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Nilpotency in group theory and topology 

by 

Peter Hilt:oQ 

O. Introduction 

Our object in this paper is to illustrate certain key features of 

the methodology of mathematics by means of the example of the development of 

the concept of nilpotence. We hope thereby to help to dispel certain 

impressions created by the pontifical utterances of those on the fringes of 

mat.hematics~philosophers, physicists--who see mathematics as a static 

entity and who have no real cocception of the nature of matnematica~activity.J 

which is a dynamical process involving dialectical change leading to higher 
. 1 

syntheses. 

The methodological features to which we wish to draw special 

attention are generatization.J retativization, apptication and reasoning by 

a:naZogy. All thes.e will be illustrated in the course of the mathematical 

development of the next three sections, but we would wish to say a few 

words here by way of introduction before embarking on the mathematical 

discussion'. 

As to generaZization, this process is, of course, familiar to 

all mathematicians. It is an art, in the·sense that there is no unique 

choice of generalization of a given concept--the criteria determining the 

validity of a given generalization reside in a subtle blend of the scope 

of the generalization and the availability of significant theorems analysing 

the generalized concept. Generalization is also an art in the sense that 

lwe borrow here what is valuabie from marxist terminology. 
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there can be no algorithmic rule determining when it is appropriate to 

generalize and which collection of familiar concepts should be subsumed in 

a common generalization. The satisfaction of the following principles is 

clearly necessary (and just as clearly not sufficient) to justify a given 

generalization: (a) the 'collection of familiar concepts1 should be bigger 

than a singleton set, (b) theorems in the generalized context should cast 

light on special cases where the assertions contained in those theorems 

were hitherto unknown. 

It is, of course, true that relativization is a special case of 

generalization—in other words, generalization1 is a generalization of 

Relativization1! Nevertheless, it does seem to deserve explicit mention 

since it is a common or, as one might dare to say, a standard type of 

generalization. The classical method of relativizing was to pass from a 

single object X to a pair of objects (X,Y), where Y is a subobject 

of X; moreover, it might be necessary to impose some special condition on 

Y as a subobject. We give an example of this type of relativization in 

connection with Definition 1.1 where we consider a pair (N,Nf) consisting 

of a group N and a normal subgroup N f of N. Other important examples 

consist of a topological space X and a closed subspace Y of X; and a 

manifold M and its boundary 3M. However, the categorical point of view 

suggests that we should not confine ourselves to pairs of objects (X,Y) 

in which Y is a subobject of X. Rather we should broaden the concept 

of relativization as follows. Given any category C, we form the category 

C r of C-Korpki&ns; thus an object of C r is a morphism f: Y X of C, 

and a morphism of C r, from f to f1 is a pair of morphisms (g,h) such 

that the diagram 
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Y f » X 

commutes. Composition of morphisms in C r is defined in the obvious way. 

Then a re.lativization of C is a full subcategory of C . This definition 

is implicitly brought into play in Section 2 when we ralativize the notion of 

nilpotent space to obtain the notion of nilpotent ficre map; since the notion 

of nUpotent space is a hcmotcpy (rather than a homology) notion, the 

'principles1 of Eckmann-Hilton duality dictate that, in relativizing, we pass 

from spaces to fibre maps* Another exanple where relativization involves 

maps which are not embeddings is in the concept of relative projective in 

homological algebra; thus an object is described as E-projective if it is 

projective relative to a class E of epimorphisms. 

It is particularly appropriate today, when there is so much 

emphasis placed on applied mathematics, to highlight, in an article devoted 

to an exemplification of mathematical method itself, the role of application 

inside mathematics. In the text of this article we show how group-theoretical 

theorems may be applied to topology and how topological ideas and situations 

and constructions may be applied in group, theory. Of course, we could give 

many examples of the application of topological theorems to algebra; let us 

only instance the famous result of Adams on the non-existence of real 

division algebras of dimension ^ 1, 2, 4, 8 over *R. Thus it might be 

claimed that, within mathematics, the method of progress by successful 

application is even richer than in so-called applied mathematics,- since we 

may make unrestricted two-way applications. It is true that mathematics 
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can provide theorems in physics, and physics can provide inspiration for 

mathematics. But there seems to be no sense in which physics, or any other 

extramathematical discipline, can provide theorems of mathematics. At least 

it will be claimed that the methods of applied mathematics are by no means 

special to applied mathematics, but instead form part of all good mathematics. 

There is, of course, an important philosophical distinction in that, when we 

form a mathematical model of a 'real', non-mathematical situation, there is 

no meaning to the demand for accurate and precise mathematical description 

of the problem situation; whereas, when we apply a mathematical theorem 

from one mathematical domain to study another mathematical domain, the 

strict relevance of the theorem can be assured. Thus our motives in studying 

the significance of a theorem for our particular mathematical purposes, do 

not coincide with the set of motives of the theoretical scientist who must 

beware that the mathematical model may have been so crude an approximation to reality 

that the conclusions drawn from it are unacceptable. Nevertheless, it would 

appear that no case can be made out for separating off pure and applied 

mathematics as separate disciplines. There should only be mathematicians, 

and students of mathematics, learning how to do mathematics, to make 

mathematics and to use mathematics. 

The pattern of development in the subsequent sections of this 

article illustrate one point which, it would seem, it is very necessary to 

emphasize, in view of the expectations entertained by many advocating more 

emphasis on applied mathematics, and in view of the claims made for problem-

solving as a dominant thread in mathematical education. I refer to the fact 

that applications first make their appearance relatively late in our exposition. 

The reason is clear: in order to make useful applications there must be a 

substantial body of theory to apply; and, in order to solve significant 

problems, it must be possible to set those problems in an appropriate theoretical 
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context. In the traditional method of teaching applied mathematics, the 

necessity for a strong theoretical base in mathematics is usually masked by 

one of two devices. Either the application is given immediately following 

the elaboration of the appropriate mathematical theory, or the appropriate 

theory is simply presented to the student more or less ready-made and he is 

left to wonder how it was so clear (to the textbook writer or the lecturer) 

that that was indeed the appropriate theory. It seems fair to say that, 

by those devices, it is possible to describe solutions of problems already 

solved but not to describe how problems are solved. Genuine applied math­

ematics is very difficult; and an essential prerequisite is a strong math­

ematical preparation. 

In talking of reasoning by analogy we do not intend to convey the 

impression that we use analogy to achieve mathematical proof—although we 

would also not wish to deny the possibility of doing so in a specific math­

ematical context. Here, in this article, we confine ourselves to the 

elaboration of a situation in which we employ intuition and experience to 

suggest that an idea, taken from a certain mathematical situation, might 

prove fruitful, if intelligently interpreted, in a somewhat different 

situation. This type of reasoning is, of course, of the very stuff of 

rational behavior, and we owe to René Thorn the observation that a principal 

defect of an elementary mathematics education based on elementary set theory 

(Venn diagrams) is precisely that it is bound to ignore reasoning by analogy. 

We also owe to Thorn the exciting possibility of building reasoning by analogy 

itself on the foundation of mathematical analysis."*" 

"̂'All these points show what limitations are set by set theory for the 
description of the usual thought processes. Our usual thinking depends on 
deep psychic mechanisms, as for example 'analogy1, which cannot be reduced to 
set-theoretical operations. An important role is played in such cases by the 
organizing isomorphism between semantic fields which are connected by homology 
with each other1, (my translation) R. Thorn, 'Moderne1 Mathematik-Ein erzieher-
ischer und philosophischer Irrtum?, Mathematiker uber die Mathematik, Springer 
(1974), p. 388. 



-6-

This article would become inordinately long were we to include all 

proofs. We have sketched some, totally omitted others. The results cited 

are to be found in published articles by the author, Guido Mislin, Joseph 

Roitberg and David Singer, together and severally; the main part in the 

monograph [EHR]. Since our principal purpose is to illustrate certain 

characteristic methods of mathematics in action, and not to announce new 

results in group theory and topology, we have felt justified in departing 

from the usual canons of mathematical exposition, and hope that no loss of 

clarity will result. 

I would like to thank M. Maurice Loi for inviting me to speak in 

his seminar at the Ecole Normale Supérieure,and thus stimulating me to give 

thought to the problems adumbrated in this article. 
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1. Concept of nilpotence in group theory 

Let N be a group. We define the lower central series of N 

by the rule 

(1.1) vh « N, r i + 1N - [N.rSj], ± 2 1; 

and we say that N is nilpotent of class ^c, and write nil N 5 c, 

if F C + 1N * {1}. Thus the concept of nilpotent group generalizes that 

of commutative group: N is commutative if and only if nil N i l . We 

write N for the category of nilpotent groups, N for the full 

subcategory of groups N with nil N S c. 

Examples (a) Let N * H(p) = {a,bjaP » b P * [a,b]>, where p is a fixed 

prime number. It is easy to see that the centre, ZN, of N coincides 

with the commutator subgroup [N,N] = T^N, and is cyclic of order p. 

For [a,b] p * [a,bP] * 1. Moreover N/ZN is generated by the residue 

classes a, b of a, b and a P * b P 8 8 1. Thus we have a central 

extension 

(1.2) Z/p ?—*- N(p) — » 2/p * Z/p, 

showing that JNJ » p^ and nil N « 2 . If p 8 8 2, N is the celebrated 

quaternionic group of order 8. 

(b) Let F s F(X q) be the free group on the symbols (x^) 

and let N(x^) * F/r c + 1F. Then N(x ) is the free nilpotent group of 

class c on the symbols (x^)• Every group in N is the homomorphic 

image of N(x ), for some suitable choice of (x ), This example also ct a 
shows that there are groups of arbitrary nilpotency—hardly surprising! 
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Our first main result generalizes the observation, based on 

(1.2) in Example (a), that N(p) € N 2* 

Theoreal-1. Let N T * > N — » N" be a central extension of arouvs 

ftfozt isj N f is in tfcg center of N aruf N/NT - N"J. Then' 

nil N" < nil N < nil N" + 1. 

Proof. That nil N w < nil N is obvious from (1.1) and requires no 

hypothesis of centrality. On the other hand, if r c + 1N , f * {!}, then 

r ^ C H ' and r ^ c [N,Nf] - {!}, since N f is central. 

We now seek to generalize Theorem 1.1. We must bear in mind 

that, given an extension of groups N f > — N — N " , we cannot infer 

the nilpotence of N from that of N f and N" (the converse implication, 

on the other hand, obviously holds). For let N • the symmetric group 

on 3 symbols, 1, 2, 3. If x is the cyclic permutation (123), 

then x generates a normal subgroup N' »22/3 and N" 8 8 N/N? * Z/2. 

Thus N f and N,f are nilpotent—indeed, commutative—but N is not 

nilpotent. For an easy calculation shows that r*N 38 N f, i > 2. Thus 

our generalization cannot consist of simply discarding the centrality 

condition in Theorem 1.1; we must weaken it judiciously. We are indeed 

, led to the following relativization of the concept of nilpotency. 

Definition 1.1. Let N T be normal in N, written N f < N. Then the 

(relative) lower central series of N in N f is given by 

(1.3) r^N1 « N f, r^ + 1N' = [N.r^N1]. ± 2 1-

^Our result remains valid if we adopt the convention, as we will 
henceforth, that N not nilpotent «• nil N » 00. 
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We say that the embedding of N f in K is nilpotent of class <c and 

write ailjjN1 < c if ~ J j + 1 N ? * { ! } • 

Notice that we have simultaneously relativized nilpotency 

(r^N - rSl) and generalized central!ty (N f is central in N if and 

only if niljjN1 ^ 1). Notice also that each F^N1 is normal in N. 

We new generalize Theorem 1.1. 

Theorem l.lg. Let N f -—*~ N — » N" be an extension of groups. Then 

max (nil N", nil^N') < nil N < nil N" + nilj^1 • 

Proof. We easily generalize the argument of Theorem 1.1. In particular, 

if r c + V « {1}, r * + V » {1}, then r C + 3H £ N f * r j s f , r J + 2N £ r^If, 

r^Hrc r f V * {1}. 
Let G be a group. In the theory of G-modules, there is 

also a notion very much akin to that of the lower central series. Indeed, 

if A is a G-module, we define the lower central Q-series of A by the rule 

( 1 - 4 ) R G A * A ' F G + 1 a " » < ™ > i * € G , a € T^A, i > 1; 

and we say that A is G-nilpotent of class <c, written nilj^ < c, 

it r G A - CO). Notice that each f^A Is a mtmoduU of A, and that 

« • « rJ + iA - ri(rjl) . 

Just as nilpotency generalized commutativity (c * 1) , so here the case 

c * 1 is the case of trivial action of G on A. This brings the ideas of 

nilpotency and G-nilpotency very close, since a commutative group is precisely a 

group N such that the action of N on itself by conjugation is trivial. 
As we shall see in Section 2, the two concepts of 

nilpotent group and G-nilpotent module are the essential ingredients 

in our application of nilpotency to topology. Hers we pursue our 

programme of generalizing our concepts, here motivated by the desire 

to find a useful cenmon generalization of the two concepts just 
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menticned; of course, we should select such a generalization to include 

also relative nilpotency as expressed in Definition 1.1. 

This last remark provides the clue. For if N f <* N then N 

operates on N 1 by conjugation; thus we may hope to find a fruitful 

generalization of Definition 1.1 and of the lower central G-series of 

a G-module by supposing N to be a G-group, that is, a group on which 

the group G acts, and defining a lower central G-series of N. 

Definition 1.2. Let N be a G-group. We define the lower central 

G-series of K by the rule 

(1.6) T̂ N = S, r* + iN = gpCa.xb.a~ V " 1 ) ! a 6 N, b € l^N,x € G, i > 1; 

and we say that N is G~nilvotent of class :5 c, written nil-N 5 c, 

if v^h - {l}. . 

It is immediately obvious that this definition coincides 

with (1.4) above if N is commutative. It is also easy to see that 

Definition 1.2 generalizes Definition 1.1. For suppose N < G and 

let G operate on N by conjugation. We then have, from Definitions 

1.1 and 1.2, two definitions of T^N, and to see that they coincide, 

it suffices to verify that if M < G and if K « gp (axbx~ W1) , a € N, 

b € M, x € G, then K * [G,M]. 

The following remarks are also pertinent: (a) if N is 

G-nilpotent it is certainly nilpotent (as a group) and nil N 5 nilgN; 

(b) each I^N, in (1.6), is a normal G-closed subgroup of N; 

(c) r* + 1H » gp([N ,rJ»], xb.b" 1), x i G, b i T^N; (d) (1.5) does not 

generalize—on the other hand, we still have the inequality ^(r^N) £rQ~*V> 
so that we may infer 

http://gpCa.xb.a~V%221
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(1.7) nil^r^N < nllGS - 1. 

The relation (1.7) is, naturally, very usefil in fashioning 

proofs by induction on G-nilpotency class. 

A more surprising observation is that not only can Definition 

1.1 be subsumed under Definition 1.2, but also the other way round! 

For let N be a G-group. We form the semidirect product of N and G; 

thus P - H ] G is defined as follows. The underlying set of P 

is the cartesian product of the underlying sets of N and G, and the 

group operation in P is given by 

(1.8) (a 1,x 1)(a 2 lx 2) * ( a ^ x ^ ^ x ^ ) . 

There is an obvious embedding Sf > — p and a projection P — » G, 

giving rise to a group extension 

(1.9) N 5—>- p G 

which splits on the right in the sense that there is a section homo-

morphism G + P (the obvious embedding). We then have 

Theorem 1.3. T^N • T^N. 

Proof. We argue by induction on i, the case i * 1 being trivial. 

Now if we conjugate a € N by (c,x) € P, c € N, x i G, we obtain 

c.xa.c"1. Thus, let us assume vhn - T^N, for some i > 1. The 

preceding remark, together with Definition 1.1, immediately shows that a 

system of generators of T^hn consists of elements of the form a.xb .a'V1, 
a i N, b € r^N, x € G, establishing the inductive hypothesis and the theorem. 

We next draw an immediate consequence from Theorems l.lg 

and 1.3. 
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Corollary 1,4. Let N be a G-group and let P be the semidirect 

product of N and G. Then P is nilpotent if and only if G is 

nilpotent and N is G-nilpotent. Indeed^ 

max(nil G,nilQN) < nil P < nil G + nilGN. 

We close this section with a theorem which shows that the 

G-nilpotance of a group N is, in a very strict sense, determined by 

the nilpotence of N and the G-nilpotence of N ^, the abelianization 

of N. It is thus a generalization of a very apt kind of the two 

nilpotency concepts which led to its formulation. 

Theorem 1.5. Let N be a G-group. Then N is G-nilpotent if and only 

if IS is a nilpotent group and N ^ is G-nilpotent. 

Proof« The entire argument is essentially due to Derek Robinson [R], 

although he considered a very slightly different situation. Certainly if 

N is G-nilpotent it is nilpotent; and, just as certainly, if N is 

G-nilpotent then any G-homomorphic image, and so in particular is 

G-nilpotent, Conversely, let N ^ be G-nilpotent. It is easy to see 

that then N , , the i-fold tensor power of N , , with diagonal action, ao ao 
is also G-nilpotent. But as a G-homomorphic image of N , , 

is also G-nilpotent. Since N is nilpotent and 

(1.10) T ^ / r 1 ^ ^ * N / r i + 1N » N/rSl 

is a central extension of G-groups, Theorem 1.5 follows from (1.10) by 

induction on i, using the following easy generalization of Theorem 1.1. 

Theorem l.ls;1. Let N f >—>• N —^> N" be a central extension of G-groups. 

Then 
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aax(nil.N",nilrJT,) < n±l„N < nil-il" + niJUN'. 
G VJ G G G 

The reader should now 'formulate a common generalization of Theorems 

l.lg and l.lgf. 
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2. Concept of nilpotence in topology 

The concept of a nilpotent space is due to E. Dror. We 

consider the hcmctopy category of (based) spaces of the homotopy type of 

a connected polyhedron and (based) homotopy classes of continuous maps. 

Then a space X is said to be nilpotent if its fundamental group n^X 

is a nilpotent group and operates nilpotently on the higher homotopy 

groups rr̂ X, n > 2. Notice that this definition involves precisely the 

first two definitions of Section 1, since tr X is abelian for n > 2. 

n 

7??,Tnples (a) If X is simply-connected it is, of course, nilpotent. 

(b) A connected topological group is nilpotent; indeed, any 

simple space (in the classical sense) is nilpotent. 

(c) Let G be a nilpotent Lie group (not necessarily connected) 

and let BG be its classifying space. Then BG is a nilpotent space. 

(d) Let X be nilpotent, let T be compact, and let C be a 
v 

component of the function space X*. Then C is nilpotent. Note, in 

this example, that, even if we took X to be simply-connected, we could 

still only conclude that C is nilpotent. 

Nilpotent spaces are of interest in topology because they include 

important classes of spaces, as the examples show (in particular, they 

constitute the smallest class containing the simply-connected spaces and 

closed under the construction of function spaces). 

Since the notions of nilpotent group and nilpotent n-module turn 

out to be relevantin topology, it is to be expected that their common 

generalization, embodied in Definition 1.2, will also be relevant. Indeed, 

it is precisely what we need to relativize the definition of a nilpotent 
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space. Since this latter concept is a homotopy concept (rather than a 

homology concept), it is to be expected that the relativization will be 

to a fibre map, rather than to a pair of spaces. Now if f: E B is a 

fibre map with fibre F, then tr̂ E operates on the homotopy groups of F. 

This relativizes the absolute situation, to be interpreted as X o, where 

the 'fibre' is again X and we have the operation of TT^X on itself by 

conjugation and the usual operation of TT^X on the higher homotopy groups 

ir±X, i > 2. 

Definition 2.1. The fibre map f: E B, with fibre F, is nilpotent if all 

spaces are connected and if TT^E operates nilpotently on n^?, i > 1. 

Note that the operation of tr̂ E on TT^F is to be nilpotent in 

precisely the sense of Definition 1.2. To demonstrate the 'correctness' 

of Definition 2.1 we enunciate two theorems, of ..which the second is the 

relativization of the first. For an interpretation and proof of these 

theorems see [EHR;Corollary II.2.12 and Theorem 11.2.14]. 

Theorem 2.1. The space X is nilpotent if and only if its Postnikov 

system admits a principal refinement. 

Theorem 2.1r. The map f is nilpotent if and only if its Mcore-Postnikcv 

system admits a principal refinement. 

The following result may be regarded as in analogy with Theorem 1.1, 

Theorem 2.2. Let f: E -* B be, a fibre map with fibre F, all spaces 

being connected. Then F is nilpotent if E is nilpotent. Indeed, 

nil, -TT.F < nil rTT E + 1. 
Tf^r i 1 

The analogy is very close; for, in the 'fibration' 
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(2.1) QB F + E, 

where OB is the space of loops on B, the image of ir̂ftB is the center 

of T^F so we may regard (2.1) as a Tcentral fibration'. 

We turn now to Theorem 1.5. Let us recall that we may associate 

with a group N the Eilenberg-HacLane space K(N,1), characterized by the 

property that 

(2.2) irjKCN,!) - N, ir K(N,1) « 0, i > 2. 

It is easy to see that K(N,1) is nilpotent if and only if N is nilpotent. 

Moreover, if G operates on 17, then G operates as a group of homotopy 

classes of self-homotopy equivalences on K(N,1). Then Theorem 1.5 asserts 

that, if X « X(N,1), then G operates nilpotently on ir̂ X if and only if 

X is nilpotent and G operates nilpotently on̂ " H^X. Now it is plainly out 

of the question that, for an arbitrary connected space X on which G 

operates, the fact that G operates nilpotently on tr^X, or indeed on 

TT^X, 1 < i < n, where n < ~, could imply the nilpotence of X. For, if 

G operates trivially, it operates nilpotently on r^X, i > 2, and it 

operates nilpotently on rr̂ X provided only that TT^X is nilpotent. Thus 

if we seek to generalize Theorem 1.5 in the direction of nilpotent spaces it 

will be necessary to postulate the nilpotence of our space X. Indeed, we 

then find the following theorem [ H ] : 

Theorem 2.3. Let X be a nilpotent space on which G operatesj and let 

n > 2. Then the follcrjing statements are equivalent: 

^Recall that, for any connected space X, H^X is obtained by abelianizing TT^X. 
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(i) G operates nilpotently on TT^X, 1 < 1 < n; 

(ii) G operates nilpctently on ILX, 1 < i < n. 

We point out that not only does Theorem 2.3 generalize Theorem 1.5; 

it also applies it. For we are not going to be able to pass from statement 

(ii) to statement (i) without using Theorem 1.5 to infer from (ii) that G 

operates nilpotently on TTJX. 

There is another essential ingredient in the proof of Theorem 2.3. 

We have the group G acting (as a group of self-homeomorphisms or as a group 

of homotopy classes of self-homotopy equivalences) on the space X. Then, for 

a given i > 1, G acts on n^X and on T^X, and rr̂ X acts on TT^X. It 

is important to ask how these actions are related. It turns out that,writing 

K for TT^X and N for TNX, the single controlling relation is 

(2-3) x(a.b) * xa.xb,* $ G, a € K, b € N. 

We are thus led to make the following definition. 

Definition 2.2. The G-group K operates on the G-group N if K operates 

as a group on the group N, subject to the relation (2.3). 

We will study some consequences of this definition in the next 

section. For now we note that, whereas Theorem 2.3 involves an application of 

group theory to topology% Definition 2.2 makes a movement in the opposite 

direction, from topology back to group theory. 

Our first observation in this section is that Theorem 2.3 may be 

applied to the study of nilpotent fibrations (Definition 2.1). In any fibraticn-

F E B we have, classically, an action of TT^B on the homology groups of 

F. We may the prove: 
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Corollary 2.4. Let F E -+> B be a fibration with all spaces connected. 

Then the fibration is nilpotent if and only if F is nilpotent and TT^B 

operates nilpotently on H^F, i > 1. 

Note that it cakes no difference here whether we speak of the 

operation of B on E^F or of the operation of tr̂ E on H^F. The 

former formulation is better since we normally have better control on the 

operation of TT^3; but the latter sets in better evidence the resemblance 

of Corollary 2.4 to Theorem 1.5. Note also that the condition that rr̂ B 

operate nilpotently on H^F appears to be precisely the condition enabling 

us to apply the classical spectral sequence methods of Serre and Eilenberg-

Moore to the study of the homology groups associated with a fibration; see, 

for example, 
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3. Further results 

Let us return now to group theory. We place ourselves in the 

context of relation (2..3), that is, we have the G-group K acting on the 

G-group N in such a way that (2.3) is satisfied. Form, as in Section 1, 

the semidirect product P » K^G and define an operation of P on N by the 

rule 

(3.1) (a,x)b » a.xb, x € G, a € K, b € N. 

Proposition 3.1. The rule (3.1) defines a group cation of P on N if and 

only if (2.3) holds. The rule (3.1) then gives the unique action of P on 

N extending the given cations of K and G. 

We may now generalize the results of Section 1 from groups to G-

groups. Theorem l.lg1 was already such a generalization, namely of Theorem 1.1— 

but we may now generalize Theorem 1.1.g! First note that if N < K in the 

category of G-groups, then conjugation is an action of the G-group K on the 

G-group N in the sense that (2.3) holds, 

Theorem 3.2. Let N T >—>• N — » N" be an extension of G-groups and let 

P * tt]G. Then 

maxfrilgN^nilpN') < nilQN < tiilGNn + nilpN'. 

Again, we may generalize Corollary 1.6 to 

Theorem 3.3. Let N, K be G-groups with N < K. Then K is G-nilpotent 

if and only if- N is nilpotent and K/[N,N] is G-nilpotent. 

Note that we do not need to postulate N to be G-nilpotent in 

Theorem 3.3. For if K/[N,N] is G-nilpotent, so too is N , . Thus, by 
ao 

Theorem 1.5, if also N is nilpotent, then N is G-nilpotent. 

Reverting to (3.1) one may prove the following result. 
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Theorem 3.4. Let the G-grcup K act on the G-group N so that (2.3) 

is satisfied and let P s K1JG act an N by (3.1). ZTien N -¿3 7-nilpotent 

if and onlu if N is YL-nilvotent and G-nilvotent. 

Indeed, Stammbach has proved that 

(3.2) nilpN < (nil^N) (nilQN) 

From this and Theorem 3.2 we infer 

Corollary 3.5. Let N f >—*- N — » N" be an extension of G-groups. Then 

N is G-nilpoient if and only if N T, N" are G-nilpotent and N T is 

^-niZpotent. 

We may improve this statement by observing that, given any 

extension N f > > N £ >> N,f there is always an induced action of Sft 

on N ^ , given by 

ea.b T[N f,N f] » ab'a^lN'.NMi a € N, b f € N ?. 

Then Theorem 1.5 enables us to deduce, from Corollary 3.5, 

Corollary 3.6. Let N 1 > > N — » N" be an extension of G-groups. Then 

N is G-nilpotent if and only if N T, N M are G-nilpotent and 11^ is 

H"-nilpotent. 

The advantage of this formulation is that the condition given for 

N to be G-nilpotent makes no mention of G. Thus we may regard the 

statement of Corollary 3.6 as follows. Suppose given a nilpotent action 

of N" on N^ b and let N 1 > — N — N " be any extension cf G-groups 

compatible with this action. Then N is G-nilpotent if and only if N f 

and K" are G-nilpotent. Manifestly, the assertion in this form is a 

^-generalization'. 
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Finally let us return to topology. Theorems of the type of Theorem 

2.3, asserting that the homotopy groups of a space have a certain property 

up to a given dimension if and only if the homology groups have the same 

property up tc the same dimension, are familiar in homotopy theory. The 

classical result of this kind is due to Eurewicz who proved that the homotopy 

groups of a simply-connected space X vanish in dimensions i < n if and 

only if the homology groups vanish in the same dimensions. Moreover, as 

Eurewicz proved, the so-called Eurewicz homomorphism h: ir X + E X is then 
_ n n 

an isomorphism. Serré [S] derived a beautiful generalization of the 

Eurewicz Theorem. Be defined, axiomatically, a class of abelian groups C 

(the trivial groups form a class) and proved that the homotopy groups of a 

simply-connected space X belong to C in dimensions i < n if and only 

if the homology groups of X, in the same dimensions, belong to C, and that 

then the Eurewicz homomorphism h: ir̂ X E^X is a C-isomorphism, meaning 

that the kernel and cokernel of h are groups in C. A nilpotent version 

of this result was proved in [ED] and [ER1] : given a suitable definition 

of a class of nilpotent groups, then it may be proved that the homotopy 

groups of a nilpotent space belong to C, in dimensions i < n, if and only 

if the homology groups of X, in the same dimensions, belong to C, and 

that then the Eurewicz homomorphism h induces a C-isomorphism 
h f: tr'X * H X , where TT'X is it X with the operators from TT-X killed; thus n n n n 1 

2 TT'X » TT X/T 7T X, where IT S TT-X. The formulation of Theorem 2.3 suggests n n ir n i. 
the following: 

(a) It should be possible to formulate axiomatically a definition of a 

class C of nilpotent G-groups; 

(b) The G-nilpotent G-groups should then satisfy the axioms for such a 

class; ________ 

% i - ,:v 
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(c) There should be a theorem of Eurewicz type for nilpotent G-spaces, 

that is, nilpotent spaces X on which G acts, asserting that the 

homotopy groups of such a space X belong to the class C, in dimensions 

i < n, if and only if the homology groups of X belong to C in the same 

dimensions, and h r: TT^X H^X is then a C-isomorphism. 

It turns out that this programme can be carried out, so that Theorem 

2.3 is exhibited as a partial statement of a special case of a general 

Eurewicz Theorem mod C for nilpotent G-spcces. Crucial to this programme 

is the observation that our condition (2.3)—in the case that N is 

commutative—is precisely the condition needed to ensure that G acts on 

the homology groups H (K fN). Thus we may build into our theory of G-groups 

the usual homology theory of groups• 
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