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RELATIVISTIC HYDRODYNAMICS OF ROTATING FLUID MASSES

by David BOHM and Jean-Pierre VIGIER

Faculte des Sciences de Paris

Séminaire de THEORIES PHYSIQUES
(Séminaire Louis de BROGLIE)

Ann~;o 1957/58
10 decembre 1957

1. Abstract.

With the aid of the new notion of center of matter density, we give a relativistic

treatment of the behaviour of finite size masses of rotating fluid. This treatment

is based on an analysis of the relative motion of this center of matter density

and the more familiar center of mass. In this way, we obtain a clear physical

interpretation of the equations studied by MATHISSON, WEYSENHOFF and Wo

also show that more general types of motions are possible related to additional

degrees of freedom of the relativistic fluid droplet. These degrees of freedom

provide a framework for a thcory of the quantum numbers of the elGmentary particles

(isotopic spin, strangeness, ctc.) which vill be developed in detail in a subse-

quent paper. 
-

In a series of very intcresting papers, MATHISSON [5], MØLLER [6], WEYSENHOFF [11]
and PRYCE [8J have developed a relativistic theory of the motions of rotating
masses of matter. Their equations are deduced from the conservation of energy-
momentum and angular-momentum tensors. From these conservation assunptions they
demonstrate the possibility of qualitatively new types of motion resulting

from thc coupling of a mean velocity with the total angular-momentum of the

system. However, they do not make it clear to what this mean velocity refers. In

fact,MOLLER suggcsted that these new motions are purely forual, or in other

words, that the mean velocity defined in these theori6s refers only to the behaviour

of fictitious and purely mathematical "center of gravity" points.

Moreover, in all thcse pap6rs, the deduction of the equations of motion is based

in a very essential way on the assumption that the time-like components of a

certain angular momentum vanish in the mean rest frame of the body, or in other

words, that :

whore is the anti-symetric tensor for the total interhal angular momentum,
and u~ is the four velocity with u ~ u = 1 . This assumption however has



not been justified by any specific physical arguments ; so that it constitutes

a further somewhat arbitrary mathematical restriction on the theory.

In the present paper, we shall give a relativistic treatment of the general
problcm of the behaviour of a mass of conserved fluid, that is in some kind of
rotational notion. We shall begin by giving a clear physical .interpretation of
the meaning of the time-components of the angular-momentum. Then with the aid of
the new concepts of center of matter density, defined along with the already
well-known concept of center of mass, we shall see that the anbiguity of the

meaning of the motions dGscribed in the above quoted papers can be removed. Indeed,
it will become clear that in our interpretation of the theory, the equations of

W6ysenhoff, MollGr, etc. r6fer to th6 relative motion of center of mass and
ccnter of natter density. Furthermore, we shall see that motions are possible
which are more general than thesetreated by WEYSENHOFF and MOLLER, with the
result that equation [5] need no longer be satisfied. We then obtain a sct of
Gquations for these more general cases, and we show that the motion cannot be
fully determined without further physical assumptions replacing equation [5:.

In another paper we develop an example of one of these more general theories,
leading to a classical motions equation of the same form as the Dirac relativis-

tic equation in quantum mechanics. When this classical equation is quantized in the
usual way, one obtains a set of quantum numbers similar to those which have been

proposed recently 0 for the elementary particles.

2.. Relativistic f luid nasses.

The difficulty of treating rotating masses in the theory of relativity is connec-
ted with thc impossibility of defining a relativistic rigid body in a consist6nt

way (2). We may however overcome theses difficulties of formulation by considering
instead r61ativistic fluid masses, which are held together by appropriate internal
tensions that tend to hold these masses in some stable forms ( )~ Relative to
such stable forms, the body of fluid may be subjected to all kinds of internal
movements, such as rotations, vibrations, creation and destruction of inner closed

(1) GELL MANN, VISHIJIMA, TIOMONO and others.
( ) Many authors have discussed this problem and have proposed various solutions,

but these proposals are in any case very complicated and it is not yet clear wether
they are completely free of contradictions. See for example J.L. SYNGE [9].

( ) POINCARÉ [7] has shown that rotating fluid masses with internal tensions
tend to go into stable equilibrium forms~ one of which is a rotating torus .



vortex structures, each corresponding to different possible physical
motions.

At first sight a general treatment of the problem of describing the behaviour of
such masses raises insuperable difficulties. If we attenpted to tr6at90f all the

details of these possible complex notions, we would find ours61v6s blocked not

only by mathematical difficulties, but also by the fact that we do not even know in

general what the fluid equations Fortunately another point of view is possible
if W6 are willing to r6strict ourselves to an overall average description. In this

oase, if we suppose that however complicated the motion be, there is a con-
s6rved energy momentum tensor density T ~; (which of course contains the tensions
that hold the body of fluid it is possible to define certain averag6

properties of the notion, ind6pendently of the complex details that WG ignor6.
These average properties can be treated mathematically and lead to a description
of the general fcatur6S of the motions of relativistrc rotating fluid masses.

The assumption of a conserved energy momentum t6nsor density takes the forra

We assume further that the energy momentum tensor is symmetric (as has been the
case for all fluids tr6atGd so far ) . This means tha t

i

As a tho angular momentum tEnsor

satisfies the conservation equation

On the basis of equation one can easily show ~‘~ ~ that if the fluid body is
localized (so that T~~ vanishes outside of a space-like three dimensional
limited region) the total energy and momentum integrated over all space in any
specified Lorentz frame are constants. In other words,

where dv represents the element of volume.

Moreover, it also follows from equation (2) that G  transfoms as a 4 vector



time-like vector ; otherwise there would have to be a Lorentz frane in which

the fluid had momentum but no energy.

t~c shall assume furthcr that wc can define at each point of the fluid nass a

4 vector density j p satisfying the conservation equation

This 4 vector density can he written

where u~ ~u . ~ u 1  = 1 ) represents the conponents of the local unitary 4 velocity

and D the invariant natter density.

The "matter density" jo is proportional to the quantity of natter in a given

region, which could for exanple be the number of molecules while the vector

ji represents thc rate of flow of this natter across a unit arca in the direc-

tion of the coordinate vector i . If the fluid consists of charged particulos
with a constant ratio of then the density of charge will be f 
But wether the fluid is charged or not, there will be a set of quantities j~
satisfying equation (8).

The quantities j  will clearly be important for the determination of the
way in which the body of fluid will change its shape, size, position and ori6n-

tation in space ( ) Indeed, one can in principle deduce all these properties
on the basis of the fundanental hydrodynanic equations satisfied by the local

flow velocity, which is just

Hence, if we wish to treat any of these properties of the notion of the fluid~
we shall evidently have to study the behaviour of 

In the non relativistic . limit, the nass density T oo/c2 and the natter density

jo are proportional. But in thc relativistic donain these two quantities nay
be different. For if the fluid is in notion, the kinetic energy E contributes

a term to the mass, or in any case the internal tensions which are con-

tain6d in the tensor T ~ way make a similar contribution.

( ) One can even regard a "rigid" solid as a limiting case of a fluid in which
neighbouring points are restricted to remain at constant distances from each others



The 6ssential features of thc distinction between nass dcnsity and natter density

arising in the thGory of relativity nay be brought out nost clearly in terns of

the conceptions of center of nass and center of natter density. We shall discuss
the cent6r of natter density in the next section ; and here we shall consider only
the center of nass X which is defined as
,

/ !

wher6 G 
o = T 00 dv is the total energy of the body (th6 Latin subscript i

refers to space likc indices).

The most interesting property of the center of mass is that it moves at a

constant velocity proportional to the total momentum. To prove this, W6 write

But by the conservation equation (2) W6 have

where we have integrated 6 T. by parts and used the vanishing of T . outside

the fluid body. This gives

which is the usual relativistio relation between the velocity of a particle and
its momentum

If we integrate on the total volume of the liquid droplet the time components of the

angular momentum density Lr ~ ~= ~ T~ " x we form the total angular
momentum ~

In the Saffi6 way, W6 can show that L 03BD is a conserved skew tensor of second

rank, for 
f

since the surface of the droplet.

From the conservation of it follows that L[  03BD] is a tensor. Moreover,
L ~ is evidently a constant, for ~



since L . 
= 0 on the surface of the droplet.

Th6 center of nass has a close relation-ship to the tine like components of

the angular momentum. To see this, we obtain from equation (13) and (4)

If we integrate at a constant valuc of the tine coordinate xo we obtain (using

equation 12) and (6) :

If we choose X = 0 then thc tine conponent of the angular nonentun is propor-

tionate to the center of mass coordinate. More generally, we have, by integra-

ting equation (12),

is a constant. We then obtain :

Thus we verify the constancy of the tine couponent of the angular nonentun

which we have alrcady derived from the conservation law directly.

The space conponents of the angular momentum are, of course, just the usual

moments of the monenta

It can be seen from equation (15) that the center of mass varies from one

Lorentz frame to another ~ ). For example~ let us choose the origin of our space
tine coordinate system such that X~ = 0 and X~ = 0 (so that the origin is

at the center of mass and L. is zero). If X . X were a four vector, then

evidently under Lorentz transformation we would obtain for the new coordinates

X = X! =0 and L~. would also have to be zero . To show that this cannot be

true consider the infinitesimal Lorentz transformation (which consists only of
a change of velocity with no rotation) :

(~) cf. [5]) L6] PAPATROU, etc.



W6 obtain immediately

since L. = 0 ;now L.y is just the space likc part of the angular momentum ;

hEncE~ if the fluid body is spinning (so that 0), then L! will not be

zero . a.o

We conclude fron the above that the center of nass coordinates do not transform

as a 4 vector, and that in different Lorentz frames, the center of nass

correspond to physically different points.

3* Center of natter density.

We shall now define the center of natter density. In analogy with what was don6

with the center of nass, one would be led to assune that this c6nter, Yp is

given by

where J 0 == ) J~ dv is the total amount of natter in the drop16t (which is a
scalar constant because of the conservation equation). The tine derivative
dvjf would then be given by

Thus, the v610city t.~ of the center of natter density is

The difficulty with this definition is that the quantities Jk do not form a

four vector, because they depends on the volume element corresponding to the
chosen Lorentz frame. (On the other hand, wo rGcall that the velocity of the
center of mass is proportional to a four vector). As a r6sult, we cannot obtain



for example an unambiguous definition of the frame in which the center of natter

density is at rcst.

WE can rcnove this ambiguity by defining thc total current J and the center

of matter density Y. 1 according to equation (18), but in the special Lorentz
frame 03C0 in which the center of mass is at rest (so thnt G. = 0). This 
doES have a uniquc meaning because the total momentum is a four vector. Thcn

if wo wish to know J. and Y u. , in anothcr frame 03C0’ wo sir.lply takE their 

in the frame 03C0o and transforn then according to th6 Lorentz transformation

laws of a four vector. In other words Ji and If are defin6d by (18) only by
integration over the volume element associated with the frame 03C0o ; and wo

Dust be careful not to usc this. eqution in any other frame.

To express this definition of (Y ) in more detail, wE first denote by thc

superscript zero all quantities which refer to the frame 03C0o in which the total

momentum G. is zero . The velocity of the center of matter-density in thE

frame is then

Fron this we can define a four velocity (where we choose units such that c = 1)

(where J~ = i J ~ ~ The four velocity v p is then evidently unitary; that is

On the other hand, the four velocity of thc center of nass will be

To go to an arbitrary frame, for example the laboratory franc Lone simply
makes a Lorentz transformation with the velocity u . This transforcmtion is
defined by 



Then in the frane ~ the center of natter density has the coordinates

where Y reprssents thc time coordinate of thc center of natter density in th6
o

franc 1:. The above equations provide a parametric representation of the trajec-
tory of th6 center of natter density in t the parameter bGing t .

o

The velocity of natter density in 03A3 can bc obtained by Lorentz transfomation

of (19b) . ThiS gives

Notice that the tine paran6ter appearing in the above equations is still t° , ~E
could transforn to the parameter t = Y 0 with the aid of the equation (22b).

How6v6r, it will be nore convenient to use the proper tine 1~ of the center

of matter density as a parameter. 03C4 is then defined by th6 relation

4. Internal momentum.

Thus far we have defined thc angular momentum relative to points fixed in space.
Me wish now to define an internal angular momentum analogous to the non relativis-

tic angular momentum relative to thc center of mass. In the relativistic theory

ths cent6r of mass varies from one Lorentz frame to another. Moreover, the center

of mass and the center of matter density are not in general the same. Thus there



is an. ambiguity with regard to the point relative to which the inner angular

momentum of the fluid droplet ought to be defined. This ambiguity could be

renoved for example by choosing as the point relative to which the inner angular

momentum is to be taken the center of mass (X~) . This is in fact one of the
possibilities that MOLLER ~6 ~ considered. However, as wE shall scc in section (5 )

such a choice leads to results having littls physical significancc with regard

to the motion of the droplet as a whole. We shall choose instead for this purpose

the centcr of natter density ~~ ) for this points reflects in a better way

the averag6 velocity of the droplct. If thc angular momentum relative to this

point is taken, then the rcsulting equations will, as we shall sec, describe the

fluctuating notion of the droplet as a whole, relative to that of the center of

mass which moves at a constant velocity. Thus, a general description of the

overall notion of the fluid droplGt is obtained.

. In accordance with these considerations, wc define the inner angular momentum

of the fluid droplet as

We can express in terms of with the aid of equation (13). Me have

since Y is a constant in the integration, wc then obtain

As L is a tensor, it follows fron (25) that is also a tensor. By differen-

tiating (25) with respect to the proper time 03C4 and by noting that d == 0

we obtain

This is one of the basic equations postulat6d by WEYSENHOFF.

It is particularly instructive to consider equation (26) in the special frame

o in which = 0 . This we shall call the rest frame of th6 particle, because

it is the frame in which the center of matter dcnsity is at rcst. In that

frame we choose a set of axes such that Y. = 0 and Y = 0 for the moment of

interest. Then we have



We then obtain for the tine component of thc angular momentum

We obtain

The above relation shows that in the frame o the tine conponent of inner

angular momentum is proportional to thc vector joining the center of nass and

the center of nattcr density. This interpretation of will be seen to play
an important role in the further development of the thcory.

5 . Brief rcvieu of Weysenhoff’s theory.

We now proc6sd to givc a brief review of the Weysenhoff theory, in order to lay
the foundations for a discussion if its physical significance in of our

fluid 

The basic starting point is equation (25). Now equation (25) consists of six

equations determining the anti-syonetric tensor in terns of g

and v  . Moreover, there are four more equations coming fron the conservation
of thc total momentum,

There are still however no equations to determine the tine variation of the v~
(of which only three are independant, since v v~ 

= 1). In order to determine
those equations, some farther hypothesis is nccd6d.Such a hypothesis is essentially
a supplementary assumption connecting the center of mass and the center of natter

density.

In the Weysenhoff theory, the supplementary assumption is .

1 

£ 
.

By going to the rest frame of the particle .c.... 
0 

(where ’ = 0 , / = 1 ) , ve see



that the above rcduccs to thc three conditions

Thus, equation (1) which at first sight scems to contain four conditions, is

soon actually to contain only three. And by equation (27) it follows that in this

frame

i_ r-

Thus Weysenhoff’s assumption implies, in our theory, that in the rest frame o

the center of nass and the ccntcr of matter density concide. It is clear frors

this that Weysenhoff’s assumption serves to complete the definition of the equa.tions

of notion of thJ particle.

To obtain thc equations of notion in wc first nultiply (25) by w’’ .

~ t .

which gives, when multiplied by dv /d03C4

But because V~ v. 
=1 the first tern on the right hand side vanishes; while

because of the antisymmetry of the second tern also vanishes. Thus we

obtain -L =0 and = constant. In fact plays just the

role of a rest nass, which we denote by m . Thus we have from. (29)

This is one of Weysenhoff’s set of equations .

To obtain the other set of Weysenhoff’s 6quations, we differentiate equation

(30) with regard to noting that

Thi s yields



The physical neaning of these relations can be further clarified by the intro-

duction of a spin vector ( ) defined by the relation

is a space like vector, for we have evidently

In the rest frame we gGt :

which implies that the spin is the space dual of the angular momentum in the rest

frame.

Reciprocally we can write ~~ in terms of s and The proceeding re-

lation gives evidently : 
r

which can be written in the covariant form :

1

The above implies the identity :

From equation (19), it is then possible to calculate the derivatives of s .
Wo find immediately

(’) The need for tho introduction of a spin 4 voctor density, instead of tensor
density becn stressed by de BROGLIE (~ 1 ~~ p. 54). It has also been intro-
duced independently of us by HALBWACHS [3] and [4].



By utilising the deconposition (32) of ’1lrP we obtain :

where we have also used

In terms of the spin components s~ equation (29) then becones :

which can be written as

if we introduce the 4 vector

orthogonal to s  and v  . P, evidently represents usual energy momentum of
rotation in the rest frame.

The Weysenhoff equations (31) can thEn bE exprEssEd in a simplified form. We

obtain after a simple calculation

Multiplying (37) by s~ we then obtain

which, when conpared with (34) inplies finally th6 relation :

This shows that the spin s F of the droplet is a constant, according to tho

Moller-Meysenhoff theory.

From (37) and (38) we then obtain :

Equation (39) constitues a set of second order differential equations for the

velocity. These equations inply that, unlike what happens with NEwton~s laws of
~ ~ ~ 

3TC.
notion, not only are the initial values of ’YZ and d ~ arbitrary, but so also



d~ d 2 Y. 
"

are these of dvi d03C4 = d Yi d03C42 * As a result, new notions are possible not contained
within the framework of Newton’s laws. These new notions must however be consistent

with (30) and (35) from which they were derived by differentiation.

To investigate the solutions to (40)~ it will be a,dequate to consider what
happens in a special frame ~ namely that in which the space components G~ of

the momentum are zero. For because of the Lorentz invariance of the theory, another

solution of these equations corresponding to a non zero value of G~ can always

be obtained by Lorentz, transforming the solution corresponding to Gi = 0 .

As the velocity of the center of mass corresponding to each frame 03A3 is

given by the relation 20142014=- == 2014’ we see that in the frame TT where G. == 0
d~ G 01

(inertial rest frame of Weysenhoff) the center of mass is at rest. In T? the

space components v.i are then the components of a space vector if which represents

the velocity of the center of matter relative to the center of mass.
The 

velocity v.. also a time component vo = Jo D since d Jo d03C4 = d D d03C4 == 0
we obtain -?2014’ 

== 0 .

Me see also that in the special frame 1T the acceleration of the center of

matter is a space like ’T2014 and the general relation v dv  d03C4 = 0 can be written

vi dvi d03C4 = 0 which implies that the two vectors  and 2014 are orthogonal.

In TT the components of the 4 vector p are p, = u v, ~ Po ~ ~ ~o " ~o ’

The relation p.. s, = 0 which follows from (36) can be written as
’ ’

n v. s.. + p s == 0 . From v~ sr = 0 we then deduce v. s~ = - v s so that

wo find - ~ v~ s~ + p~ s~ == 0 or equivalently : m G~ = 0 .
As Go ~ 0 we see finally that s 

o 
== 0 in TT 

o 
which implies that s  is

s space like vector in that frame. Then v s  
== 0 becomes v. s =0 in 03C0o

and wo get s  dv  d03C4 = s. -2014 == 0 (because of dvo d03C4 = 0). This shows that the three
vector and s form an orthogonal instantaneous system of axis which

generalizes to our case the Darboux-Freinet moving system of axis. The integration

of the laws of motion results immediately from these considerations. The spaue

like components of p~ in the frame ~ 1 can be written as ;



since -a2014 and so are zero. In ordinary vector notation, this relation become

(41) n ~= ?)
The above equation implies that the motion of the center of natter remains in a

plane orthogonale to s~ . As if and v are constants in ~rr (since
ds dv

-~- == -?2014 == 0) this notion reduces to a circular uniform motion with an angular

velocity ~o == -i2014f  If we multiply (4i) vectorially by s we obtain

since by equation (37) s is orthogonal to dv d03C4 . This shows that dv d03C4 = m s2 s  v
Weysenhoff’s equations therefore completely determine the tine rate of change of

v.

We conclud6 that in ~’o Weysenhoff’s equations imply that the center of matter

density executes the above-mentioned uniform circular motion ar und a fixed

center of raass. This gives a clear physical meaning to the motions described by
the Weysenhoff equations.

Finally we remark that if the external forces are acting on the fluid droplet,
their effect can be taken into account by adding them to the energy momentum

conservation equation (2), so that we have ~03BD T  = p  where F  is the applied
force. External torqu6s can be taken into account in a similar way. This, in fact ,
has already been done by MOLIER.

6. On the physical meaning of the Weysenhoff notions,

Thus far we have seen in section 4 that Weysenhoff’s assumption ~ ~= 0
. 

leads to interesting new kinds circular motion. 

We can obtain a better understanding of this problem by going to the Lorentz

frame o in which the space like parts v~ of the velocity are zero (while

v 3~,,unity). Equation (29) then takes the form



Thus a non vanishing acceleration will inply that the nonentun and velocity are

not colinear, so that even when the moan natter current is zero, there is still

sone momentum.

To show how this situation could come about, consider a nass of fluid in its

rest frame (so that the total current is zero)* Now suppose that this fluid is,
to begin with, in a and motion about its center

of natter Then, as is evident from the synnetrical distribution of the

energy, the center of nass will coincide with the centcr of natter density and

Weysenhoff’s condition will be satisfied. However, there will be no acceleration

sincc the mean momentum is zero bccausc of the symmetry. Thus the fluid will

simply continue to rotate about a fixed point.

If this fluid is viewed from another Lorentz frame in which the body of the

fluid novcs with a velocity v thc part of the body in which ro ta tional and

translational velocities will then be moving faster than the part in which

they substract. Thus the energy density will be higher on the fomer side than on

the latter ; and as a result, the center of nass will novc away fron the center of
the natter density.

In this way, wc sec qualitatively, the origin of the relation dv d03C4 = m 2 s x v
since ’-?x’ is just proportional to the difference between these two centers.

However, it is clear that as long as the distribution of velocity in the rest
frame is symmetrical, there will be no net acceleration. We nay however suppose
a further disturbance in the rotating nass of fluid ; for localized

vortices which do not contribute to the net current, but which do contribute to

the energy density. Such a vortex would have two effects on the net notion.

First, it Mould displace the ccnter of mass away fron the center of natter density.

Secondly, it would contribute to the nean momentum, since it would place a high
nass density in a region of high velocity. Thus the nean momentum could fail to

be zero even when thc nean current was zero.

Of course, to satisfy the Weysenhoff condition without reducing to thc trivial
case of rectilinear motion, it is necessary to bring the center of mass back to
the center of natter density, without bringing the nonentum back to zero . This

could be done by supposing further vorticcs on the opposite side of the body

which lead to an energy density that cancels the nonents of the original vortices

in the detemination of the center of mass, without cancclling their nomentun

completely. To show that this is possiblc, consider two vortices on opposite sides



of a diameter of the body. Lct rl be the distance of the first vortox fron

the center of natter density, r2 that of the second. Let 03C91 be the energy

of the first vortEx~ that of the second. Then we choose rl = r2
in order to satisfy to the Weysenhoff condition. Now the nomentuu of the first
vortex will be u where is the local nean stream velocity around the
vortex, while that of the second vort6x will be p~ == ~p Up . If the angular
velocity ~ were a constant throughout the body, (so that it was rotating as if
it were rigid), then W6 would have u = Cö rt and r so that ~ + ~
would r ~ ~ 0 . But suppose ~ were a function of r .

Tbis would inply, of course, a non rigid rotation (of a type which is evidently
quite co~.::on in fluids). Then we would have :

which is in general not zero. We see then that the Weysenhoff condition would be

satisfied by suitablc distribution of notions in the fluid. Of course, it could
also be satisfied with much more conplex clistributions, but the principle is

essentially ths same.

We can now casily sec qualitatively, the reason for the Weysenhoff notion, for the

velocity of the ccnter of mass is proportional to the total momentum. Thus, if
the frame where 0 ~ Gi is not zero, the centcr of nass will move and

separate from the center of the matter density. Since the fluid ,body tends to

naintain in a~ certain shape, this process cannot continue indefinitely without
some change in the pattern of the fluid motion and internal tensions, which
leads to acceleration of the center of matter density. Indced, if the fluid
satisfies the Weysenhoff condition (l) for all tines, then the distribution of
notion will be such as to lead an acceleration of the center of natter density
which satisfies the Weysenhoff equations. Thus, the Weysenhoff assumption implies
certain restrictions on thc general featurcs of the internal notions of the

fluid body.

7. Extension to more general motions not satisfying the Weysenhoff condition.

We have seen thnt the Weysenhoff condition (1) represents a certain state
of the internal notion of the fluid. The nost general state of motion evidently
need not satisfy this condition. ~~e shall now formulate the problem of how to

treat this nore general type of motion.

First of all~ we nc longer require that the time component of the angular
momentum vanish in the rest frame. Is then becomes convenient to split the



angular momentum into two parts, one of which is purely space Ukc, and the other

which is puroly time like. To do this, we first define the 4 vector :

We note that because of the anti-symmetry of have :

and similarly

Thus, t,. and s. are both vectors whose tine component vanish in the rest

frames Hence they have a total of six independent components. Since  also
has six independant components, this suggests that it should be possible to express

completely in terns of s  and t . This is indeed possible, and the
expression is :

To verify this, one need merely to go to the rest frame (where v. = 0 and

v =..1 while t and s arc zero ) . For since ~44 ~ is a tensor relation it will
0 0 0

be true in every frajie if it is true in ~.ny one frame. But in the rest frame 
we

have from (42) :

Since (s~ vfi - s~ = 0 in the rest the tine like components

of (44) are identieal.

To deal with the space like components, we take the dual of both sid6S of (29).
This gives

In the rest frame, th6 tine components of this relation r6duce to :

which is also an identity. Thus equation (44) is proved.

The Weysenhoff theory then corresponds to the choice



If we wish to make a more general choice, we are then faced with the problem
of detcruining the equation of notion of the tp.. For as we saw the original
equation (26) on which the W6ysenhoff theory is based are just sufficient to
determine the equations of notion when t~ is chosen equal to zero. To proc6ed
further we shall therefore need some additional physical hypothesis.

One can obtain some rcstrictions on t ~. by returning to a nore detailed consi-
deration of our model. Now as POINCARÉ [7] has shown, there exist stable
rotating configurations of fluid that are symmetrical around their axis of rotation

(for example ring-shaped masses). If some inhomogeneities are introduced which
dcstroy the symmetry of ths velocity distribution around the axis of symmetry,
then with the passagc of time they will tend to be redistributed uniformly by
oscillation and rotation ; and eventually, the configuration will approach its

stablc symmetrical form again.

Let us then suppose that our rotating fluid mass takes one of these stable

symmetrical forms. Now in the rest frame (where v. = 0) equation (25) shows

that d,~ vanishes. Thus the spatial part of the angular momentum is a cons-

tant : and it is clear that the stable axis of symmetry around which the fluid
rotates must coincide with the direction of the angular momentum vector.

Let us now suppose that some asymmetric distribution of vortices were intro-
duced into thc rotating fluid mass which results in a non zero value of the

time component of the angular momentum in the rest frame (and therefore a non
zero value of We then consider two cases :

a. t. is perpcndicular to the angular momentum

b. ti is parallel to the angular momentum.

It is clear that in case a. the inhomogeneities will be whirled around along
with the rotating fluid nass, so that their constribution to ti will tend

to cancel out in a time that is not long compared with the period of rotation
of the fluid mass. Moreover, according to Poincaré’s result quoted in the previous
paragraph, the fluid mass will finally approach a symmetrical form in which the
center of nass will clearly coincide with the centGr of matter density.

In case b. Wh6rG ti is parallel to thc angular momentum there will

be in general, however, no such a tendency for the inhomogeneities to become

uniformly distributed and to produce a zero average time component of the

angular momentum. For in this case, the vortices are distributed asymmetrically
long the direction of the angular momentum s . Thus, the rotational motion will



not act to produce a rapid equilibrium since the distribution will already
be symmetric about the axis of rotation.

Of course, tensions nay be set in thc fluid which cventually will bring the

canter of natter density back to the cent6r of nass. But these tensions nay in

general be expected to act nuch more slowly than the rapid rotational notion. Thus

there will be a wide range of notions in which it will be a good approximation
to assune that in thc rest frame, the conponents of tj that are perpcndicular
to s are zero, while the component parallel to s will still have to bG
taken into account.

Thus in the rest franc we have

where 03BB is a proportionality factor. Since to = s == 0 the above can also

be written as a 4 vector relation

which oust hold in cvcry franc if it holds in the rest frame. ( ~ is evidently a

pseudo scalar).

We have thus reduced the number of new variable (relative to those considered
in the Weysenhoff theory) to one, namely 03BB. To determine 03BB still further, some

physical hypothesis is needed, with regard to the component of t  that is directed
along the angular momentum vector. We shall consider examples of such a hypo-
thesis in a later paper. For the present we nerely point out that the fluid .

model indicates a direction in which the Weysenhoff theory can b6 generalized.

8. Comparison with treatments of other authors.

~We shall now compare our tr6atn6nt of this problem with that used by others.

First of all, an essential new step proposed here was the introduction of the

concept of csnter of matter density. We recall that because this center is not

a 4 v6ctor, it was necessary to cvaluate it in a definite Lorentz frame 3 nanely
the one in which the quantities v.  vanished.

As we have already pointcd out in section 4, however, there exists another
natural frane, namely thc one 1To in which the space components Gi of the

momentum vanish. Previous work on this problem has been based on defining the

point Y~ of equations (25) and (26) as the "cent6r of gravity" whic.h is the
center of mass eveluated in this rest frame. In thisway the fact that the center of



mass is not a 4 vector is circumvented.

How6vsr, as we have seen from equation (12) the velocity of the center of

mass is proportional to the momentum. Equation (26) then rcduces to

d ~ ~, = 0 . Thus, all components of the angular momentum remain constant ;
the "center of gravity" moves at a constant rate ; and Weysenhoff’s equations
reduce to the trivial case of uniform rectilinear motion. Hence, the whole treat-

ment loses its interest, and nothing qualitatively now is learned about the motion

from the Weys6nhoff equations.

In order to give more physical relevance to the Weysenhoff equations, two types
of proposals have been nade.

a. MOLLER [6] has shown that these equations could describe the motion of a
certain set of purely mathematically defined "psoudo centers of gravity", whose

conn6ction with any aspcct of the motion of thc body has not been defined,

b. It has been shown that under suitable conditions points fixed in the body
will undergo the Weysenhoff notions.

Possibility a. is evidently not satisfactory since it describes no real physical

propertics of the motion. Possibility b, also is not entirely satisfactory~

especially for a fluid where elements undergo complex motions an where it is

arbitrary to choose a particular element to describe the behaviour of the mass

of fluid.

Our proposal of a center of matter density provides a natural refenrencG point
to describe the behaviour of the fluid ; for the natter current determines the

general motion of the fluid, while thc center of mass is a point which noves at

a constant rate. By studying the motion of the center of matter density relative

to that of the centcr of mass, we obtain a general idea of how the fluid notion

differs from uniform r6ctilinear motion, without th6 nced for going into a detailed

treatment of all the complex motions inside the fluid body ( ).

( ) These details could, for example, be treated by considering moments of
the first energy-momentum and current densities higher than tho first, but since
such moments are not in general conserved, their effects tend to b6 lost by
random mixing processGs analogous to collisions in the Boltzman equation in
statistical m6chanics. Thus, the conserved moments not only satisfy equations
that are independant of the higher mements, but also describe the major part of

. the "bulk" properties of the fluid averaged over some period of time.



We also give a clear interpretation of the Weysenhoff condition s ~, v~ ~ 0
for it means that in the Lorentz frame in which the spacial components of the
mean velocity are zero, there is no time component to the internal angular mouen-

so that in this the center of mass and the center of natter density are
the same. As we have seen in the previous sections, this is a possible state of

motion of the fluid droplet, and one which could readily be set up. lis we hav6

also seen, howEVer~ nore general states of notion are possible. Thus our physical

interpretation of these equations opens up the possibility for studying a broader

range of motions. Inrleed, as we shall show in a later paper, some of these new

possibilities correspond to a set of classical equations which, when quantized
lead to a generalization of the Dirac equation. In these generalized equations,
there is a new set of quantum numbers very similar to those (such as isotopic
spin and strangeness) which have been used recently for classifying the various
types of elementary particles. Thus, the new quantun numbers can be int6rpret6d
as representing states of rotation and internal excitation of a relativistic

liquid drcplet.

This general theory of rotating relativistic droplets is also interesting from

another point of view. It provides a clear physical model for the "nolccules" which

could constitute relativistic fluids with spin, that is, fluids characterized at

the macroscopic level by a continuous distribution of internal angular momentum.

By adding to G and ~~ ~, suitable tensions 0.~ representing intersections

between the rotating droplets which constitutes such fluids (so that the total

energy momentum tensor of such a fluid can be represented by D, Gy v~ + 0 ~,
where the total current is D v~ and the internal angular nomentun D n).I ), we
can formulate new types of relativistic hydrodynamics. The theory of these types’

is now being developed. Indeed, it has already been shown that they provide a
model for the hydrodynamical representation of the Dirac and Kemmer wave equations
(see [2] and [10),thus furnishing a physical basis for the causal interpr6tation
of relativistio wave equations.

Finally, we wish to express our gratitude to Prof6ssors de BROGLIE, TAKABAYASI
and to Mr. F. HALBWACHS for many interesting discussions and valuable suggestions.
Professor TAKABAYASI in particular has greatly contributed to the clarification

of the ideas in this pap6r.
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