual homology theory of groups.
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