SÉMINAIRE JEAN LERAY. SUR LES ÉQUATIONS AUX DÉRIVÉES PARTIELLES ### PAUL H. RABINOWITZ ## Nonlinear eigenvalue problems for elliptic partial differential equations Séminaire Jean Leray, nº 4 (1972-1973), exp. nº 3, p. 1-5 http://www.numdam.org/item?id=SJL 1972-1973 4 A3 0> © Séminaire Jean Leray (Collège de France, Paris), 1972-1973, tous droits réservés. L'accès aux archives de la collection « Séminaire Jean Leray » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. ## NONLINEAR EIGENVALUE PROBLEMS FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS ### by Paul H. RABINOWITZ This talk represents in part joint work with A. Ambrosetti of the Scuola Normale Superiore, Pisa. For more details of the results below see [1] and [2]. Consider the nonlinear elliptic partial differential equations (1) $$-\Delta u = \lambda(a(x)u+p(x,u)), x \in \Omega; u = 0, x \in \delta\Omega$$ (2) $$-\Delta \mathbf{u} = \lambda \ \mathbf{p}(\mathbf{x}, \mathbf{u}) \ , \ \mathbf{x} \in \Omega \ ; \ \mathbf{u} = 0 \ , \ \mathbf{x} \in \delta\Omega$$ where Ω is a smooth bounded domain in \mathbb{R}^n , a(x) is Holder continuous and positive in $\overline{\Omega}$, and p(x,z) is smooth in its arguments. A solution of (1) ((2)) is a pair $(\lambda,u)\in\mathbb{R}^+\times\mathbb{C}^2(\Omega)$ satisfying (1) ((2)). Our main interest is in obtaining lower bounds for the number of solutions of (1) and (2) as a function of λ . Assume $$(p_1)$$ $p(x,z) = o(|z|)$ at $z = 0$ Then (1) and (2) possess the line of trivial solutions $\{(\lambda,0)^{\dagger}\lambda\in\mathbb{R}^{+}\}$. Further assume $$(p_2)$$ $p(x,z) = -p(-x,z)$ Hence nontrivial solutions occur in antipodal pairs. The structure of the set of solutions is governed by the behaviour of p(x,z) at z=0 and ∞ . Indeed if p satisfies $(p_1)-(p_2)$ and $$p(x,z)z^{-1} \rightarrow \infty \text{ as } z \rightarrow \infty,$$ then modulo some additional conditions, for each $\lambda > 0$, (1) ((2)) possesses infinitely many distinct pairs of solutions. However if (p_3) is replaced by $$p(x,z)z^{-1} \rightarrow -\infty \text{ as } z \rightarrow \infty,$$ then (1) ((2)) generally possesses only finitely many pairs of solutions, the number depending on the magnitude of λ . To be more precise, some precise, some additional hypotheses are required. $$|p(x,z) \le a_1 + a_2 |z|^8$$ where $1 < s < \frac{n+2}{n-2}$ $$(p_5)$$ $P(x,z) \le \theta z p(x,z)$ for $|z| \ge a_3$ where $0 \in [0,\frac{1}{2}]$ and $$P(x,z) = \int_{0}^{z} p(x,t)dt$$ In (p_4) , (p_5) and below a_1 , a_2 etc. denote positive constants. Condition (p_4) can be weakened if n=2 and eliminated if n=1. In fact our results can be considerably unproved for n=1 by using other arguments. However we shall not discuss this case here. (p_5) is satisfied if e.g. p(x,z) is the sum of a pure power and a lower order term at ∞ . THEOREM 3. If p satisfies $(p_1) - (p_5)$, then for each $\lambda > 0$, (1) ((2)) possesses infinitely many distinct pairs of solutions. Remarks on the proof. This theorem and our later results are proved by variational arguments. Let (4) $$I(u) = \frac{1}{2} \int_{\Omega} |u|^2 dx - \lambda \int_{\Omega} P(x,u(x)) dx$$ and $J(u) = I(u) - \frac{1}{2} \lambda \int_{\Omega} a(x) u^2 dx$. Solution of (2) (resp. (1)) are obtained as critical points of I^{Ω} (resp. J). These critical points are characterized as the minimax of I over appropriate subsets of $E \equiv W_0^{1/2}(\Omega)$. (Note that (p_4) implies I is defined on E). In this sense our Theorem is of Ljusternik-Schnirelman type. (See e.g. [3] for a bibliography of such work). However unlike the usual such results, we do not extremize an even functional on a sphere-like submanifold of E but on all of E. The details of the proof can be found in [2]. Actually a general theorem on the existence of critical points for an even functional on a Banach space is proved then and applied to (1) and (2). See also [1] for an alternate existence proof for (1), (2) using a Galerkin argument. ### Remarks - 1. (1) and (2) differ in that bifurcation occurs for (1) but not for (2). - 2. Note that I(u) satisfying $(p_1)-(p_5)$ is matter bounded from above or below: $I(\alpha u)\to -\infty$ for fixed $u\in E$, $u\not\equiv 0$ as $\alpha\to\infty$ and it is easy to construct a sequence (u_m) along which $\frac{1}{2}$ a $u_m^2+P(u_m)$ is bounded but $\int |\nabla u_m|^2 dx\to\infty \ .$ In fact we show ([1], [2]) I(.) possesses a sequence of critical values tending to ∞ . - 3. If (p_2) is dropped, (2) possesses at least a positive and a negative solution. Likewise for (1) provided that λ^{ϵ} $(0,\lambda_1)$ where λ_1 is the smallest eigenvalue of $-\Delta u = \lambda$ a(x)u, $x \in \Omega$; u = 0, $x \in \partial\Omega$. 4. The role of the growth conditions (p_4) is an interesting question which is not yet completely understood. These conditions are necessary in general as can be seen using an identity of Poliozaev [4] for solutions of (5) $$-\Delta u = f(u), x \in \Omega; u = 0, x \in \partial\Omega$$ Let $F(z) = \int_{-\infty}^{z} f(t)dt$. Then if u satisfies (5) (6) $$2n \int_{\Omega} F(u)dt + (2-n) \int_{\Omega} f(u)u dx = \int_{\partial \Omega} x \cdot v(x) |\nabla u|^2 dS$$ where v(x) is the outward pointing normal to $\partial\Omega$. In particular if $0\in\Omega$ and Ω is starshaped, then $Xx.v(x)\geq 0$ and (6) implies (7) $$2n \int_{\Omega} F(u) dx \ge (n-2) \int_{\Omega} f(u)u dx$$ Suppose $$f(u) = |u|^{m+1} .$$ Then $$\frac{2n}{m+1} \int_{\Omega} |u|^{m+1} dx \ge (n-2) \int_{\Omega} |u|^{m+1} dx .$$ Hence if u is a nontrivial solution of (5), $\frac{2n}{m+1} \ge n-2$ or $m+1 \le (n+2)(n-2)^{-1}$ and in fact (6) shows equality is not possible. Thus (p_4) is required in general. For example if n=3 and $0 \le \Omega$, a starshaped domain, the equation (8) $$-\Delta u = \lambda u^2, \quad x \in \Omega; \quad u = 0, \quad x \in \partial\Omega$$ possesses no nontrivial solutions. On the other hand, if (8) is replaced by (9) $$-\Delta u = \lambda (u+u^2)$$ degree theoretic arguments show that (9) possesses a component C of nontrivial solutions such that $(\lambda, \mathbf{u}) \in \mathbb{C}$ implies $\lambda \in (0, \lambda_1)$ and $\mathbf{u} > 0$ in Ω (λ_1) being as in Remark 3). Moreover C is unbounded in $\mathbb{R} \times \mathbb{C}^2(\Omega)$. Curiously if (7) is applied to (9), we find (10) $$\int_{\Omega} \mathbf{u}^{8} d\mathbf{x} \leq 8 \int_{\Omega} \mathbf{u}^{2} d\mathbf{x}$$ and this easily implies a priori bounds for solutions of (9) in $L^8(\Omega) \cap E$. This suggests the projections of C on R may contain $(0,\lambda_1)$ (which is the case for n=1). However this does not occur here. Indeed (11) $$\lambda_1 \int_{\Omega} u^2 dx \leq \int_{\Omega} |\nabla u|^2 dx = \lambda \int_{\Omega} (u^2 + u^8) dx \leq 9\lambda \int_{\Omega} u^2 dx$$ via (9), (10) and the Poincaré inequality. Hence $\lambda \in \left[\frac{\lambda_1}{9}, \lambda_1\right]$. More information on such phenomena for (1) and (2) can be found in [1]. Next we will show how a rather different situation from Theorem 3 occurs if (p_3) is replaced by (p_3^-) . Actually we only require the weaker condition (p₆) There exists a $$\bar{z} > 0$$ such that $a(x) \bar{z} + p(x,\bar{z}) < 0$. This implies a priori bounds for solution of (1). To see this suppose (λ, u) is a nontrivial solution of (1). Either u has a positive maximum or a negative minimum. Both cases are handled similarly. If the first case occurred at $\tilde{x} \in \Omega$, from (1), $$0 \leq -\Delta u(\overline{x}) = \lambda(a(\overline{x})u(\overline{x}) + p(\overline{x},u(\overline{x})))$$ Hence by (p_4) , $u(\bar{x}) < \bar{z}$. Using (1) and e.g. the Schaunder estimates, we then get a priori bounds (depending on λ) for solutions in $\mathbb{R}^+ \times \mathbb{C}^2(\Omega)$. With the aid of these bounds, we can do without $(p_4) - (p_5)$. To state our own results for this case precisely, let $0 < \lambda_1 < \lambda_2 \leq \ldots$ denote the eigenvalue of (12) $$-\Delta \mathbf{u} = \lambda \mathbf{a}(\mathbf{x})\mathbf{u} , \mathbf{x} \in \Omega ; \mathbf{u} = 0 , \mathbf{x} \in \partial \Omega .$$ As is well known, the (λn) are of finite multiplicity and form an unbounded sequence. THEOREM 13. If $\lambda \in (\lambda_k, \lambda_{n+1})$ and p satisfies $(p_1), (p_2), (p_6),$ there exists at least k distinct pairs of solutions of (1). To treat (2), we replace (p₆) by $$(p_7)$$ $z p(x,z) > 0$ in a deleted neighbourhood of $z = 0$. (p_B) There exists a $$\bar{z} > 0$$ such that $p(x,\bar{z}) < 0$. Then (pg) given a priori bounds for solution as above THEOREM 14. If p satisfies $(p_1) - (p_2), (p_7) - (p_8)$, then for each ke N, there exists a $\frac{\lambda}{k} > 0$ such that for $\lambda > \frac{\lambda}{k}$, (2) possesses at least k distinct pairs of solutions $\overline{u}_j(\lambda)$, $\pm \underline{u}_j(\lambda)$, $1 \le j \le k$, with $I(\overline{u}_j) > 0 > I(\underline{u}_j)$. Remark. The requirement that $\frac{\lambda}{k} > 0$ is necessary since it is not difficult to show that (2) possesses only the trivial solution for λ small under the above hypotheses. #### BIBLIOGRAPHY - [1] P.H. RABINOWITZ, Variational methods for nonlinear elliptic eigenvalue problems, to appear, Indiana U. Math. J. - [2] A. AMBROSETTI and P.H. RABINOWITZ, Dual variational methods in critical point theory and applications, to appear, J. Functional Anal. - [3] H. AMANN, Insternik-Schnirelman theory and nonlinear eigenvalue problems, Math. Ann. 199, (1972) pp. 55-72. - [4] S.I. POLIOZAEV, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Sov. Math. 5 (1965) pp. 1408-1411. - [5] P.H. RABINOWITZ, Some global results for nonlinear eigenvalue problems, J. Functional Anal. 7 (1971) pp. 487-513.