SÉMINAIRE SCHWARTZ

L. SCHWARTZ

L'espace $L^p(\mu)$ associé à une famille de mesures $(1 \le p < \infty)$

Séminaire Schwartz, tome 1 (1953-1954), exp. nº 5, p. 1-5

http://www.numdam.org/item?id=SLS_1953-1954__1__A6_0

© Séminaire Schwartz

(Secrétariat mathématique, Paris), 1953-1954, tous droits réservés.

L'accès aux archives de la collection « Séminaire Schwartz » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

-:-:-:-Séminaire SCHWARTZ Année 1953-1954

résultats suivants :

Exposé nº 5

L'ESPACE $L_{(\mu)}^{p}$ ASSOCIÉ À UNE FAMILLE DE MESURES $(1 \le p < \infty)$

Soit $(\mu) = \{ \mu_{\alpha} \}_{\alpha \in A}$ une famille filtrante de mesures sur le même espace localement compact X . A toute fonction numérique, associons les quantités

 $N_{p,\mu_{\alpha}}(f) = \left[\int^{*}|f(x)|^{p} d\mu_{\alpha}(x)\right]^{1/p}$ Soit $\mathcal{L}_{(\mu)}^{p}$ l'adhérence de C(X) dans l'espace vectoriel des fonctions vérifiant $N_{p,\mu_{\alpha}}(f) < \infty$ pour tout α , muni des semi-normes $N_{p,\mu_{\alpha}}$. Pour que $f \in \mathcal{L}_{(\mu)}^{p}$ il faut et il suffit que $f \in \mathcal{L}_{(\mu)}^{p}$ pour chaque μ_{α} . On a donc $\mathcal{L}_{(\mu)}^{p} = \alpha \in A \mathcal{L}_{(\mu)}^{p}$. $\mathcal{L}_{(\mu)}^{p}$ sera le quotient de $\mathcal{L}_{(\mu)}^{p}$ par le sous-espace fermé des f vérifiant $N_{p,\mu_{\alpha}}(f) = 0$ pour tout α c'est-à-dire nulles (μ) - presque - partout (on dira (μ) - presque - partout pour (μ_{α}) -presque-partout pour tout α) (1).

 $L^p_{(\mu)}$ est complet si la famille $(\mu_{\bowtie})_{\bowtie} \in \mathbb{A}$ est dénombrable, $L^p_{(\mu)}$ est alors un Fréchet. On pourra définir de la même façon $L^p_{(\mu)}$ (E) , (E étant un E.V.T. localement convexe) et son complété $\hat{L}^p_{(\mu)}$ (E) . On a alors les

THEOREME - Soit X et Y deux edpaces localement compacts, (μ) et (ν) deux familles de mesures sur X et Y, ($\mu \times \nu$) la famille des mesures produits $\mu_{\mathcal{A}} \otimes \nu_{\mathcal{B}} = \mathbb{E}^p_{(\nu)}$ ($\mathbb{L}^p_{(\nu)}$) $\approx \mathbb{L}^p_{(\nu)}$ ($\mathbb{L}^p_{(\nu)}$) $\approx \mathbb{L}^p_{(\nu)}$ ($\mathbb{L}^p_{(\nu)}$) $\approx \mathbb{L}^p_{(\mu)}$

THEORÈME - $L_{(\mu)}^{1}$ $\widehat{\otimes}$ E = $L_{(\mu)}$ (E) • En particulier (avec les notations du théorème précédent) :

$$\mathbf{L}^{1}_{(\mu)} \widehat{\otimes} \mathbf{L}^{1}_{(\nu)} = \widehat{\mathbf{L}}^{1}_{(\mu \times \nu)}$$

THÉORÈME - Pour tout espace localement convexe V séparé complet, il (1) - Remarquer que l'on n'a pas $L^p_{(\mu)} = \underbrace{\subset A} L^p_{(\mu')}$, ce dernier terme n'ayant pas de sens.

existe un espace localement compact X et une famille (μ) de mesures sur X tels que V soit isomorphe à un quotient de L $_{(\mu)}^1$. Démonstration - Soit I l'ensemble $\left\{0\right\}$ dans V, muni de la topologie discrète (donc localement compacte) et $i \to x_i$ l'application identique de I dans E. Sur I une mesure est déterminée par la donnée de la masse $\mu(i) > 0$ de chaque point. Soit alors $\left\{p_{\chi}\right\}$ une famille filtrante de semi-normes définissant la topologie de V, et soit (μ) la famille de mesures définies par μ_{χ} (i) = p_{χ} (x_i). La famille (μ) est filtrante et la réunion des supports des mesures (μ) est I puisque tout $x \neq 0$ il existe x0 tel que x1 que x2 v.

Considérons l'espace $1_{(\mu)}^1$ (I), espace des fonctions $\lambda: i \to \lambda$ (i), telles que $\sum_{i} |\lambda| (i) |\mu_{\alpha}(i)| = \sum_{i} |\mu_{\alpha}(i)| = \sum_{i}$

A. w est continue. Très exactement pour tout &, on a

$$p_{\alpha}(\varpi(\lambda)) \leqslant \sum_{i} |\lambda_{\alpha}(i)| \mu_{\alpha}(i) = N_{1;\mu_{\alpha}}(\lambda)$$
.

B. ϖ est épijective. Il suffit de montret que tout $x \neq 0$ est l'image d'un λ . Or soit i tel que $x_i \neq x$ et λ tel que $\lambda(i) = +1$ et $\lambda(j) = 0$ pour $j \neq i$. On a $\varpi(\lambda) = x$.

c. ω est un épimorphisme. Il suffit de montrer que l'image de la semi-boule $\sum_{i} |\lambda(i)| \mu_{\alpha}(i) < 1$ de $1_{(\mu)}^{1}$ (I) est la semi-boule $p_{\alpha}(x) < 1^{(1)}$, c'est-à-dire que tout x avec $p_{\alpha}(x) < 1$ est l'image de la construction faite en B.

REMARQUE - Pour tout $x \in V$, on a $p_{\alpha}(x) = \inf N_{1;\mu_{\alpha}}(\lambda)$, pour $\overline{\omega}(\lambda) = x$. Donc p_{α} est la semi-norme quotient de la semi-norme $N_{1;\mu_{\alpha}}$. En particulier, si V est un Banach, c'est un quotient d'un

^{(1) -} Rappelons que la famille (p_d) est filtrante. Les semi-boules forment donc un système fondamental de voisinages.

espace L^1 par rapport à une famille réduite à une mesure μ unique et la norme de V est la norme quotient.

THEORÈME - Si E et F sont des Fréchet, tout $u \in E \otimes F$ admet une représentation de la forme $u = \sum_{n=1}^{\infty} \lambda_n x_n \otimes y_n$ avec $x_n \to 0$ (dans E), $y_n \to 0$ dans F et $\sum_{n=1}^{\infty} |\lambda_n| < \infty$.

Si l'on se donne 2 semi-normes p_0 et q_0 sur E et F, et $\{>0$, on peut choisir les suites $\{x_n\}$ et $\{y_n\}$ telles que $p_0(x_n) \leqslant 1$, $q_0(y_n) \leqslant 1$ et

 $\sum_{n=1}^{\infty} |\lambda_n| \le p_0 \otimes q_0(u) + \xi$

Si u reste sur un compact de $\mathbb{E} \, \widehat{\otimes} \, \mathbb{F}$ on peut laisser fines les suites $\{x_n\}$ et $\{y_n\}$ et $\{\lambda_n\}$ parcourt un compact de \mathbb{I}^1 . Démonstration.

A. Notations -

Soit $\{p_{\alpha}\}$ (resp. $\{q_{\beta}\}$) une famille filtrante de semi-normes sur E (resp. F). Pour tout $\gamma = (\alpha, \beta)$, nous écrirons desormais p_{γ} et q_{γ} au lieu de p_{α} et q_{β} . La famille de semi-normes $\{p_{\gamma} \otimes q_{\gamma}\}_{\gamma \in \Gamma}$ constitue une famille filtrante de semi-normes sur $p_{\gamma} \otimes q_{\gamma}\}_{\gamma \in \Gamma}$ constitue une famille filtrante de semi-normes sur $p_{\gamma} \otimes q_{\gamma}\}_{\gamma \in \Gamma}$ constitue une famille filtrante de semi-normes sur $p_{\gamma} \otimes q_{\gamma}\}_{\gamma \in \Gamma}$ constitue une famille filtrante de semi-normes $p_{\gamma} \otimes q_{\gamma}\}_{\gamma \in \Gamma}$ constitue une famille filtrante de semi-normes $p_{\gamma} \otimes q_{\gamma}\}_{\gamma \in \Gamma}$ constitue une famille filtrante de semi-normes $p_{\gamma} \otimes q_{\gamma}\}_{\gamma \in \Gamma}$ constitue une famille filtrante de semi-normes $p_{\gamma} \otimes q_{\gamma}\}_{\gamma \in \Gamma}$ definie par $p_{\gamma} \otimes q_{\gamma}\}_{\gamma \in \Gamma}$ definie par $p_{\gamma} \otimes q_{\gamma}\}_{\gamma \in \Gamma}$ les familles de mesures $p_{\gamma} \otimes q_{\gamma}\}_{\gamma \in \Gamma}$ les familles de mesures $p_{\gamma} \otimes q_{\gamma}\}_{\gamma \in \Gamma}$ l'application de $p_{\gamma} \otimes q_{\gamma}$ (I) sur E définie par

 $\overline{\omega}_{1}(\mu^{(1)}) = \sum_{i \in I} \lambda^{(1)}(i) x_{i}$

et $\overline{\omega}_2$ l'application de $l_{(V)}^1(J)$ sur F définie par

$$\overline{\omega}_2 \left(\lambda^{(2)}\right) = \sum_{j \in J} \lambda^{(2)} \left(j\right) y_j$$

Construisons l'espace $1_{(\rho)}^{1}$ (K). C'est un espace de Fréchet qui

s'identifie à $1_{(\mu)}^1$ (I) \bigotimes $1_{(\nu)}^1$ (J). De plus $\mathbb{N}_{1,p_{\chi}} = \mathbb{N}_{1,p_{\chi}} \otimes \mathbb{N}_{1,p_{\chi}}$ (produit tensoriel des semi-normes).

Soit alors Ψ l'application linéaire de $1^1_{(P)}$ (K) dans $E \otimes F$ définie par

$$\varphi(\lambda) = \sum_{k \in K} \lambda(k) x_k \otimes y_k$$

Cette application est bien définie, car pour tout $\chi \in \Gamma$, on a $\sum_{k \in K} |\lambda(k)| p_{\chi} \otimes q_{\chi}(x_k \otimes y_k) = \sum_{k \in K} |\lambda(k)| p_{\chi}(x_k) q_{\chi}(y_k) = \sum_{k \in K} |\lambda(k)| p_{\chi}(k) < \infty$

et dans E $\widehat{\otimes}$ F qui est complet toute série absolument sommable est sommable. Pour $u=\Upsilon(\lambda)$, on a

 $(p_{\chi} \otimes q_{\chi}) (u) \leqslant \sum_{k \in K} |\lambda(k)| p_{\chi}(x_k) q_{\chi}(y_k) \leqslant N_{1, p_{\chi}}(\lambda)$ donc φ est continue.

B. $\varphi = \overline{\omega_1} \otimes \overline{\omega_2}$.

Il suffit de vérifier que la restriction de Ψ à $1_{(\mu)}^1$ (I) $\hat{\otimes}$ $1_{(\nu)}^1$ (J) est identique à $\overline{\omega}_1 \otimes \overline{\omega}_2$, c'est-à-dire que $\Psi(\lambda^{(1)} \otimes \lambda^{(2)}) = \overline{\omega}_1 \lambda^{(1)} \otimes \overline{\omega}_2 \lambda^{(2)}$, ce qui est trivial car

$$\varphi(\lambda^{(1)} \otimes \lambda^{(2)}) = \sum_{k \in K} \lambda^{(1)} (i) \lambda^{(2)} (j) x_{i} \otimes y_{j} =$$

$$= (\sum_{i \in I} \lambda^{(1)} (i) x_{i}) \otimes (\sum_{j \in J} \lambda^{(2)} (j) y_{j})$$

(en vertu de la continuité de l'application canonique de E x F dans E \otimes F) $= \frac{1}{\Omega} \lambda^{(1)} \otimes \frac{2}{\Omega} \lambda^{(2)}.$

C. Y est un épimorphisme

En efet $\overline{\omega}_1$ et $\overline{\omega}_2$ sont des épimorphismes et E et F étant des Fréchet $\overline{\omega}_1 \mathbin{\widehat{\otimes}} \overline{\omega}_2$ est un épimorphisme.

D. Pour tout $u \in E \widehat{\otimes} F$ tout $\gamma \in \Gamma$ et tout $\xi > 0$, il existe $\lambda \in {}^{1}(\rho)$ (K) tel que $(p_{\chi} \otimes q_{\chi})$ (u) $\geqslant N_{1;\rho_{\chi}}$ (λ) $-\varepsilon$

En effet p_{χ} (resp. q_{χ}) n'est autre que la semi-norme quotient

dans l'enveloppe équilibrée fermée du produit tensoriel de deux compacts.

<u>Application</u>. - Soit G un E.V.T. complet. L'isomorphisme de B(E,F;G) sur $L(E \otimes F,G)$ est un isomorphisme topologique si l'on met sur B(E,F;G) la topologie de la convergence uniforme sur les produits de compacts, et sur $L(E \otimes F,G)$ la topologie de la convergence compacte.

La propriété n'est plus vraie en général si on remplace "compact" par "borné". Elle reste cependant vraie si E et F sont des Banach, car la boule unité ouverte de $E \otimes F$ est alors l'enveloppe équilibrée convexe du produit des deux boules unités ouvertes de E et F.