SÉMINAIRE SCHWARTZ

BERNARD MALGRANGE Multiplicateurs de $\mathcal{F}L^p$

Séminaire Schwartz, tome 4 (1959-1960), exp. n° 2, p. 1-7 http://www.numdam.org/item?id=SLS_1959-1960_4_A2_0

© Séminaire Schwartz

(Secrétariat mathématique, Paris), 1959-1960, tous droits réservés.

L'accès aux archives de la collection « Séminaire Schwartz » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

MULTIPLICATEURS DE FLP

par Bernard MALGRANGE

Notations générales : $x=(x_1\ ,\dots\ ,x_n)$ désigne un point de R^n , $\xi=(\xi_1\ ,\dots\ ,\xi_n)$ un point de l'espace dual P^n , les lettres désignant les espaces fonctionnels usuels sont celles de [2] , $\mathcal F$ est l'isomorphisme de Fourier qui applique $\mathcal S_x'$ sur $\mathcal S_\xi'$, $\widehat{\mathcal F}$ l'isomorphisme inverse ; si $T\in\mathcal S$,

$$\mathcal{F}T = \int \exp(-i\langle x, \xi \rangle) \cdot T \cdot dx \cdot \mathcal{F}L^p \cdot \mathcal{F}L^p \subset \mathcal{S}_{\xi}^{\prime}$$

est l'image par \mathcal{F} de $L^p(dx)$, muni de la norme $\|\varphi\|_{\mathcal{F}L_p} = \|\tilde{\mathcal{F}}_p\|_p$.

1. Généralités sur les multiplicateurs.

LEMME. - $\mathcal{F}L^p$, $\mathcal{F}L^p \cap \mathcal{F}L^q$, (p, q \neq \infty) sont des espaces de distributions normaux. ($\mathcal{F}L^p \cap \mathcal{F}L^q$ est l'espace vectoriel $\mathcal{F}L^p \cap \mathcal{F}L^q$ muni de la topologie borne supérieure des topologies induites respectivement par $\mathcal{F}L^p$, $\mathcal{F}L^q$)

DÉMONSTRATION. - On seit que $\mathcal{F}L^p\subset\mathcal{S}_\xi^p$ avec une topologie plus fine, donc sa topologie est plus fine que celle de \mathcal{O}_ξ^p ; il en est de même pour $\mathcal{F}L^p\cap\mathcal{F}L^q$. Il nous reste à démontrer que \mathcal{O}_ξ est dense dans $\mathcal{F}L^p(\text{resp. }\mathcal{F}L^p\cap\mathcal{F}L^q)$. Mais \mathcal{S}_x est dense dans $L^p(\text{resp. }L^p\cap L^q)$, et sa topologie est plus fine que la topologie induite par $L^p(\text{resp. }L^p\cap L^q)$. Il en est donc de même pour \mathcal{S}_ξ relativement à $\mathcal{F}L^p(\text{resp. }\mathcal{F}L^p\cap\mathcal{F}L^q)$, et \mathcal{S}_ξ est un espace de distributions normal.

Soit $K \in \mathcal{D}_{\xi}'$. Considerons l'application $\varphi \rightarrow \varphi \cdot K$ (notée .K) de \mathcal{D}_{ξ} dans \mathcal{D}_{ξ}' .

DÉFINITION. - Nous dirons que K est un multiplicateur de $\mathcal{F}L^p$, $1 \le p < +\infty$, \underline{si} , pour $\varphi \in \mathcal{O}_{\underline{\xi}}$, $\varphi \cdot K \in \mathcal{F}L^p$, et si $\cdot K$ se prolonge par continuité de $\mathcal{F}L^p$ dans $\mathcal{F}L^p$. Ce prolongement est alors unique, $\mathcal{F}L^p$ étant un espace de distributions normal. L'ensemble des multiplicateurs de $\mathcal{F}L^p$ sera noté \mathcal{M}_p .

Désignons-le par $\cdot K^p$ provisoirement. Si $\varphi \in \mathcal{F}L^p \cap \mathcal{F}L^q$ et $K \in \mathcal{M}_p \cap \mathcal{M}_q$ alors on peut considérer $\cdot K^p(\varphi)$ et $\cdot K^q(\varphi)$ $\cdot \mathcal{F}L^p \cap \mathcal{F}L^q$ est un espace de distributions normal, donc il existe une suite φ_i d'éléments de \mathcal{M}_{ξ} telle que $\varphi_i \mapsto \varphi$ dans $\mathcal{F}L^p \cap \mathcal{F}L^q$; donc $\varphi_i \cdot K \to \cdot K^p(\varphi)$ dans \mathcal{M}_{ξ} et de même

 $\varphi_{\mathbf{i}} \cdot K \to K^{\mathbf{q}}(\varphi)$ dans $\mathfrak{O}_{\xi}^{\mathbf{i}}$, donc $K^{\mathbf{p}}(\varphi) = K^{\mathbf{q}}(\varphi)$. Nous allons oublier l'indice.

Cas particuliers:

p = 2: $\mathcal{F}L_x^2 = L_\xi^2$; mais l'espace des multiplicateurs de L^2 , c'est L^{∞} . $\mathcal{M}_2 = L_\xi^{\infty}$.

p = 1 . Désignons par m_1 l'ensemble des mesures de masse totale finie sur \mathbf{R}^n . Nous allons montrer que $\mathbf{Fm}_1 = \mathbf{m}_1$. Soit $\mathbf{\mu} \in \mathbf{M}_1$, $\mathbf{\phi}$ et $\mathbf{\psi} \in \mathbf{M}$, alors:

donc par l'inégalité de Hölder μ * est de type (p, p) (1 \leq p \leq + ∞) • D'où $\widehat{FM}_{p} \subset \mathcal{M}_{p}$ pour tout p • Inversement, si $K \in \mathcal{M}_{1}$, alors on a $K \in \mathcal{S}$ (car

pour toute $\varphi \in \mathcal{S}$, $\langle K, \varphi \rangle = \int \frac{1}{(1+|\xi|^2)^n} \left[K((1+|\xi|^2)^n \varphi)\right] \cdot d\xi$); donc $K = \mathcal{F}_k$, k * est de type (1, 1).

Soit f indéfiniment dérivable dans $\mathfrak G$ et $g_{\mathbf i}$ à support compact dans L^1 ; on a :

$$| \langle k * g_i, f \rangle | = |k * g_i * f(0)| \langle A. ||g_i||_1. \sup_{x \in R^n} |f(x)|$$

si A est la norme de k * . Si les g tendent vers δ dans $\mathfrak O$ avec $\|\mathbf g_{\mathbf i}\|_1 \le 1$, k * $\mathbf g_{\mathbf i} \to \mathbf k$ dans $\mathfrak O$, d'où

$$\langle k * g_i, f \rangle \rightarrow \langle k, f \rangle$$
 et $|\langle k, f \rangle| \leq A \cdot ||f||_{\infty}$

-k se prolonge en une forme linéaire continue sur $C_0(\mathbb{R}^n)$ l'espare des fonctions continues sur \mathbb{R}^n nulles à l'infini, de même norme. $\mathbf{k} \in \mathfrak{M}_1$

Cas général:

Soit
$$q = p^{\frac{1}{p}}(\frac{1}{p} + \frac{1}{p^{\frac{1}{p}}}) = 1$$
 $p \neq 1$, ∞ .

L'inégalité de Hölfer montre que $K\in\mathcal{M}_{C} \Longrightarrow K\in\mathcal{M}_{p}$. Soit alors $\widehat{\mathcal{F}}.K$ l'application $\mathcal{S}_{X} \to L^{p} \cap L^{p'}$ déduite par $\widehat{\mathcal{F}}$ de l'application $\mathcal{S}_{\xi} \to \mathcal{F}L^{p} \cap \mathcal{F}L^{p'}$. $\widehat{\mathcal{F}}K$ se prolonge en une application continue $L^{p} \to L^{p}$ et une application continue $L^{p'} \to L^{p'}$; donc (RIESZ-THORIN) en une application $L^{q} \to L^{q}$ pour p < q < p'; donc $K \in \mathcal{M}_{q}$. En particulier, $(q=2): K \in K^{\oplus}$, donc $K \in \mathcal{S}_{\xi}$. On voit alors immédiatement que l'opérateur $\widehat{\mathcal{F}}.K$ est l'opérateur de convolution par $k=\widehat{\mathcal{F}}K$;

et on voit encore ceci : si $K_1 \in \mathcal{M}_p$, $K_2 \in \mathcal{M}_p$, $K_1 K_2$ (défini comme fonction de L $^{\infty}$) est dans \mathcal{M}_p et l'opérateur $\bullet(K_1 K_2)$ est égal à $(\bullet K_1)$ o $(\bullet K_2)$ \bullet

PROPOSITION 1. - On a pour $1 \le p < +\infty$ les inclusions $\mathcal{M}_1 \subset \mathcal{M}_p \subset \mathcal{M}_2$; \mathcal{M}_2 ost l'algèbre L^∞ ; \mathcal{M}_p est une sous-algèbre de \mathcal{M}_2 ; \mathcal{M}_1 est l'algèbre des fonctions continues, transformées de Fourier des mesures de masse totale finic.

2. Un théorème de CALDERÓN-ZYGRUND.

Ce théorème caractérise certains éléments de l'algèbre $\bigcap_{+\infty>p>1} \mathfrak{M}_p$ qui ne sont pas dans \mathfrak{M}_1 . Le théorème d'interpolation de Marcinkiewicz assureque si $\mathbf{K}\in\mathbf{L}^\infty$

pas dans \mathfrak{R}_1 . Le théorème d'interpolation de Marcinkiewicz assureque si $K \in L^\infty$ et si $\tilde{\mathfrak{F}}K$ * est de type faible (1 , 1) , alors $\tilde{\mathfrak{F}}K$ * est de type (p , p) pour $1 donc (proposition 1) <math>K \in \bigcap_{+\infty} \mathfrak{R}_p$. Le théorème qui suit va donner 0 > p > 1

des conditions suffisantes pour que $\bar{\mathcal{F}}$ K soit de type faible (1 , 1) . Le mode d'exposition suivi est d $\hat{\mathbf{u}}$ à HORMANDER (non publié).

LEMME 1 (F. RIESZ, CALDERÓN-ZYGMUND). - Soit $f \in L^1$ et z > 0; alors il existe $g \in L^1$ et $h \in L^1$, une suite de cubes ouverts disjoints I_p , tels que (posant $O = \bigcup_{p} I_p$) on ait :

1° a.
$$\xi = g + h$$
;
b. $\|g\|_1 \le \|f\|_1$

2° mes
$$\mathcal{O} \leqslant \frac{1}{2} \|\mathbf{f}\|_1$$

3°
$$|g(x)| \leq 2^n \cdot z$$
 presque partout (p. p.)

4°
$$h(x) = 0$$
 en dehors de O et $\int_{I_p} h \cdot dx = 0$ pour tout p.

Alors:

1° en dehors de \mathcal{O} , $|f| \le z$ p. p. En effet, s'il n'en est pas sinsi, il existe un $\mathcal{E} > 0$ et un ensemble μ de mesure positive inclus dans \mathcal{O} sur lequel $|f| \ge z \cdot (1+2 \, \mathcal{E})$. Mais alors presque tous les points de μ sont des points de densité . On pourra donc trouver un point de densité de μ n'appartenant à aucune des faces de nos subdivisions. En un tel point, soit x_0 , les cubes de la subdivision contenant x_0 forment une base des voisinages de x_0 , donc on trouvera un cube Γ de la subdivision sur lequel le densité de μ est supérieure à $\frac{1}{1+\mathcal{E}}$, donc $\int_{\Gamma} |f| dx \ge z \cdot \frac{1+2\,\mathcal{E}}{1+\mathcal{E}}$ contrairement à la définition de \mathcal{O} . Nous prendrons en dehors de \mathcal{O} , g=f et h=0.

 2° sur I_{p} la moyenne de |f| est > z.

Mais sur le cube d'ordre strictement inférieur à I qui le contient (et qui existe grâce à la première condition imposée sur le réseau), elle lui est inférieure ou égale, d'où:

(A)
$$z \cdot \text{mes } I_p \le \int_{I_p} |f| \cdot dx \le 2^n \cdot z \cdot \text{mes } I_p$$
.
Si $x \in I_p$, nous poserons $g(x) = [\text{mes}(T_p)]^{-1} \int_{I_p} f(x) \cdot dx$ et $h = f - g$; alors,

tenant compte de (A), 3°, 4° et 1°a. sont bien vérifiés par cette construction. Il teste à voir 1°b. et 2°.

On a mes
$$I_p < \frac{1}{z} \cdot \int_{I_p} |f| \cdot dx$$
 d'où, les I_p étant disjoints, mes $O \in \sum_p \text{mes } I_p < \frac{1}{z} \int_{O} |f| \cdot dx \leq \frac{1}{z} \|f\|_1$,

2º est bien vérifié.

Pour 1ºb. on a :

et
$$\int_{\mathbf{I}_{p}} |\mathbf{g}| \cdot d\mathbf{x} = \int_{\mathbf{G}} |\mathbf{g}| \cdot d\mathbf{x} + \int_{\mathbf{G}} |\mathbf{g}| \cdot d\mathbf{x} = \int_{\mathbf{G}} |\mathbf{f}| \cdot d\mathbf{x} + \int_{\mathbf{G}} |\mathbf{g}| \cdot d\mathbf{x}$$

$$\int_{\mathbf{I}_{p}} |\mathbf{g}| \cdot d\mathbf{x} \le \text{mes } \mathbf{I}_{p} \cdot (\frac{1}{\text{mes } \mathbf{I}_{p}} \cdot \int_{\mathbf{I}_{p}} |\mathbf{f}(\mathbf{x})| d\mathbf{x})$$

d'où $\int_{\mathcal{O}} |\mathbf{g}| \cdot d\mathbf{x} \le \int_{\mathcal{O}} |\mathbf{f}| \cdot d\mathbf{x}$, et finalement $||\mathbf{g}||_1 \le ||\mathbf{f}||_1$, ce qui achève la démonstration du lemme.

THÉORÈME. - Soit
$$k \in S'_x$$
, si

 1° dans $R^{n} - \{0\}$, k est une fonction localement intégrable

2º il existe \mathcal{U} voisinage de O dans R^n , un compact M contenant \mathcal{U} , et une constante C > 0, tels que, si on pose $k_t(x) = \frac{1}{t^n} k(\frac{x}{t})$, on ait pour tout t > 0, $\int_{\mathbb{R}^N} |k_t(x-y) - k_t(x)| \cdot dx \le C$ pour tout $y \in \mathcal{U}$.

alors k * est de type faible (1 , 1)

DÉMONSTRATION. - D'abord k * opère de L_c^{∞} dans L_{loc}^1 , puisqu'il opère même de L^2 dans L^2 .

Soit $f \in L_c^{\infty}$, et z > 0; nous décomposons f en g + h suivant les spécifications du lemme. g et h appartiennent à L_c^{∞} car leur support est certainement inclus dans la réunion des cubes d'ordre 1 qui rencontrent le support de f. On a donc k * f = k * g + k * h.

1º Étude de k * g .

Nous allons utiliser l'hypothèse 3° du théorème.

$$\|g\|_{2}^{2} = \int |g|^{2} dx \le 2^{n} \cdot z \int |g| \cdot dx \le 2^{n} \cdot z \|g\|_{1}$$

d'où

$$\|\mathbf{k} + \mathbf{g}\|_{2}^{2} \le \mathbf{c}_{1} \cdot \|\mathbf{g}\|_{2}^{2} \le \mathbf{c}_{1} \cdot 2^{n} \cdot \mathbf{z} \|\mathbf{g}\|_{1} \le \mathbf{c}_{1} \cdot 2^{n} \cdot \mathbf{z} \cdot \|\mathbf{f}\|_{1}$$

où $C_1 = || \mathcal{F}_k ||_{\mathcal{O}}$.

(
$$\alpha$$
) mes $\left\{ x \mid |k + g(x)| \ge z \right\} \le \frac{1}{z^2} ||k + g||_2^2 \le \frac{C_1 \cdot 2^n}{z} ||f||_1$

2º Étude de k * h .

Soit ω_p la fonction caractéristique de I_p , et $h_p = \omega_p \cdot h$. Nous ne faisons qu'affaiblir les hypothèses du théorème, remarquant que M peut être remplacé par n'importe lequel de ses homothétiques, si nous supposons que M est le cube compact centré à l'origine et dont l'arête a pour longueur 1, et $\mathcal U$ un cube ouvert centré lui-même à l'origine, d'arête suffisamment petite d < 1. Soit I_p le cube homothétique de I_p par rapport à son centre x_p , dans le rapport $\frac{1}{d}$.

LEMME 2. - Soit k satisfaisant aux hypothèses du théorème et $\ell \in L_c^{\infty}$ telle que $\int \ell(x) \ dx = 0$, à support dans un cube I centré à l'origine. Alors, en dehors de $\frac{1}{d}$ I, k * ℓ appartient a L_J^1 (J = $\int \frac{1}{d}$ I), et $\|k * \ell\|_{1,J} \le C \|\ell\|_{1,J}$.

DÉMONSTRATION. - Si $\varphi \in \mathfrak{O}$ appartient à $\mathfrak{O}(J)$, on a

$$\langle k * \ell, \varphi \rangle = \langle k_x \otimes \ell(y), \varphi(x + y) \rangle$$

mais les hypothèses géométriques faites assurent qu'au voisinage de l'intersection

l'image réciproque du support de ℓ par la projection $(x , y) \to y$, et du support de $\varphi(x + y)$, $k_x \otimes \ell(y)$ est intégrable. On a donc $k * \ell(x) = \int k(x - y) \ell(y) \cdot dy$ sur J. Et encore :

$$\mathbf{k} \star \ell(\mathbf{x}) = \int [\mathbf{k}(\mathbf{x} - \mathbf{y}) - \mathbf{k}(\mathbf{x})] \cdot \ell(\mathbf{y}) \cdot d\mathbf{y}$$

d'où

$$\int_{J} |\mathbf{k} * \ell(\mathbf{x})| d\mathbf{x} = \int_{J} d\mathbf{x} |\int [\mathbf{k}(\mathbf{x} - \mathbf{y}) - \mathbf{k}(\mathbf{x})] \cdot \ell(\mathbf{y}) d\mathbf{y} |$$

$$\int_{J} |\mathbf{k} * \ell(\mathbf{x})| d\mathbf{x} \leq C \cdot \int |\ell(\mathbf{y})| d\mathbf{y} .$$

Effectuons la translation $-x_p$, nous nous ramenons au lemme avec $h_p(x-x_p) = \ell(x)$. En dehors de I_p' on a donc $\int |k*h_p| dx \le C \cdot \int |h_p| dx \cdot h = \sum_p h_p dans L^2$ d'où $k*h = \sum_p k*h_p$. Donc sur tout compact G de $\int O'$ $\int O' = \bigcup I_p'$ on a

$$\|k * h\|_{1,G} \le C \cdot (\sum_{p} \int |h_{p}| dx) \le C \cdot \|h\|_{1} \le C \cdot \|f\|_{1}$$

Cette inégalité est donc vraie sur $\int_{\mathcal{C}} \mathcal{O}^{\bullet}$. On en tire :

$$\left[\operatorname{mes}\left\{\mathbf{x} \,\middle|\, \mathbf{x} \notin \mathcal{O}^{\bullet} \right\} \,\middle|\, \mathbf{k} * \mathbf{h}(\mathbf{x}) \,\middle|\, > \mathbf{z}\right\}\right] \leq \frac{2C}{z} \,\left\|\mathbf{f}\right\|_{1}$$

et comme (mes O') $\leq \frac{1}{d^n} \cdot \frac{\|f\|_1}{z}$ on en déduit

(b)
$$[mes\{x | |k + h(x)| > z\}] \le \frac{C_2}{z} \cdot ||f||_1$$

où c_2 ne dépend pas de z mais seulement de c , M et u . La conjonction des inégalités (α) et (β) donnera læ résultat.

EXEMPLES. - Tout $k \in L^1$ répond aux conditions avec $C \le 2$. $\|k\|_1$.

1º Cas d'une variable : $k = vp \frac{1}{x}$, $\mathcal{F}(vp \frac{1}{x}) = -i\pi \cdot sgn \xi$. vp est homogène de degré -1, on va vérifier les hypothèses pour t=1.

$$\int_{|x| \ge 1} \left| \frac{1}{x - y} - \frac{1}{x} \right| dx \le 2 \log 2 \qquad \text{si} \qquad |y| < \frac{1}{2}.$$

Mais on a en fait, dans l'exposé précédent, démontré un théorème d'interpolation de Marcinkiewicz "uniforme", c'est-à-dire que : si T est de type faible $(\frac{1}{\alpha}, \frac{1}{\alpha})$ avec une constante C_1 et de type faible $(\frac{1}{\beta}, \frac{1}{\beta})$ avec une constante C_2 alors T est du type ordinaire $(\frac{1}{\gamma}, \frac{1}{\gamma})$ pour tous les

$$\gamma = t \cdot \alpha + (1 - t) \beta \qquad \text{et} \qquad \left\| \text{Tf} \right\|_{\frac{1}{X}} \leq C(\gamma; C_1, C_2) \cdot \left\| f \right\|_{\frac{1}{X}}^{2-07}$$

De même, le théorème de cet exposé admet une généralisation analogue.

Si des $k_i \in S'$, qui satisfont à 1° satisfont à 2° de façon uniforme, c'est-àdire s'il existe \mathcal{U} , M, et C indépendants des i tels que

$$\int_{\mathcal{L}M} |k_{i,t}(x-y) - k_{i,t}(x)| \cdot dx \leq C$$

 $\underline{\text{si}}$ $\text{t} \in \mathcal{U}$, $\underline{\text{et}}$ $\underline{\text{a}}$ 3° c'est- $\underline{\text{a}}$ -dire $\|\mathcal{F}_{\mathbf{k_i}}\|_{\infty} < \mathbb{N}$ $\underline{\text{les}}$ $\mathbf{k_i}$ $\underline{\text{sont de type}}$ faible (1, 1) avec une même constante C. En conséquence, dans tout \mathcal{M}_p , les \mathcal{F}_k forment une famille bornée (équicontinue).

(Nous avons noté dans le cours de la démonstration les variables dont dépendaient les constantes; pour n fixé, ce sont W, M, C et N).

APPLICATION. - Soit $k_{\varepsilon} = \begin{cases} \frac{1}{x} & \text{si } |x| > \varepsilon \\ 0 & \text{si } |x| < \varepsilon \end{cases}$ dans $\mathcal{L}_{c}(L^{p}, L^{p})$. En effet:

- (A) les $\hat{k}_{\xi} = -\int_{\xi}^{+\infty} \frac{\sin \xi x}{x} dx = -\int_{\xi/\xi}^{(sgn\xi)\cdot \infty} \sin u \frac{du}{u}$ sont bornés dans leur ensemble.
 - (B) Il expiste C indépendant de \mathcal{E} et t tel que $\int_{|y| + 1} |k_{\varepsilon}(x - y) - k_{\varepsilon}(x)| \cdot dx \leq C$

si $|y| \le \frac{t}{2}$ (vérification immédiate).

- (C) Sur un ensemble partout dense, à savoir $\mathfrak O$, $k_{\boldsymbol{\xi}} \star \Psi \longrightarrow k \star \Psi$.
- (A) et (B) assurent que les $k_{\mathcal{E}}$ forment une partie équicontinue de $\mathcal{L}(L^p$, $L^p)$, (C) implique donc la convergence des $k_{\mathcal{E}}$ vers k dans $f_c(L^p$, $L^p)$.

20
$$k = vp \frac{x_1}{|x|^{n+1}}$$
 De $k = -\frac{1}{n-1} \frac{\partial}{\partial x_1} \frac{1}{|x|^n}$ on tire $K = i \pi \frac{\int \frac{(1)}{2}}{\int \frac{(n+1)}{2}} \cdot \frac{\xi_1}{|\xi|}$,

 $K \in L^{\infty}_{\xi}$ et k satisfait aux hypothèses 1° et 2° du théorème (vérification immédiate).

BIBLIOGRAPHIE

- CALDERÓN (A.) and YGUND (A. P.). On the existence of certain singular integrals, Acta Math., t. 88, 1952, p. 85-139.
- SCHWARTZ (Laurent). Théorie des distributions, t. II. Paris, Herman, 1951 [2] (Act. scient. et ind., 1122; Publ. Inst. Math. Univ. Strasbourg, 10).