
Séminaire Jean Leray.
Sur les équations aux
dérivées partielles

JAMES GLIMM
Analysis over infinite dimensional spaces and applications
to quantum field theory
Séminaire Jean Leray, no 2 (1973-1974), exp. no 4, p. 1-8
<http://www.numdam.org/item?id=SJL_1973-1974___2_A4_0>

© Séminaire Jean Leray (Collège de France, Paris), 1973-1974, tous droits réservés.

L’accès aux archives de la collection « Séminaire Jean Leray » implique l’accord avec les
conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation com-
merciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou
impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SJL_1973-1974___2_A4_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


ANALYSIS OVER INFINITE DIMENSIONAL SPACES

AND APPLICATIONS TO QUANTUM FIELD THEORY

par James GLIMM

Elliptic operators, roughly of the form

arise in the study of quantum fields. Although there is some mathematical theory

for such generators, experience with physics indicates that a very substantial part

of this theory is as yet undeveloped.

In this lecture, I want to begin by posing three general questions, and after

answering them, I will sketch some parts of the quantum field applications. The

questions are

1. Why do we need analysis over infinite dimensional spaces ?
2. what parts of the mathematical theory corresponds to physics ?
3. What parts of the physics corresponds to ma.thematics ?

To answer the first question, we should realize that quantum fields are not the

first application of mathematicg.,to use analysis over infinite dimensional spaces.
Weiner measure, which defines an integral over the infinite dimensional space

of continuous functions on is used to describe Brownian motion. It

also occupies a basic role in the theory of stochastic processes. As a second

example, some partial differential equations, for example the Navier-Stokes equa-
tion can be written as ordinary differential equations taking values in a Banach

space o The Hopf construction of weak solutions for the Navier-Stokes equation via

tfie Galerkin approximations has this character, as does the Ebin-Marsden solution

of the Euler equation, As the third example, we explain why quantum fields lead

to analysis over infinite dimensional spaces.

In quantum mechanics, the dynamics is governed by the Schx3dinger equation,
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For a system of n particles,

describe the positions (or configuration) of the particles, and

is the set of all possible configurationso Quantum mechanics is essentially syno-
nnnous with the study of H , that is with the study of certain elliptic operators
defined over configuration space. The states in quantum mechanics lie in a Hilbert

space H , and (ignoring the complications of spin and statistics), we may realize
H as

Fields are better known to mathematicians under another name. A field is just

the solution of some given hyperbolic equation. For our discussion, we consider

the equation

which has the conserved energy

In order for the energy to be positive or semibounded, we require that P be semi-

boundedo The classical theory of such equations has been developed by Jürgens(2),
S=gal, and Morawetz and Strauss , where further restrictions are made on P ,

depending on the number of space dimensions. For such an equation, the solution is

urliquely determined by the initial conditions (u(x,o), ut(x,o)l . The set of all
t

initial positions u(x,o) , is the configuration space. Thus the field configuration

space is some space of functions of the variable X . A convenient choice turns out

to be

(7) SI(Rd) = Field configuration s p ace
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when XERd (d is the number of space dimensions). We conclude that fields have

infinite dimensional configuration spaces, and that quantum field theory is equi-
valent to the study of elleptic operators defined over infinite dimensional spaces,
and acting for example on a Hilbert space

To form H we mcust specify a measure on S’(Rd). This is a nontrivial

problem, which we postpone for the moment.

The second general question, what parts of the mathematical theory correspond to

physics, has a simple answer. Self adjointness of H corresponds to existence

questions, or to the construction of the quantum fields. The choice of the measure

on also corresponds to existence questions. The spectral properties of

H - its eigenfunctions and eigenvalues - correspond to particles, bound states

and scatteringo In terms of the measure on these questions can be ex-

pressed in terms of decay rates of correlations between measurements in widely se-‘

parated regions.

The third question has many possible answers. We simply say that either in terms

of the operators (1) or the (non Gaussian) measurer on which enter in (8),
the physics gives a qualitatively new class of examples, together with some strong
hints about the structure of these exampleso

Having discussed general principles at some length, we now turn to the mathemati-

cal problem of constructing quantum fields and establishing their basic properties.
The simplest nonlinear field occurs in two space time dimensions with

+ 1 2 m2 E2 in (6). The corresponding quantum field has been studied ex-
o 

.... (5)
tensively. It has been solved by distinct constructions, due to Glimm-Joffe ,
Glimm-Joffe-Spencer (6) , Nelson-Guerra-Rosen-Simon (7),(8), and Dobruskyn-Minlos(9).

The constructions contain explicitly or implicitly the following two features :

(a) approximation by n-degree of freedom, n  00 (b) estimates to control the li-
mit Eckmann-Magnon-Sénéor (10) have shown that the field theory can be
constructed by Borel summation from its formal power series, for small coupling.

A very appealing form of the construction of quantum fields uses the Feynman-

Kac f ormula. The advantage of this formula (11) is that i t g iv e s an e xp licit formu-

la for the measure in (8). To explain the ideas in a simple fashion, we first pre-

sent the case of a finite number of degrees of freedom.
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The equation

defines the fundamental solution for the heat equation in R . It also defines

tne density for the transition probability for a Wiener path w ~ &#x3E;(s) to pass from

in time t . Thus for initial data u(x,o) , the solution

of the heat equation has by definition a Wiener integral representation

where dw is (a conditional) Wiener measure, and

is a set of Wiener paths. In this notat.ion, the Feynman-Kac 

as a solution of the heat equation

with potential P :

Before generalizing this discussion to quantum field theory, we want to trans-

fcrm (9)o The idea is that the Lebesgue measure dg, defined on Rd, has no

limit as If we write mH as the ground state of H, J ’1r E L2(Rd), 
then T also has no limit as d -&#x3E;- co 0 However mH2 dg does have a. limi t, s and is

in fact the required measure in (8). Our transformation of (9) is equivalent to

the similarity transformation
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We note that is self adjoint on

and that the ground sta,te of H is 1 .

The transformation of (9) is

(11)

and in (11) , , the inner product  , &#x3E; is in the Hilbert space (10).

To extend this formula to Field theoiy, we have only to replace the path uis)
taking values

in the classical configuration space by a path u-(s) taking values

in the field configuration space. Now a path (= function) from. one variable, s ,

to a space of functions of X E Rd is na.turally regarded as a function of

Thus the field theory path space is a function space over Rd+1 and as in 1 I
we take

For a given mass mo , we define the Gaussian measure d4$ on (12), with covariance

A +m2)-1 . d d I corresponds directly to the Wiener measure in the case of a
0

finite number of degrees o~’ freedom. For a given interaction potential P(4l) , we
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define

(13)

This limit exists in some sense which is sufficient to reconstruct the underlying

quantum field theory. Formally, the measure in (8) is just the time t = 0 con-

ditional expecta,tion of the measure (13~, as one can see for the case of a finite
number of degrees of freedom, in (11), and statements very close to this have been

proved .
Furthermore a study of the properties of the measure defined by (13) leads to

properties of the corresponding quantum field theory :

The two dimensional uantum field model with weak coupling
describes particles with a positive mass. For P = ç4 and weak coupling, there

are no even bound states.

REMARK. For P = ~6 - ~4 and weak coupling, there is a strong indication(13)
that bound states occur. The above theorem makes the Hang-Ruelle scattering theory

applicable to the weakly coupled field theory, and yields the existence of

an isometric S matrix.

For the more interesting and more difficult Yukawa interaction, there are infi-

nite ultraviolet renormalization.s even in two space time dimensions. Recent pro-

gress in this Y2 model includes the verification of the Hang-Kastler axioms by

McBryan and Park, as well as new formulations of the Euclidean formalism for fer-

mions by Osterwalder and Frolich and by Schroder and Uhlenbrock.
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FOOTNOTES

(1) See for example Gross, J. Funct. Analysis 1 (1961), p. 123.

(2) Jürgens, Math. Ann. 138 (1959) p. 179 and Math Z. 17 (1961), p. 265.

(3) Segal, Ann. of Math. 18 (1963) p. 339. 

(4) Morawetz and Strauss, Comm. Pure Appl. Math. 25 (1972) p. 1.

(5) Glimm and Joffe, Acta Math. 125 (1970) p. 203.

(6) Glimm, Joffe and Spencer, Ann. of Math., to appear and a contribution in :

Constructive Quantum Field Theory, Ed. by Velsand Wightman, Springer Verlag,

Berlin (1973).

(7) Nelson, in : Constructive Quantum Field Theory, Ed. by Velsand and Wightman,

Springer Verlag, Berlin (1973).

(8) Guerra, Rosen and Simon, Ann. of Math., to appear.

(9) Dobrushya and Minlos, J. of Functional Analysis and its applications (Russian).

(10) Eckmann, Magnon and Sénéra. To appear.

(11) This approach has been basic to many papers on constructive quantum field

theory, starting with Symanzik, NYU , 1964 (see also earlier pa-
pers of Schwinger) as well as Nelson, in : Mathematical theory of elementary

particles, Ed. by Goodman and Segal, MIT press, 1966. It was central to the

approach of Joffe and the author ; see for example Glimm-Joffe, Ann. of Math.

91 (1970), or Glimm, Comm. Math. Physics 8 p. 12 (1968).

In 1968, a covariant form of the Feynman-Kac formula was known to Symanzin, as

part of his formal program for a covariant construction of Euclidean quantum

fields. This paper appears in : focal quantum field theory, proceedings of

the International School of Physics "Enrier Ferme" Course 45, Ed. by Jost.

Academic Press, New York (1969).

Three years later, Symanzik’s covariant Feynman-Kac formula was used by Nelson

as part of a simplified bound on the vacuum energy per unit volume, in : Pro-

ceedings of the Summer Institute of Partial Differential Equations, Berkeley

1971, Amer. Math. Soc. Providence R.I. 1973. Symanzik’ s Feynman-Kac formula

was subsequently used by Guerra, Phys. Rev. Lett. 28 p. 1213 (1972) to obtain
new results on the vacuum energy per unit volume. Following the Nelson and

Guerra papers, Symanzik’s covariant Feynman-Kac formula came into wide usage ; 
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see footnote references 6, 7, 8 and 12.

(12) The passage from the Euclidean field theory, defined on L2(S’(Rd+1)) to the

Hilbert space H = L2(S’(Rd)) is given by the theory of Euclidean axioms of

Nelson, J. Funct. Anal. 12, p. 91 (1973) and Osterwalder-Schroder, Comm. Math.
Phys. 31 p. 83 (1973) and in Constructive Quantum Field Theory, Ed. Velo and

Wightman, Springer Verlag, Berlin (1973).

(13) See footnote reference 6, as well as further progress of Spencer, to appear.


