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Séminaire de THEORIES PHYSIQUES
(Séminaire Louis de BROGLIE) 10 décembre 1957
Année 1957/58

RELATIVISTIC HYDRODYNAMICS OF ROTATING FLUID MASSES

by David BOHM and Jean-Pierre VIGIER

1, Abstracte

With the aid of the new notion of center of matter density, we give o relativistic
trecatment of the behaviour of finite size masses ofrtating fluid. This treatment
is based on an analysis of the rclative motion of this center of matter density
and the more familiar center of mass. In this way, we obtain a clear physical
interpretation of thc equations studied by MATHISSON, WEYSENHOFF and MALLER. We
élso show that more general types of motions are possible related to additional
degrees of frecdom of the relatiwistic fluid droplet. These decgrees of freedom
provide a framework for a theory of the quantum numbers of the elcmentary particles
(isotopic spin, strangencss, cte.) which will be developed in detail in a subse-

quent paper.

In a series of very intcresting papers, MATHISSON [ 5], MJLIER [ 6], WEYSENHOFF [ 11]
Vand PRYCE [ 8] have devcloped a relativistic theory of the motions of rotating
masses of matter. Their equations are deduced from the conservation of energy-
momentum and angular-momentum tensors. From thesc conscrvation assumptions they
demonstrate the possibility of quealitatively new types of motlon resulting
from the coupling of a mean velocity with the total angular-momentum of the
system. However, they do not make it clsar to what this mean velocity rcfers. In
fact,MOLIER suggested that these new motions are purely formal, or in other
words, that the mean velocity defined in thesec theories rcfers only to the behaviour

of fictitious and purely mathematical "center of gravity" points.

Moreover, in all these papers, the deduction of the equations of motion is based
in a very esscntlal way on the assumption that the time-like components of a
certain angular momentum vanish in the mean rest framec of the body, or in other

words, that
A _
3ﬁéxﬂ uw =0
where « p is the anti-symetric tensor for the total interhal angular momentum,

and u is the four velocity with u, u, = 1 . This assumption however has

x
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not been justificd by any specific physical arguments ; so that it constitutes

a further somewhat arbitrary mathematical restriction on the theory.

In the present paper, we shall give a relativistic trectment of the general
problcn of the bechaviour of a mass of conserved fluid, that is in some kind of
rotational nmotion. We shall begin by giving a clear physical . interpretation of
the meaning of the timc-~components of the angular-momentum. Then with the aid of
the new concepts of center of matter density, defined along with the ~lready
well=known concept of center of mass, we shall see that the ambiguity of the
neaning of the motions described in the above quoted papers can be removed. Indeed,
it will becone clear that in our interpretation of the theory, the equations of
Weysenhoff, Moller, ctc. refer to the relative motion of center of mass ond
center of mattcr density. Furthermore, we shall sec that motions are possible
which are morc general than these treated by WEYSENHOFF and MOLLER, with the
result that equation [ 5] need no longer besatisfied. We then obtain a set of
cquations for these more gensral cases, and we show that the motion cannot be
fully determined without further physical assumptions replacing equation [ 57

In another paper we develop an exemple of one of these more general theories,
leading to 2 classical motions equation of the same forn as the Dirac relativis—
tic equation in quantun ncchanics. When this classical equation is quantized in the
usual way, onc obtains a set of quantum numbers similar to those which have been

proposed recent]y’&)for the clencntary particles.

2+ BRelativistic fluid nasses.

The difficulty of treating rotating masses in the theory of relativity is connec-
ted with the impossibility of defining a relativistic rigid body in a consistent
way (2). e nmay however overcone theses difficulties of formulation by considering
instead relativistic fluid masses, which are held together by appropriate internal
tensions that tend to hold these masscs in some stable forms (3). Relative to
steh stable forus, the body of fluid may be subjected to all kinds of internal
movements, such as rotations, vibrations, creation and destruction of inner closed

1 . :
(") GELL MANN, VISHIJIMA, TIOMONO and others.

2\ .. By .

(") Many authors have discussed this problem and have proposed various solutions,
but these proposals arec in any case very complicated and it is not yet clear wether
they arc completely free of contradictions. See for exemple J.L. SYNGE [9].

(3) POINCARE [ 7] has shown that rotating fluid masses with internal tensions
tend to go into stable cquilibrium forms, one of which is a rotating torus.
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vortex structures, etce., cach corresponding tc different possible physical

motions.

At first sight a general treatment of the problem of describing the behaviour of
such masses raiscs insuperable difficulties. If we attenpted to treat ,of all the
details of these possiblc complex motions, we would find ourselves blocked not
only by mathematical difficultics, but also by the fact that we do not even know in
general what the fluid equations are « Fortunately another point of view is possible
if we are willing to restrict ourselves to an overall average description. In this
oase, if we suppose that however complicated the motion nay be, there is a con=
served encrgy momentum tensor density 1%>, (which of course contains the tensions
that hold the body of fluid togethcr), it is possible to define certain average
propertics of the motion, independently of the complex details that we ignore.
These average properties coan be treated mathenatically and lead to a description
of the general fcatures of thc motions of rclativistic rotating fluid nasses.

The assumption of a conscrved energy monentun tensor density takes the forn
(2) Fr

We assume further that the cnergy nonentum tensor is symmetric (as has been the

pr =0

case for all fluids treatecd so far). This neans thot

(3) TP))::T))F'

As a reswlt, the angular nomentun tensor

L = T . - T
(4) pos A uﬁ va T r7
satisfies the conservation cquation
(5) oML =0
Vs A

On the basis of cquation [6 ] one can easily show (4) that if the fluid body is
localized (so that T v vanishes outside of a space~likc three dinmensional
limited region) the todal encrgy and nomentun integreted over all space in any
specificd Lorentz freme are constants. In other words,

6) GV‘= S Tp.o dv = constant
and
aG

where dv represents the element of volimce.

Moreover, it alsc follows from squation (2) that G‘\A transforms as a 4 vector

under Lorentz transformationse. On physical grounds we suppose that GM is a
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tine~like vcctor 3 otherwise there would have to be a Lorentz frane in which
the fluid had nonentum but no energye

We shall assumc furthcr that we can definc ot cach point of the fluid mass a

4 vector density jP_ satisfying the conservation cquation

(8) i =0
p
This 4 vector density can #e written
j%\=Du}x

where u‘M (u,\ u.“= 1) rcprescnts the components of the local unitary 4 velocity
1

and D = (jr.jv)d the invariant matter density.

The "matter density" o is proportional to the quantityof natter in a given
region, which could for cxanple be the nunber of molecules while the vector
jy represents the ratc of flow of this mattor across a unit arca in the dircc-
tion of the coordinate vecctor i o If the fluid consists of charged particules
with a constant ratio of e/n s thcn the density of charge will be f =c Jg e
But wether the fluid is charged or not, therc will be a set of quantities j’A

satisfying equation (8&).

The quantities J,, will clearly bc important for the deternination of the
way in which the body of fluid will chnnge its shape, size, position and orien=-
tation in space (5). Indeed, onc can in principle deduce all thesc properties
on the basis of the fundamental hydrodynamic equations satisfied by the local

flow velocity, which is just
wu®, ) =5,&, )i &, t)

Hence, if we wish to treat any of thesc propertics of the motion of the fluid,
we shall evidently have to study the behaviour of the Jp o

In the non rclativistic linit, the nass density Too/cZ and the natter dcnsity
jo arc proportionals But in the relativistic domain these two quantities may
be different. For if the fluid is in motion, the kinetic encrgy E contributes
a term E/o2 to the mass, or in any case the intecrnal tensions which are con=

tained in the tensor TV’” ney nakce o sinilar contributione

(5) Onc can even regord a "rigid" solid as o liniting case of a fluid in which
neighbouring points are restricted to renain at constant distances from each othere
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The essential features of thc distinction between nass density and matter density
arising in the theory of relativity nay be brought out most clearly in terns of
the conceptions of center of mass and conter of natter density. We shall discuss
the center of natter density in the next section j; and here we shall consider only
the centecr of mass X which is defined as

9) Go Xi = j Too % d
where GO = JToo dv is the total energy of the body (the Latin subscript i
refers to space likc indices).

The tost intercsting property of the center of mass is that it movcs at a

constant velocity proportional to the total momentume To prove this, we write

(10) d X 0 T
o —T' "B'E_' 5 dv
But by the consecrvation cquation (2) we have
d Xy 0 T o X,

(11) Go-ar'-'--' E{—j--lxi': OJa————-dV"Gi
where we have integrated ai ‘I‘O j by parts and used thc vanishing of Toj outside
the fluid bodys. This givcs

' 4%, G, -
(12) —i-4d

dt G

which is the usual relativistio relation between thc velocity of a particle and
its momentum.
If we integrate on the total volunme of the liquiddroplet the time components of the

angular monentun density I.[ V]) X Tv?\ r\ we form the total angular
momentun

(13) sl =§S§ L[rx »Jo &V |

In the same way, we can show that Lt“, is & conserved skew tensor of second
rank, for

£ b= Bj < Lt“”o dv = - SSS 52—1- L\‘”i av =0

since L[ Y]A© 0 on the surface of the droplct.

From the conservation of If 312 it follows that I[ v] is a tensor. Moreover,
‘\W’ is evidently a constant, for
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d d g d
dt ‘U) gggg'g t‘)},o dv ‘f :*;Xi Lt‘)),i dv 0
since Ik” g = 0 on the surfacc of the droplct.
’
The ccenter of nass has a close relation-ship to the time like components of
the angular nomentum. To scc this, we obtain from equation (13) and (4)
1 = & = -
(14) Lio ) Lio,o dv Jy(xi Too % Toi)dv
If we integrate at a constant valus of the tine coordinate x, we obtain (using
equation 12) and (6) :
(15) LiO = GO Xi - Gi XO
If we choose XO =0 thon the tinme conponent of the angular nonentun is propore
tionate to the center of mass coordinatc. More generally, we have, by integra=
ting equation (12),
G, X3 =G %00y
where WK is a constant. We then obtain ¢

L, =«

io
Thus we verify the constancy of the tine component of the angular nonentun
which we have already derived fron the conscrvation law dircctly.
The space components of the angular moncntun are, of course, just the usual

monents of the monenta
(16) Lij = g (xi Tjo - % Tio)dv

It can be seen from equation (15) that the center of mass varies fron one
Lorentz frame to another (6). For example, let us choose the origin of our space
tine coordinate systenm such that X =0 end X, =0 (so that the origin is
at the center of mass and L s is zero). If Xoi Xi were a four vector, then
evidently under Lorentz tramsformation we would obtain for the new coordinates
Xé = Xi =0 and Léi would also have tc be zero. To show that this cannot be
true consider the infinitesimal Lorentz transformation (which consists only of

a changs of velocity with no rotation) :

(6) ef. [ 5], (6] PAPATROU, ctce
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X' =X = ¢ X
0

o) oi "1
K =4 = &30 %
with
€30 = €04

We obtain immediatcly

L, =Ly * Eo[ L:I.J(, = Top Lit
since Lio = 0 ; now Lif is just the space like part of the anguler nonentun 3
hence, if the fluid body is spinning (so that Lyg # 0), then L{  will not be

i
ZEY0 e

We conclude fron thc above that the center of mass coordinates do not transforn
as a 4 vector, and that in different Lorentz frames, the ccnter of nass
corresoond to physically differcnt points.

3+ Conter of matter density.

We shall now define the center of matter density., In analogy with what was done
with the center of mass, one would be led to assume that this center, YP is

given by

(17) YF‘ J = ‘ Jo %y &
where J_ = J J, @ is the total amount of matter in the droplet (which is a

scalar constant because of the conservacion equation). The tine derivative

dv
X . .
- would then be given by
dy éjo 6jk
(18 a) JO--Q:s-—-xidv:}——xidv: jkdv
dt ot 6xk
Thus, the velocity <o), of the center of matter density is
ay, _i jpdav J
(18p) (Ok = K =k =k
dt J J
0 o
where )
Iy = IR dv

The difficulty with this definition is that the gquantities Jk do not form a
four vector, because they depends on the volume element corresponding to the
chosen Lorentz frams. (On the other hend, we recall that the veclocity of the

center of mass is proportional to a four vector). As a result, we cannot obtain
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for example an unambiguous definition of the franme in which the center of natter

density is at rcst.

We can renove this ambiguity by defining thce total currcnt Jk and the center
of natter density Yi according to equation (18) s but in the special Lorente
freme YT in which the center of mass is at rest (so that Gy = 0)s This frone
does have a unique neaning because the total wciwntun is a four vectors Then
if we wish to know Jy and Y, in enother frame TV’ we sinply take their velucs
in the frame i, and transform then according to the Lorentz transformation
laws of a four vector. In other words J; @ and Y, are defined by (18) only by
integration over the volume element associated with the frame T, 3 and w6

rnust be careful not o use this equ-tion in any other franc.

To express this definition of (YV‘) in nore detail, we first denote by the
superscript @ero all quantities which refer to the frrne "TTO in which the total
nonentum Gi is zeroe The velocity of the center of natter-density in thec

frame is then

()
) _ k
)
From this we can define a four velocity (wherc we choose units such that ¢ = 1)
J O(tO)
D (t")

with

D°(t%) = V= 2(8,) 5,5(k,)

(where J 4 = i Jo) » The four velocity v, is then evidently unitary j thet is

- 1 ° ‘)
vp "
On the other hand, the four velocity of the center of mass will be
G
(20) u, = Et
P %
with
2
M= -Gy at

To go to an arbitrary frame, for cxsmple the laboratory frane z one sinply
makes a Lorentz transformation with the velocity uv o This transfornation is
defined by

(212) xf‘ =§ 0 x,’
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then
s W U
%3 % %13 TTTu
(21b) o, ==a, =iu
ako = uo

Then in the frone 2 the center of natter density has the coordinates

u, u Yo(to)
22 =P (t°0) w7 7 O
(22a) Y, = 4t0) Iy Yy
(22b) T o=u t -u Yk(to)

where Yo represents the tine coordinate of the center of mattcr density in the
frane Z « The above equations provide a paranetric representation of the trajece=

tory of the center of natter density in T the paranster being to .

The velocity of matter density in Z can bc obtained by Lorentz transformation
of (19b), This gives

k .0 o)
G (G 3 =M J°)
(232) vj_(Yo) =_55.._ Jio + i M 0 O }
) M M +G)
o o o)
e

Notice that the time paraneter appearing in the above equations is still t° . We
could transform to the parcneter t =Y = with the aid of the equation (22b).
However, it will be more convenient to use the proper time T of the oenter

of matter density as a paraneter. U is then defined by the relation

0
o Yo G;) J_S (£°)

4+ Internal angular nonentune

Thus far we have dcfined the angular monmentun relative to points fixed in space.
We wish now to define an internal angular nomentun analogous to the non relativise
tic angular momentun relative to the center of masse In thc relativistic theory
the center of nags varies from one Lorentz frame to anothere Morcover, the center

of mass and the center of natter density are not in general the sane. Thus there
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is an ambiguity with regard to the point relative to which the inner angular
nomentum of the fluid droplet ought to be defineds This anbiguity could be
reroved for cxample by choosing as the point relative to which the inner angular
nomentun is to be taken the center of nass (ka) « This is in fact onc of the
‘possibilitics that MOLLER [6 ] considercd. However, as we shall see in section (5)
such a choice leads to results having little physical significance with regard
to the motion of the droplet as a wholes We shall choose instead for this purpose
the center of mattcr density (YQA) for this points reflects in a better way
the average veclocity of the droplete If the angular monentun: relative to this
point is taken, then the resulting equetiomswill, as wc sholl sec, dcscribe the

fluctuating motion of the droplet as a whole, relative to that of the center of
mass which noves at a constant velocity. Thus, a gensral dcscription of the

overall motion of the fluid droplet is obtoincd.

In acccrdance with these considerations, we define the inner anguler nonentum
of the fluid droplet as

2a) W= Ly -ms, n B

b w1th the aid of cquation (13)e We have

L = S(x - Tr)&v-

X[(x Y)T - xy-yv)$ohv+ (X. T =Y T Jiv

BT pie o T T o

since Y;) is a constant in the integratiocn, we thcen obtain
+ YP G, =Y G‘k

o= (x, -Y)

"We can express 3]}11‘A in terms of L

(25) )= My
As Ly, is a tensor, it follows fron (25) that il p is also a tensor. By differcn=-
tiating (25) with respect to the proper tine v and by noting that 4 G Jfir =0

ws obtain )

adl,,,

—r= Grl u, -G 'u“

This is one of the basic equations postulated by WEYSENHOFF .

(26)

It is particularly instructive to consider cquation (26) in the special frane

2:; in which v; = 0 « This we shall call the rest frame of the particle, because
it is the frame in which the center of matter density is at rest. In that
frame we choose a sct of axes such that Yi =0 and YO =0 for the monent of

interests Then we have
d YO

- = !
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We then obtain for the time component of the angular nonentun

L= qM, +¥, G =Y G = 4 -G t.

io i io
since
. =G X, -G, bt
io o i
We obtain
G X, ~G t=4d0 -qc t
o 1 io
and thus
AN —-
(27) m“lio = Xi Gb

The above rclation shows that in the frane Z—b the tine conponent of inner
angular nonentun is proportional to the vector joining the center of mass and
the center of mattcr density. This interpretation of Jnio will be seen to play
an inportant role in the further devclopment of the theory.

5. Brief revicu of Weyscnhoff'!s theory.

We now proceed to give a brief review of the Weysenhoff theory, in order to lay
the foundations for a discussion if its physical significence in teri:s of our
fluid nodsl.

The basic starting point is cquation (25). Now equation (25) consists of six
squations detcrmining the anti-symetric tensor dﬂﬁryuﬂfﬁ in terms of grL
and v, e Moreover, there are four nore cquations coming fron the conservation

~ of the total noncntun, viz. ¢

(7) -3-:5—-0

There are still however no equations to determine the tine variation of the v

(of which only threc are independant, since v, v, =1). In order to deternine
thosc cquations, sonc further hypothesis is nceded.Such a hypothesis is essentially
a supplementary assunption connecting the center of mass and the center of natter

density.

In the Weysenhoff theory, the supplencntary assumption is
(1) M, v’ =0

p> .
By going to the rest frame of the particle E::o (where v =0 ’ v = 1), we Sce
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that the above recduccs to the three conditions

(28) Moy = 0
Thus, equation (1) which at first sight scens to contain four conditions, is
scen actually to contain only threce And by cquation (R7 ) it follows thet in this

frane

Xi =0

—
Thus, VUeysenhoff's assunption inplies, in our theory, that in the rest frame <4 o
the centor of mass aond the conter of matter density concidee It is clear fron

this that Weysenhoff's assunptiocn serves to couplete the definition of the equations

of motion of ths particle.

To obtain the equations of notion in detail, we first mltiply (25) by v .
This gives (with v, v =1) 3

M SRS
29 Gy= (G v VL
(29) g (Gyv )V/A + Vs
d am v
Now because K\‘dﬂ 9v‘7= 0 we have v —51%: +‘Iﬂi\ﬁg‘g—— = 0 , Equation (29) then
becones
G - i —7'-
T N

which gives, when multiplied by dv" /atv

G avt _ _— avl 7 avl av>
poaw SEWE T T T av

But because v v. =1 the first tern on the right hand side vanishes ; while
becruse of the antisymmetry of Ml ., the sccond tern also vanishese Thus we

obtain (Gvu ) =0 and i u, = constants In fact Gl u Uy ploys just the
role of a rest nass, which we denote by n « Thus we have from (29)
(30) F G‘Az n vr,L nu»dq;

This is one of Weysenhoff's set of equationse.

To obtain the other sct of Usysenhoff's equations, we differentiate equation

(30) with rcgard to noting thet
ac

=0

ndy, Aty &v)’ Y7
dav av r”

This yiclds
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. 4 v
ayt’ . TYY dv T
By applying (28) and GT\'E% =0 wc obtain d’a)‘ 7 =0 and arc loft
with
2
av o, 4 v
e i

The physical neaning of these relations can be further clerified by the intro-
duction of a spin vcctor (7) Sp dofincd by the relation

= 3{}‘u)vy = é’ e’rl),«ﬁ v i1 xp

o
SN is a space like vector, for we have evidently
s v. =0
PR
In the rest framne we got ¢
_1 o 3k -
s; =7 &yp A €55 = Eqguo)

which implies that the spin is the space dual of the angular noncntun in the rest

france.

Reciprocally we can write ‘B@u,, in terms of s, and v,, . The preceeding re-
AP r‘
lation gives evidently ¢

which can be written in the covariant form ¢

- «
(32) Zmy_ éts.;wijs v?
The above inmplies the identity
Y
(33) &ppﬂ?ﬁ‘ =2(g v/ - 8 )

Fron equation (19), it is then possible to calculate the derivatives of Sf" .
We find imnnediately

ds P
5 1 24 [
-a:ct =5 Epoap (P %V,U + & %I,D v”)

i

5 Epanp( S 0w’ v - oS e

gp&o\ 2 Mﬁ%g

bS]

=

(7) The nced for tho introtuction of a spin 4 vector density, instead of tensor
density ¥y has becn stressed by de BROGLIE ([1], pe 54)e It has also been intro-
duced independently of us by HALBWACHS [3] and [4 J.
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By utilising the decomposition (32) of 5]1‘ we obtain s
dsp 5
o v
(34) I 5% (Sl" v, =8, vv) (p T )VV
wherc we have also used
v dv¥ _
Vw0
In terms of the spin conponents s,,L equation (29) then becomes @

G.=nv /’dv

A e

which can bes written as

-

(35) Gv=mv

if we introduce the 4 vector

(36) B = Pmp?lv:} & vp

orthogonal to s, and er e p cvidently reprcsents usual energy nonentun of
rotation in the rest frame.

The Weysenhoff equations (31) can then be cxpressed in a sinplified form. We
obtain after a simple calculation

dv¥ ds¥ P
(37) —%—-—m ‘A p—Ts VP*—'CrAde‘B v
Multiplying (37) by Sl\“ we then obtain
(38) n %l’,vf =0

which, when conpared with (34) inmplies finally the reletion @
B
69) T -

This shows that the spin s
Moller-Weysenhoff theory.

" of the droplet is a constant, according to the

Fron (37) and (38) we then obtain

li avh _ d2 v P
(40) II]"d—’_U-— irvq/b‘_d?—s v

Equation (39) constitucs a set of second order differcntial equaticns for the
velocity. These equations inply that, unlike what hapgens with Newton'!s laws of
motion, not only arc the initial values of Yi and dt:a arbitrary, but so also
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dv, oY,
arec these of I5 " -?1-/;2- o As a result, new motions arc possible not contained

within the fr-ncwork of Newton's laws. These new notions nust however be consistent
with (30) and (35) fron which they were derived by differentiation.

To investigate the solutions to (40), it will be adequate to consider what
happens in a special franec, nanely that in which the space components Gi of
the momentun are zero. For becausc of the Lo:entz inveriance of the theory, another
solution of these cquations corresponding to a non zero value of Gi can always
be obtained by Lorentz, transforming the solution corresponding to Gi =0 .

Ls the velocity of the center of mass corresponding to each frane I is

: , d X G
given by the rel=tion —-Edi'- = E—- we sec that in the frane ‘IT;\ where Gi =0

o
(incrtial rest frame of Weysenhoff) the center of mass is at rest. In T, the
space components vy are then the couponents of a space vector 7 which represents

the velocity of the center of matter rclative to theJcenter of ga:srs.

. _ 0 . o_dD_
The veloc:cllty v}L also has a tine component vV, =D SInce == = gT = 0
~ O -
we obtain I 0 .

We sce also that in the special frome T, the acceleration of the center of

. . d
natter is a space like Tc and the general reletion v /‘%%- =0 can be written
dv, ed
v

1 TT S 0 which inpliecs that the two vectors v and dv are orthogonal.

at

In W, the components of the 4 vector p

r

The relation py, Sy = 0 which follaws from (36) can be written as

are pizuvi, p.=nv -G ,

+ = : = S : 3 = -
mvy 8y +Py 8, =0« From v, sl = 0 we then deduce vy 8y v s, so that

. 0 _ _ . _ o _
we find -nv_ s +p 8 =0 or equivalently : s (pO n v0)~ s, G, =0.
As G, #0 wo sec finally that s =0 in T which implies that sp is

8 spacc like vector in that frame. Then v Sy = 0 Dbecones vy st =0 in Ti'o

b 3y : o Thi the th
and we get s T si T =0 (because of T5 - 0). This shows that the three

> & -
veetor v To and 8 form an orthogongl instantaneous systen of axis which

generalizes to our case the Darboux-Freinet moving systen of axis. The integration
of the laws of motion results inmediately from these considerations. The spage
like components of py in the frame ¥, can be written as

v 1 1 3
_ - o Jj .k dv- ok dv k o _ . dv- k
py =0 Vs T€i00 T SV ey an® Y *fikear® v T&jkoaw ® Yo
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dv
sincec -a-:dg and 8 are zero. In ordinary vector notation, this relation becones

- dv
(41) nvs=v, Ex-é’)

The above cquation implies that the motion of the center of matter renains in a

plane orthogoncle to sy .« As T and v, are comstants in T (since
ds dv
"d"?;t = E’U_O = 0) this motion reduccs to a circular uniform motion with an angular

velocity w = -I%T o If we nultiply (41) vectorially by S we obtain
m?x?:vo(%zxg) xg

2> dv\= 2 St

)S - Te

2 &v
du

= = 8

- .
since by equation (37) T is orthogonal to % « This shows that %% = %? x v
s

Weysenhoff's equations therefore completely determine the time rate of change of

. -

V .

We conclude that in Tio Weysenhoff's equations imply that the center of natter

density exscutes the above-nentioned uniform circular motion ar-und a fixed
center of masse. This gives a clecar physical meaning to the motions described by
the Weysenhoff equations.

Finally we renark that if the external forces are acting on the fluid droplet,
their cffect can be taken into account by adding them to the energy monentun
conservation equation (2), so that we have ¥ T o =§’L where FQ‘ is the applied
force. External torques can be taken into account in a similar way. This, in fact,
has already becn done by MOLIER.

6« On the physicél neaning of the Weysenhoff motions.

Thus far we have scen in section 4 that Weysenhoff's assumption 3’[{( VV-
leads to interesting new kinds circular notion.

We can obtain a better understanding of this problem by going to the Lorentz

frame Zo in which the space like parts vy of the velocity ars zero (while
ig unity). Equation (29) then takes the forn

¢, = -, &

iv d’\‘,

Vo
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Thus a non vanishing acceleration will imply that the nonmentun and velocity are
not colinear, so that even when the mean natter current is zero, there is still

sone nonehtun.

To show how this situation could come about, consider a nass of fluid in its
rest frane (so that the total current is zerc). Now suppose that this fluid is,
to begin with, in a sym:etrical and uniform rototional motion about its center
of matter lensitys Then, as is evident from the symmetrical distribution of the
energy, the center of mass will coincide with the center of natter density and
Weysenhoff's condition will be satisfied. However, there will be no acceleration
since the nmean nonentun is zerc because of the syrmetry. Thus the fluid will

sinply continue to rotote about a fixed point.

If this fluid is viewed from encther Lorentz frame in which the body of the
fluid noves with a velocity ¥ the part of the bedy in which rotational and
translational velocities adl, will then be noving faster than the part in which
they substract. Thus the cncrzy density will be higher on the former side than on
the latter ; ond as 2o result, the center of mass will nove away fron the center of

the matter lensity.

. -
In this way, wc scc gqualitatively, the origin of the relation %% = %? x ¥
) S

since %%, is just proportional to the difference betwsen these two centerse

However, it is clear that as long as the distribution of velocity in the rest
frane is syrmetrical, there will be no net acceleration. We nmay however suppose
a further distmrbance in the rotating mass of fluid ; for exanple, localized
vortices which do not contributc to the net current, but which do contribute to

the energy density. Such a vortex would have twe effects on the net motion.

First, it sould displace the center of mass away from the center of natter density.
Secondly, it would contribute to the mean momentun, since it would place a high
nass density in a region of high velocity. Thus the mean nmonentun could fail to

be zero even when the nean current was zeroe.

Of course, to satisfy the Weysenhoff condition without reducing to the trivial
case of rectilincar motion, it is necessary to bring the center of mass back to
the centcr of matter density, without bringing the monentum back to zero. This
could be done by supposing further vortices on the opposite side of the body
which lead to an energy density that concels the noments of the original vortices
in the leternination of the center of mass, without cancelling their nomentun

completelys To show that this is possible, comsider two vortices on opposite sides
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of a2 Adianctcr of the bedys. Let r be the distance of the first vortex fron

the center of matter density, r, that of the second. Let ay be the energy
of the first vortex, o, that of the second. Then we choose w, r = @, T,
in order to satisfy to the Weysenhoff condition. Now the momentun of the first
vortex will be Ef'= a3y E?' where is the local nean stream velocity arocund the
vortex, while that of th¢ second vortsx will be EZ'==002 ﬁz'. If the angular
velocity ¢o were a constant throughout the body, (so that it was rotating as if
it were rigid), then we would have ﬁ‘; 60'17; and u2 =W ':E"Z' so that p1 + p2
would be & (w; T -?? w, T ) = 0 . But suppose & were a function of T .

Tris would inply, of course, a non rigid rotation (of a type which is evidemtly

quite com:on in fluids). Then we would have @

B+ %5 = (x, )1 St N Y= () ‘“’(rz))“’l T
which is in gencral not zecroe. We see then that the Weysenhoff condition would be
satisfied by suitablc distribution of notions in the fluid. Of courss, it could
also be satisfied with nuch nmore complex distributions, but the principle is

cssentially thc sanmc.

We can now casily sec qualitatively, the reason for the Weysenhoff notion, for the
velocity of the center of mass is proportional to the total monentum. Thus, if
the franc where vy = o, Gi is not zero, the center of mass will nove and
separate fron the center of thec matter density. Since the fluid body tends to
naintein in a ccrtain shape, this process cannct continue indefinitely without
socne change in the pattern of the fluid notion and internal tensions, which
leads to accelaeration of the center of matter demsity. Indeed, if the fluid
satisfies the Weysenhoff condition (1) for all tines, then the distribution of
notion will be such as to lead an acceleration of the conter of natter density
which satisfies the Yeysenhoff equations. Thus, the Weysenhoff assumption implics
certain restrictions on the general features of the internal notions of the
fluid body.

7. Extension to more gensral motions not satisfying the Weysenhoff conditichne

We have secn that the Weysenhoff condition (1) represents a certain state
of the intermal notion of the fluid. The nost general state of motion evidently
need not satisfy this conditione We shall now formulate the problem of how to

treat this norec gencral type of mction.

First of 'all, we nc longer require that the time conponent of the angular

nomentum vanish in the rcst framce. Is then becomes convenient to split the
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angular nomentun into two parts, one of which is purely space like, and the other

which is purcly time like. To do this, we first define the 4 vector ¢

Emvv

«
where Sm is the dual of Bm\“’

(42)

We note that because of the anti-symmctry of mrywe have ¢

(432) vt
]

and similarly

(43v) v. s =0
'A

Thus, t K and &, are both vectors whose tine component vanish in the rest
framc, Hence they have a total of six independant components. Since M{‘Valso
has six independant conponents, this suggests that it should be possible to express
ﬁm , conpletely in terms of SI" and tV‘ . This is indeed possible, and the

exprcs;:.on is ¢

1
(44) J{n’,u—' tr V’U - t)/ VV + ’é- é{""dﬁ(so( Vﬁ - Sﬁ V"()
To verify this, one necd merely to go to the rest frane (where v, = 0 and

v, =1 while t and 5o arc zero). For since (44) is a tensor reclation it will
be truc in every’ frane 1f it is true in ~ny one frame. But in the rest frame we

have fron (42) ¢

i, =

. 1
Since T Eorup (sp< Vs = Sp V«) = 0 in the rest frame, the time like components
of (44) are identieal.

To deal with the space like components, we take the dual of both sides of (29).
This gives

é.gvyo\/_qu(bg&t,wp_f( v+ Sr\ 'v‘u - 8, V‘\k
In the rcst frame, the tine components of this relation reduce to @
7 Eouge TN = -0
which is also an identity. Thus equation (44) is proved.
The Weysenhoff theory then corresponds to the chcoice
t, =0

,A
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If we wish to nakc a more gensral choice, we are then faced with the problen
of deternining the cquation of notion of the tP o For as we saw the original
equation (26) on which thc Weysenhoff theory is based are just sufficient to
deternine the cquations of motion when t}i is chosen equal to zero. To proceed
further we shall thercfore need some additional physical hypothesise

One can obtain sone restrictions on tp by returning to a nore detailed consi-
deration of our nodel. Now, as POINCARE [ 7] has shown, there exist stable
rotating configuprations of fluid that are symmetrical around their axis of rotation
(for exanple ring-shaped nasses). If soms inhomogeneities are introduced wkich
destroy the symmetry of the velocity distribution arcund the axis of symnstry,
then with the possage of time they will tend to be redistributed unifornly by
oscillation and rotation ; and eventually, the configuration will approach its
stable syrmetrical form againe.

Let us then suppose that our rotating fluid mass takes one of these stable

symetrical forns. Now in the rest frame (where vy = 0) equation (R5) shows
ajy

that dik vanishese Thus the spatial part of the angular nomentum is o cons—

tant : and it is clear that ths stable axis of symmetry around which the fluid
rotates rmst coincide with the dirsction of the angular monentun vector.

Iet us now suppose that some asyu.etrie distribution of vortices were intro-
duced into the rot-~ting fluid nass which results in a non zero valuec of the

tine componcnt of the angular nomentun in the rest frame (and therefore a non
zero value of t,)e We then consider two cascs

I‘

Qe ti is perpendicular to the angular momcntun
be ti is parallel to the angular nonentun.

It is clear that in case a. the inhonogeneities will be whirled around along
with the rotating fluid mass, so that their constribution to ti will tend
to cancel out in a tinme that is not long compared with the pertod of rotation
of the fluid nass. Moreover, according to Poincarét*s result quoted in the previcus

paragraph, the fluid mass will finally approach a symmetrical forn in which the
center of nmass will clearly coincide with the centcr of natter densitye.

In casc b. whers ti is parallel to the angular nomentun vector, there ﬁill
be in general, however, no such a tendency for the inhomogeneities to becone
unifornly disteibuted and to produce a zerc average tinme component of the
angular nonentun. For in this case, the vortives are distributed asyrmetrically
long the direction of the angular monentum g. Thus, the rotational motion will
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not act to produce a repid oquilibriun, since the distribution will already
be symnetric about the axis of rotatione

Of coursc, tcnsions nmay be sct in the fluid which eventually will bring the
cemter of natter density back to thc center of nass. But these tensions nay in
gencral be expected to act nuch nore slowly than the rapid rotational notions Thus
therc will be a wide rangec of motions in which it will be a good approxination
to assume that in the rest frame, the compunents of t; that are perpendicular

-
to s arc zero, while the conponent parallel to T will still have to be
taken into account.

Thus in the recst frame we have

by =Aey
where A 1s a proportionality factor. Since t, =8, = 0 the above can also
be written as a 4 vector relation
t =:\SrL

v

which rust hold in every frame if it holds in the rest frane. (A is evidently a
pseudo scalar)e

We have thus reduced the number of new varinble (relative to those considered
in the Weysenhoff theory) to one, nancly A« To deternine A still further, some
physical hypothcsis is necded, with regard to the component of tv_that is directed
along the angular nonentun vector. We shall consider exemples of such a hypo-
thesis in a later papere. For the present we merely point out that the fluid
nodel indicates a dirsction in which the Weysenhoff thecory can be generalized.

8. Comparison with treatments of other authors.

We shall now compare our treatment of this prcblen with that used by others.

First of all, an essential new step proposed here was the intrcduction of the
concept of center of matter density. We recall that because this center is not
a 4 vector, it was necessary to cvaluate it in a definite Lorentz frame j nanely
the one in which the quuntities Vi vanished.

LAs we have already pointed out in section 4, however, there exists another
natural frame, namely the one AL in which the space components Gi of the
nonentun vanish. Previous work on this problem has been based on defining the
point Yy cf equations (25) and (26) as the "center of gravity" which is the

center of mass eveluated in this rest frame.In thisway the fact that the center of



nass is not a 4 vector is circunvented.

However, as we have scen fron equation (12) the velocity of the center of
nass is proportional to the momentum. Equation (26) then rcduces to

a X
———31£:L-= 0 . Thus, all components of the angular momcntum remnin constant j

the "center of gravity" moves at a constant rate ; and Weysenhoff's equations
reducs to the trivial casc of uniform rectilinear notion. Hence, the whole treat-

ment loses its interest, and nothing qualitatively new is learned abcut the motion

from the Weysenhoff equations.

In order to give more physical relevance to the Weysenhoff cquations, two types

of proposals have been nade.

8+ MOLLER [ 6] has shown that these equetions could describe the motion of a
certain set of purecly mathematically defined "pseudo centers of gravity", whose
connection with any aspect of the motion of thc body has not been defined,

be It has been shown thet under suitable conditions points fixed in the body
will undergo the Weysenhoff notions.

Possibility a. is evidently not satisfactory since it describes no real physical
propertics of the motions Possibility b. also is not entirely satisfactory,
especially for a fluid where elements undergo complex motions an where it is
arbitrary to choose a particular element to describs the behaviour of the mass

of fluid.

Our proposal of a center of matter density provides a natural refenrencs point
to describe the behaviour of the fluid ; for the matter current determines the
general motion of the fluid, while the center of mass is a point which noves at
a constant rates By studying the motion of the center of matter density relative
to that of the center of mass, we obtain a general idea of how the fluid motion
differs from uniform rectilinear motion, without the nced for going into a detailed

trecatment of all the complex motions inside the fluid body (8).

(8) These details could, for example, be treated by considering noments of
the first encrgy-momentum and current densities higher than the first, but since
such nmoments arc not in general conserved, their effects tend to bc lost by
random nixing processcs analogous to collisions in the Boltzman equation in
statistical mechanics. Thus, the conscived noments nct only satisfy equations
that are independant of the higher mements, but also describe the major prrt of
the "bulk" properties of the fluid averaged over sone period of timec.
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We also give a clesar interpretation of the Weysenhoff condition s oV = 0
for it means that in the Lorentz frame in which the spacial components of the
nean velocity are zero, thers is no time component to the internal angular nonen=-
_tum so that in this frome the center of mass and the center of natter density are
the sames As we have seen in the previous sections, this is a pessible state of
notion of the fluid droplet, ond one which could readily be set up. Ls we have
also seen, however, more general states off motion are possible. Thus our physical
interpretation of these equations cpens up the possibility for studying a broeder
range of motions. Indeed, as we shall show in a later paper, scme of these new
possibilities correspond to a set of classical equations which, when quantized
lead to a generalization of the Dirac equotions In these genernlized equations,
there is a new set of quantum numbers very siniler to those (such as isotopic
spin and strangesness) which have been used recently for classifying the various
types of elementary particles. Thus, the new quantum numbers can be interpreted
as representing states of rotation and internal exeitation of a relativistic

liquid droplet.

This gencral theory of rotating relativistic droplets is also interesting fron
another point of view. It provides a clear physical nmodel for the "molecules" which
could constitute relativistic fluids with spin, that is, fluids characterized at
the macroscopic level by a continuous distribution of internal angulesr nonentunm.
By adding to Gy and A » Suitable tensions ©,, representing intersections
betwsen the rotating droplets which constitutes such fluids (so that the total
energy momentun tensor of such a fluid can be represented by D, G, v, + Opv
where the total current is D'vH and the internal anguler nomentunn D ZQQP")’ w6
can formulate new types of relativistic hydrodynamics. The theory of these types~™
is now being developede. Indesd, it has already been shown that they provide a
model for the hydrodynarmical representation of the Dirac and Kermer wave eguations
(sec [2] and [ 10]) ,thus furnishing o physical basis for the causel interpretation
of relativistic wave squations.

Finally, we wish to express our gratitﬁde to Professors de BROGLIE, TAKABAYASI
and to Mr. F. HALBWACHS for many intsresting discussions and valuable suggestions.

Professor TARABAYASI in particular has greatly contributed to the clarification
of the ideas in this paperse
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