SÉMINAIRE SCHWARTZ

BERNARD MALGRANGE

Division des distributions. IV: applications

Séminaire Schwartz, tome 4 (1959-1960), exp. nº 25, p. 1-5

http://www.numdam.org/item?id=SLS_1959-1960__4__A24_0

© Séminaire Schwartz

(Secrétariat mathématique, Paris), 1959-1960, tous droits réservés.

L'accès aux archives de la collection « Séminaire Schwartz » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

DIVISION DES DISTRIBUTIONS IV : APPLICATIONS

par Bernard MALGRANGE

1. Idéaux de fonctions différentiables.

Rappelons d'abord un théorème dû à WHITNEY ([5], [2]) : Soit Ω un ouvert C_R^n et 3 un idéal fermé de \mathcal{E}_{Ω}^r ; pour $a \in \Omega$, désignons par \mathcal{I}_a l'idéal engendré par 3 dans l'anneau des développements limités à l'ordre r en a. Alors, la collection des \mathcal{I}_a , $a \in \Omega$ détermine 3 (i. e. si 3', idéal fermé, vérifie $\forall a$, $\mathcal{I}_a^1 = \mathcal{I}_{\Omega}$, on $\mathcal{L}_a^1 = \mathcal{I}_{\Omega}^2 = \mathcal{I$

Le passage à $r=+\infty$ est immédiat (dans ce cas, les \mathfrak{I}_a seront des idéaux de séries formelles). Notons par ailleurs que les démonstrations s'appliquent sans changement lorsqu'on remplace "idéal de $\mathfrak{F}_{\mathbb{C}}$ " par "sous-module de $[\mathfrak{F}_{\mathbb{C}}]^p$, $p\in\mathbb{N}$ ".

Soient alors $f_{i,j}$ ($1 \leqslant i \leqslant p$, $1 \leqslant j \leqslant q$) des fonctions analytiques dans Ω , et posons $F_j = (f_{1j}, \dots, f_{pj})$; soit \mathbb{R} le sous-module de $[\mathcal{E}_{\Omega}]^p$ engendré par les F_j . Je dis que \mathbb{R} est fermé : en effet, \mathbb{R} est l'image de $[\mathcal{E}_{\Omega}]^q$ dans $[\mathcal{E}_{\Omega}]^p$ par l'application $F: (\psi_1, \dots, \psi_q) \to \sum F_j \psi_j$; comme \mathcal{E}_{Ω} est un espace (3) il suffit de démontrer que l'application transposée F^i de F a son image fermée ; or, F^i est l'application $[\mathcal{E}^i_{\Omega}]^p \to [\mathcal{E}^i_{\Omega}]^q$ définie par $(\mathcal{E}_1, \dots, \mathcal{E}_p) \to (\sum f_{ij}, \mathcal{E}_i)$ et le théorème 1, exposés 23 et 24, montre aussitôt notre assertion.

Appliquons maintenant le théorème de Whitney : pour que $\Phi \in [\mathcal{E}_{\Omega}]^{\mathbf{q}}$ appartienne à \mathbb{M} , il faut et il suffit que, \forall $\mathbf{a} \in \Omega$, la série de Taylor $\Phi_{\mathbf{a}}$ de Φ appartienne à $\mathbb{M}_{\mathbf{a}}$; or cela équivaut à dire qu'il existe des séries formelles $\psi_{\mathbf{j}}$, a les qu'on ait $\Phi_{\mathbf{a}} = \sum_{\mathbf{j}} \psi_{\mathbf{j},\mathbf{a}} F_{\mathbf{j},\mathbf{a}}$ (1).

Par conséquent, nous avons démontré le théorème suivant :

THÉORÈME 1. - Pour que Φ soit combinaison linéaire, à coefficients $\in \mathcal{E}_{\Omega}$ des F_{1} , il faut et il suffit que la condition suivante soit vérifiée :

En tout point a $\in \Omega$, le développement de Taylor de Φ est combinaison linéaire à coefficients séries formelles des développements de Taylor des F_j .

⁽¹⁾ Puisque, d'après un théorème classique de BOREL, il existe toujours une fonction indéfiniment dérivable ayant en un point donné une série de Taylor donnée.

2. Platitude de certains modules Rappelons une définition [4].

DÉFINITION 1. - Soit A un anneau (commutatif, avec élément unité) et M un A-module (2). On dit que M est plat si, pour tout A-module N et tout sous A-module N de N, l'application canonique M \otimes_A N \otimes_A N est injective.

On vérifie élémentairement qu'il suffit que cette propriété soit vraie lorsque N = A, $N^* = 3$ idéal de A. On voit alors facilement que la définition 1 équivaut à la propriété suivante :

(R) Soient a_1 , ..., a_p deséléments de A, et $(m_1, \ldots, m_p) \in M^p$ une relation entre les a_i à coefficients dans M (i. e. $\sum a_i m_i = 0$). Il existe des $b_{ij} \in A$ ($1 \le i \le p$, $1 \le j \le q$, $q \in N$) et des $n_j \in M$ tels qu'on ait : $1^o \ \forall \ j$, $(b_{1:j}, \ldots, b_{p:j})$ est une relation entre les a_i .

$$2^{\circ} \forall i, m_i = \sum b_{ij} n_j$$
.

(Autrement dit, "les relations entre les a_i , à coefficients dans M, sont engendrées par les relations à coefficients dans A").

REMARQUES.

1° Si M est un A-module plat, \forall n $\in \mathbb{N}$, \mathbb{M}^n l'est aussi (évident).

2° Si B est un sur-anneau de A, plat en tant que A-module, et si M est un B-module plat, M est un A-module plat (évident, avec (R)).

3° Si l'on a une suite exacte de A-modules :

$$0 \rightarrow M^{\dagger} \rightarrow M \rightarrow M^{\dagger\dagger} \rightarrow 0$$

et si M et M'' sont plats, M' est plat (facile avec (R) , ou la suite exacte des Tor) .

EXEMPLES. - Désignons par $\mathbb{R}[X_1, \dots, X_n]$ (resp. $\mathbb{R}[[X_1, \dots, X_n]]$, resp. $\mathbb{R}[X_1, \dots, X_n]$) l'anneau des polynômes (resp. des séries formelles, resp. des séries convergentes) à n indéterminées, à coefficients réels, et de même avec \mathbb{C} au lieu de \mathbb{R} ; l'un quelconque de ces anneaux est plat sur ceux des autres qu'il contient (pour la démonstration, voir par exemple [4], Appendice; on passe par

⁽²⁾ Les modules seront toujours supposés unitaires (i. e. $\forall x \in M$, 1x = x).

l'intermédiaire des fonctions rationnelles régulières en 0, i. e. de la forme $\frac{P}{Q}$, P et Q polynômes, avec $Q(0) \neq 0$, lesquelles forment évidemment un module plat sur les polynômes).

Le théorème suivant répond à une question posée par SERRE [3]:

THEOREME 2. - Soit ε_0 (resp. α_0) l'anneau des germes de fonctions indéfiniment (3) différentiables (resp. analytiques réelles) à l'origine dans \mathbb{R}^n (n entier ≥ 0); ε_0 est un α_0 -module plat.

DÉMONSTRATION. — Pour $a \in \mathbb{R}^n$, désignons par α_a l'anneau des germes de fonctions analytiques réelles au voisinage de a. Soient f_1 , ..., f_p des fonctions analytiques réelles dans un voisinage de l'origine ; d'après le théorème d'Oka, il existe des $G_j = (g_{1j}, \dots, g_{pj})$ pour $1 \leqslant j \leqslant q$, analytiques réelles au voisinage de l'origine, vérifiant $\forall j$ $\sum_i g_{ij}$ $f_i = 0$, et possédant la propriété suivante : en tout point a assez voisin de 0, les G_j α_a engendrent les relations entre les f_i à coefficients dans α_a . Soient alors φ_i , $1 \leqslant i \leqslant p$ des fonctions différentiables au voisinage de 0, vérifiant $\sum_i \varphi_i$ $f_i = 0$; en tout point a assez voisin de 0, les séries de Taylor $\varphi_{i,a}$ des φ_i vérifient évidemment : $\sum_i \varphi_{i,a} f_{i,a} = 0$. Comme les séries formelles forment un module plat sur les séries convergentes (exemple ci-dessus), il en résulte que $(\varphi_{1,a}, \dots, \varphi_{p,a})$ est convergentes des G_j , a à coefficients séries formelles. D'après le théorème 1, il en résulte que $(\varphi_1, \dots, \varphi_p)$ est, au voisinage de 0, combinaison linéaire des G_j à coefficients différentiables, et le théorème est démontré.

Soit maintenant 0 l'anneau des germes de fonctions analytiques complexes au voisinage de 0 dans C^n ; disons qu'une fonction différentiable ϕ au voisinage de 0 dans C^n est "partiellement holomorphe en z_1 , ..., z_k " et écrivons : $\phi \in P_k$ 0 si elle vérifie, pour 1 < i < k: $\frac{\partial \phi}{\partial \overline{z}_i} = 0$. Pour k = 0, P_k 0 est

l'anneau des germes de fonctions différentiables au voisinage de 0 dans \mathbb{C}^n et il résulte aussitôt du théorème 2 (plus la remarque 2 et un "passage du réel au complexe" évident) que P_0 0 est un 0-module plat. Considérons alors la suite de 0-modules (0 \leq k \leq n - 1) (4)

$$0 \rightarrow P_{k+1} \circ \rightarrow P_k \circ \rightarrow P_k \circ \rightarrow 0$$

où la seconde application est l'injection, et la troisième est l'application :

⁽³⁾ Dans la suite, nous omettrons le mot "indéfiniment".

⁽⁴⁾ La présentation qui suit est due à J.-P. SERRE.

 $\varphi \rightarrow \frac{\partial \varphi}{\partial \overline{z}_{k+1}}$. Il résulte de l'intégrale de Cauchy que cette application est sur-

jective, et que, par conséquent, la suite précédente est exacte. Une récurrence sur k , et la remarque 3 montrent alors le résultat suivant, qui répond à une question posée par ATIYAH :

THEOREME 2 bis. - P 0 est un 0-module plate

REMARQUE. - Si l'on appelle "partiellement analytique réel en \mathbf{x}_1 , ..., \mathbf{x}_k dans \mathbf{R}^n " un germe de fonction différentiable au voisinage de 0 prolongeable en un germe de fonction partiellement holomorphe en \mathbf{z}_1 , ..., \mathbf{z}_k dans \mathbf{C}^n ($\mathbf{z}_j = \mathbf{x}_j + i\mathbf{y}_j$), en repassant du complexe au réel, on trouve aussitôt que les germes partiellement analytiques réels en \mathbf{x}_1 , ..., \mathbf{x}_k forment un \mathbf{C}_0 -module plat.

Par contre, je ne sais pas si, pour k < l < n, P_k 0 est un P_ℓ 0-mcdule plat (ni l'analogue analytique réel).

3. Equations aux dérivées partielles à coefficients constants dans S'.

Soient P_{ij} $(1 \le i \le p ; 1 \le j \le q)$ des polynômes en $(x_1, \dots, x_n) \in \mathbb{R}^n$; posons $P_i = (P_{i1}, \dots, P_{iq})$. Soit Ω un ouvert $C \in \mathbb{R}^n$; le théorème I, exposés 23 et 24, joint au fait que les germes de fonctions analytiques en un point forment un module plat sur les polynômes, montre ceci : pour que $(T_1, \dots, T_p) \in [\mathbb{Q}^1_{\Omega}]^p$ soit de la forme $\sum_{j} P_{ij} S_j$, $(S_j) \in [\mathbb{Q}^1_{\Omega}]^q$, il faut et il suffit que toute relation à coefficients polynômes entre les P_i soit une relation entre les T_i .

Prenons maintenant $\Omega = \mathbb{R}^n$ et supposons que, outre les conditions précédentes, on ait \forall i, $T_i \in \mathbb{S}^i$; montrons que l'on peut prendre les S_j dans S^i . Pour cela, nous raisonnerons comme [1] (tome 2, p. 152-154).

Plongeons \mathbb{R}^n dans l'espace projectif $\mathbb{P}_n(\mathbb{R})$, et soient \overline{T}_1 , ..., \overline{T}_p des prolongements de T_1 , ..., T_p à $\mathbb{P}_n(\mathbb{R})$; il suffit de trouver des distributions \overline{S}_j sur $\mathbb{P}_n(\mathbb{R})$ dont la restriction à \mathbb{R}^n vérifie les équations proposées. Pour cela, on peut raisonner localement : plaçons-nous par exemple dans l'ouvert Ω_1 complémentaire de l'hyperplan (projectif) $\mathbf{x}_1 = \mathbf{0}$, muni des coordonnées locales $(\mathbf{x}^i_1, \dots, \mathbf{x}^i_n)$ définies dans $\Omega_1 \cap \mathbb{R}^n$ par

$$x_1 = \frac{1}{x_1^i}$$
; $x_2 = \frac{x_2^i}{x_1^i}$; ...; $x_n = \frac{x_n^i}{x_1^i}$

Notre système d'équations s'écrit :

$$\sum_{i,j} P_{i,j} \left(\frac{1}{x_1^i}, \frac{x_2^i}{x_1^i}, \dots, \frac{x_n^n}{x_1^n} \right) \overline{S}_j = \overline{T}_i \quad \text{dans } \Omega_1 \cap \mathbb{R}^n \text{ (i. e. pour } x_1^i \neq 0) .$$

ou, après multiplication par une puissance convenable de x_1^*

$$\sum Q_{ij}(x_i^i, \dots, x_n^i) \overline{S}_j = \overline{T}_i$$
 pour $x_i^i \neq 0$ $(Q_{ij} = \text{des polynômes})$.

Or, pour $x_1 \neq 0$, nous savons que les conditions de compatibilité de notre système sont vérifiées ; le théorème 1 bis des exposés 23 et 24 montre alors l'existence des $\overline{S}_j \in \mathcal{Q}_{\Omega_j}^*$ vérifiant les équations voulues.

Par transformation de Fourier, on obtient :

THÉORÈME 3. - Les D_{ij} (1 \leq i \leq p; 1 \leq j \leq q) <u>étant des opérateurs différentiels à coefficients constants dans R^n , et les T_i des distributions \in S', pour qu'il existe des $S_j \in$ S' <u>vérifiant</u> $\sum_j D_{ij} S_j = T_i$, <u>il faut et il suffit que la condition suivante soit vérifiée : toute relation entre les $D_i = (D_{i1}, \dots, D_{iq})$ à coefficients "opérateurs différentiels à coefficients constants" est une relation entre les T_i .</u></u>

Nous laissons au lecteur le soin d'énoncer les résultats analogues aux théorèmes 1 et 2 que l'on obtient à partir de ce qui précède, (en remplaçant "fonctions analytiques" par "polynômes" et "différentiable" par "es"), et ceux que l'on en déduit par transformation de Fourier.

BIBLIOGRAPHIE

- [1] SCHWARTZ (Laurent). Théorie des distributions, tomes 1 et 2. Paris, Hermann, 1950 et 1951 (Act. scient. et ind., 1091 et 1122; Publ. Inst. Math. Univ. Strasbourg, 9 et 10).
- [2] SCHWARTZ (Laurent). Les théorèmes de Whitney sur les fonctions différentiables. Séminaire Bourbaki, t. 3, 1950/51, n° 43, 9 p.
- [3] SERRE (Jean-Pierre). Un théorème de dualité, Comment. Math. Helvet, t. 29, 1955, p. 9-26.
- [4] SERRE (Jean-Pierre). Géométrie analytique et géométrie algébrique, Ann. Inst. Fourier Grenoble, t. 6, 1955-1956, p. 1-42.
- [5] WHITNEY (Hassler). On ideals of differentiable functions, Amer. J. of Math., t. 70, 1948, p. 635-658.