SÉMINAIRE LELONG. ANALYSE

GUIDE WEISS

Espaces de fonctions harmoniques

Séminaire Lelong. Analyse, tome 3 (1961), exp. nº 1, p. 1-5 http://www.numdam.org/item?id=SL_1961_3_A1_0

© Séminaire Lelong. Analyse (Secrétariat mathématique, Paris), 1961, tous droits réservés.

L'accès aux archives de la collection « Séminaire Lelong. Analyse » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

17 janvier 1961

ESPACES DE FONCTIONS HARMONIQUES

par Guido WEISS

Dans la première partie d'un travail, fait avec Elias M. STEIN [4], nous étendons, dans un certain sens, la notion de fonction analytique d'une variable complexe (c'est-à-dire : deux variables réelles) à plusieurs variables. Plus précisément, nous avons en vue la partie de la théorie des fonctions analytiques qui est liée à l'analyse harmonique. Commençons par rappeler des faits classiques. Nous prendrons comme point de départ le théorème de Fatou :

THÉORÈME de Fatou. - Si h(re $^{i\theta}$), 0 < r < 1, est une fonction harmonique bornée alors

$$\lim_{r\to 1} h(re^{i\theta}) = h(e^{i\theta})$$

existe presque partout (p. p.).

On peut écrire l'hypothèse de ce théorème :

$$\left\| h(re^{i\theta}) \right\|_{\infty} \leqslant M < \infty$$
, pour $0 \leqslant r < 1$

Le résultat suivant apparait alors comme une généralisation du théorème de Fatou : Si

$$|h(re^{i\theta})||_{p} = (\int_{0}^{2\pi} |h(re^{i\theta})|^{p} d\theta)^{1/p} \leqslant M < \infty, \text{ pour } 0 \leqslant r < 1 \text{ et } p \geqslant 1 ,$$

alors

$$\lim_{r\to 1} h(re^{i\theta}) = h(e^{i\theta})$$

existe p. p.

HARDY et LITTLEWOOD ont montré [2] qu'il n'est pas possible d'étendre la conclusion au cas p < 1. On peut toutefois considérer, avec h, la fonction conjuguée h. On a alors le théorème suivant (voir [5]) :

THEOREME A. - Si $F(re^{i\theta}) = h(re^{i\theta}) + ih(re^{i\theta})$, $0 \le r < 1$, est une fonction analytique telle que, pour p > 0,

(*)
$$\int_0^{2\pi} |F(re^{i\theta})|^p d\theta \leqslant M < \infty$$

alors les limites $\lim_{r\to 1} F(re^{i\theta}) = F(e^{i\theta})$ existent p. p. et, en norme, $(\int_0^{2\pi} |F(re^{i\theta}) - F(e^{i\theta})|^p d\theta \to 0$ quand $r \to 1)$.

On dit qu'une fonction F, analytique dans le disque, appartient à la classe H^p si elle satisfait l'inégalité (*). Le théorème A est associé à la théorie des séries de Fourier. Considérons maintenant l'espace des fonctions F(x+iy), analytiques dans le demi-plan $E_2^+ = \{(x,y) \in E_2; y>0\}$, qui au lieu de l'inégalité (*), satisfont

(**)
$$\int_{-\infty}^{\infty} |F(x + iy)|^p dx \leq M \leq \infty$$

pour tous les y > 0.

L'analogue du théorème A, est :

THEORÈME A'. - Si $F \in H^p(E_2^+)$, $0 , alors <math>\lim_{y \to 0} F(x + iy) = F(x)$ existe

$$\underline{p} \cdot p \cdot , \underline{et}$$
 $\int_{-\infty}^{\infty} |F^{\dagger}x + iy\rangle - F(x)|^{p} dx \rightarrow 0$ lorsque $y \rightarrow 0+$

Jusqu'ici nous avons parlé de limites radiales et rectilignes. Mais on a des résultats plus précis. Par exemple, au lieu de l'existence des lim F(x + iy) y=0+

on peut énoncer, dans le théorème A', que les limites non-tangentielles de F(x + iy) existent p. p. C'est-à-dire que, pour presque chaque x, $F(z) \rightarrow F(x)$ quand $z \rightarrow x$ sans sortir d'un cône vertical de sommet x.

On peut montrer le théorème A' en utilisant un théorème de Privalov, [5], pour une autre démonstration, voir [3]):

THEORÈME B. - Soit u(x + iy), y > 0, une fonction harmonique, et supposons que pour chaque $x \in E_1$ il y a un cône vertical avec sommet x, $\Gamma(x)$, tel que u(x) est borné pour $z = \xi + i\eta \in \Gamma(x)$ of $\{0 < \eta \le 1\}$ alors les limites non-tangentielles de u(z) existent pour presque chaque $x \in E_1$.

On peut utiliser le théorème B pour prouver le théorème A'. Quand $p \ge 1$, la fonction F est l'intégrale de Poisson d'une fonction de la classe $L^p(E_1)$ et,

le théorème A' est alors élémentaire. Supposons, donc, p < 1 : log|F(z)|, et $s = |F|^{p_0}$, pour chaque $p_0 > 0$, sont des fonctions sous-harmoniques. Choisissons p_0 tel que $0 < p_0 < p$ et soit $q = r/p_0 > 1$. Alors,

$$\int_{-\infty}^{\infty} [s(x + iy)]^{q} dx = \int_{-\infty}^{\infty} |F(x + iy)|^{p} dx \leq M \leq \infty \text{ pour chaque } y > 0$$

On établit alors que la fonction s est majorée, dans E_2^+ , par une fonction harmonique m qui est l'intégrale de Poisson d'une fonction $f \in L^q$. En utilisant le noyau de Poisson, on voit que

$$\sup_{z\in\Gamma(x)} m(z) \leqslant Cf^*(x) ,$$

eù f* est la fonction maximale de Hardy et Littlewood (voir [5]), et C dépend seulement de l'ouverture du cône $\Gamma(x)$. Mais, puisque q >1, nous savons que $f^*(x) < \infty$ p. p., et que $f^* \in L^q(E_1)$. Donc, nous avons p. p., lorsque $z \in \Gamma(x)$,

$$|h(z) + i\widetilde{h}(z)|^{p_0} = |F(z)|^{p_0} = s(z) \leq m(z) \leq Cf^*(x) < \infty$$

Ainsi les fonctions harmoniques h et \tilde{h} vérifient les hypothèses du théorème B, et les limites non-tangentielles de F existent p. p. Le fait que $f^* \in L^q(E_1)$ et le théorème de Lebesgue sur la convergence majorée donnent la dernière partie du théorème A^* .

On va étendre ces résultats à n dimensions. Si F(x + iy) = u + iv est analytique dans une région simplement connexe alors il existe une fonction harmonique h, telle que grad h = (v, u). Il est naturel, donc, de considérer les gradients

$$F(X) = F(x_1, x_2, ..., x_n) = grad h (x_1, x_2, ..., x_n)$$

$$= [u_1(X), u_2(X), ..., u_n(X)]$$

des fonctions harmoniques h comme donnant une généralisation des fonctions analytiques. Nous avons alors :

$$\begin{cases}
(1) & \frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} + \dots + \frac{\partial u_n}{\partial x_n} = 0 \\
(2) & \frac{\partial u_j}{\partial x_i} = \frac{\partial u_i}{\partial x_j}
\end{cases}$$

Réciproquement dans une région simplement comexe, d'après (2), $(u_1, u_2, \dots, u_{\hat{h}})$ est le gradient d'une fonction h, et (1) entraine que h est harmonique. Nous dirons que $F = (u_1, u_2, \dots, u_n)$, définie dans une région R quelconque, est <u>un</u> système des fonctions conjuguées, ou <u>une fonction analytique généralisée</u>, si (u_1, u_2, \dots, u_n) est une solution des équations (1) et (2) dans R.

Dans ces conditions $|F|^p$, pour p>0, est sous-harmonique quand F est analytique, d'après le théorème suivant (pour la démonstration, voir [4]) :

THEORÈME C. - Si $F(X) = (u_1(X), u_2(X), \dots, u_n(X)), où X = (x_1, \dots, x_n)$ est une fonction analytique généralisée définie dans une région $R \subset E_n$, alors $|F|^p$ est sous-harmonique quand $p > \frac{n-2}{n-1}$.

(La fonction $F(X) = grad(1/r^{n-2}) = grad(|X|^{2-n})$ montre que ce résultat est le meilleur possible).

On a également une généralisation du théorème de Privalov, faite par A. P. CALDERON [1].

THEORÈME D. - Supposons que u(t, x_1 , x_2 , ..., x_n) est une fonction harmonique dans la région $E_{n+1}^+ = \{(t, X) = (t, x_1, x_2, \ldots, x_n) ; t > 0\} \subset E_{n+1}$ et que pour chaque $X \in E_n = \{(t, X) \in E_{n+1} ; t = 0\}$ il y a un cône $\Gamma_{\alpha}(X) = \{(t, Z) ; |X - Z| < \alpha t\}$ tel que u est borné dans la région $\Gamma_{\alpha}(X) \cap \{0 < t \le 1\}$, alors les limites non-tangentielles de u existent en presque tout point de t = 0.

Nous dirons alors qu'une fonction analytique généralisée

$$F(t, X) = (u_1(t, X), ..., u_n(t, X))$$

définie dans l'espace E_{n+1}^{\uparrow} , appartient à l'espace $H^p(E_{n+1}^{\uparrow})$, p>0, si

$$\int_{-\infty}^{\infty} |F(t, X)|^p dX \leq M \leq \infty \quad \text{quand} \quad t > 0$$

Alors, le même argument que nous avons donné dans le cas n=1, permet l'extension du théorème rappelé plus haut :

THEOREME E. - Si F(t, X) \in H^P(E⁺_{n+1}), $p \ge \frac{n-1}{n}$, alors les limites

lim F(t, X) = F(X) existent p. p. dans $E_n = \{(t, X) \in E^+_{n+1}; t=0\}$. Si $t \to 0+$ $p > \frac{n-1}{n}$, F(X) est aussi la limite en norme :

$\int_{-\infty}^{\infty} |F(t, X) - F(X)|^p dX \to 0 \quad \underline{\text{quand}} \quad t \to 0+$

Dans un travail qui sera bientôt publié nous étudions de ce point de vue d'autres systèmes d'équations qui généralisent les équations de Cauchy - Riemann.

BIBLIOGRAPHIE

- [1] CALDERON (A. P.). On the behaviour of harmonic functions at the boundary, Trans. Amer. math. Soc., t. 68, 1950, p. 47-54.
- [2] HARDY (G. H.) and LITTLEWOOD (J. E.). Some properties of conjugate functions, J. für reine und angew. Math., t. 167, 1932, p. 405-423.
- [3] KRYLOV (V. I.). Fonctions analytiques dans le demi-plan [en russe], Math. Sbornik, N. S., t. 48, 1939, p. 95-138.
- [4] STEIN (E. M.) and WEISS (G.). On the theory of harmonic functions of several variables, I: The theory of HP-spaces, Acta Math., t. 103, 1960, p. 25-62.
- [5] ZYGMUND (A.). Trigonometric series, t. I., II., 2nd edition. Cambridge, at the University Press, 1959.