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NONLINEAR EIGENVALUE PROBLEMS

FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

by Paul H. RABINOWITZ

This talk represents in part joint work with A. Ambrosetti of the Scuola Normale

Superiore~ Pisa. For more details of the results below see [1] and [2].

Consider the nonlinear elliptic partial differential equations

where 0 is a smooth bounded domain in R y a(x) is Holder continuous and

positive in !5 , and P(x,z) is smooth in its arguments. A solution of (1)
((2)) is a pair (k,u) ~ R~ x Ca(D) satisfying (1) ((2)). Our main interest

is in obtaining lower bounds for the number of solutions of (1) and (2) as a
function of k .

Assume

Then (1) and (2) possess the line of trivial solutions {(~,0)I~E R’) . Further

assume

Hence nontrivial solutions occur in antipodal pairs.

The structure of the set of solutions is governed by the behaviour of p(x,z)
at z = 0 and co . Indeed if p satisfies (1B) - (Pa) and

then modulo some additional conditions, for each X &#x3E; 0 , (1 ) ((2)) possesses
infinitely many distinct pairs of solutions. limirever if (P3) is replaced by

then (1) ((2)) generally possesses only finitely many pairs of solutions the
number depending on the magnitude of X .

To be more precise, some precise, some additional hypotheses are required.
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In (p~ ) , and etd . denote positive constants. Condition

(p 
~ 
), (p5) and below a, , 3 ate;. dbnote pos, 

n = 1 . In fact our results(p ) can be weakened if n = 2 and eliminated if n = 1 . In fact our results

can be considerably unproved for n = 1 by using other arguments. However we

shall not discuss this case here. (p5 ) is satisfied if e.g. p(x,z) is the sum

of a pure power and a lower order term at co .

THEOREM 3- If p satisfies (P,) - (PS), then for each &#x3E; 0 , (1) ((2))
possesses inf~niteJy many distinct pairs of solutions.

Remarks on the proof. This theorem and our later results are proved by varia-

tional arguments. Let 
...

and J(u) = a(x)u2dx. Solution of (2) (resp. (1)) are obtained as
critical points of I 

0 (resp* J). These critical points are characterized as
1 2

the minimax of I over appropriate subsets of E =- ( ) . (Note that (p )
implies I is defined on E ). In this sense our Theorem is of Ljusternxk~

Schnirelman type. (See e.g. [3 j for a bibliography of such work). However un-

like the usual such results, we do not extremize an even functional on a sphere-

like submanifold of E but on all of E .

The details of the proof can be found in [2]. Actually a general theorem on

the existence of critical points for an even functional on a Banach space is

proved then and applied to (1) and (2). See also for an alternate existence

proof for (1), (2) using a Galerkin argument. ,

Remarks

1. (1) and (2) differ in that bifurcation occurs for (1) but not for (2).

2. Note that I(u) satisfying (p~ ) - (p5) is matter bounded from above or
below : for fixed as a - m and it is easy to con-

struct a sequence (u ) along which * a u9 + P(u ) is bounded but
m G m m

j In fact we show ([1], [2]) 1(.) possesses a sequence of

0
critical values tending to co

3. If (p ) is dropped, (2) possesses at least a positive and a negative solu-
tion. Likewise for (1) provided (0,B) where ~1 is the smallest

eigenvalue of -Au = X 



4. The role of the growth conditions ~p ~ is an interesting question which 
i

is not yet completely understood. These conditions are necessary in general

as can be seen using an identity of Poliozaev [4J for solutions of

Then if u satisfies (5)

where v(x) is the outward pointing normal to 8~ . In particular if 0e Q

and Q is starshaped, then 0 and (6) implies

Suppose

Then

Hence if u is a nontrivial solution of (5) , 2~ &#x3E; n-2 or (n+2)(n-2)"m+l "-

and in fact (6) shows equality is not possible. Thus ~p ) is required in gene-
ral. For example if n = 3 and a starshaped dv~a,~,nq the equation

possesses no nontrivial solutions. On the other if (8) is replaced ’o~

degree theoretic arguments show that (9) possesses a component C of nontrivial

solutions such that (~ ,u~ E C implies ÀE (0 ,X~ ) and u &#x3E; 0 in 0 (Àl being
as in Remark 3 ~ . Moreover C is unbounded in R x C2(O). Curiously if (7) is
applied to (9), we find

and this easil implies a priori bounds for solutions of (9) in ~1 E .

This suggests the projections oi’ C on R may contain (0,B) (which is the
case for n = 1 ~. However this does not occur here. Indeed

~ , À1

via ~ 9 ~ , (10) and the Poincare inequality. Hence ÀE [ 9" ’ lI.1 J . More infer-

mation on such phenomena for (1) can be found in [1 J.
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Next we will show how a rather different situation from Theorem 3 occurs if

(p ) is replaced by (p ). Actually we only require the weaker condition
3 3

There exists a G &#x3E; 0 such that a(x) E+P(X,2)  0 .

This implies a priori bounds for solution of (1). To see this suppose (X,u)
is a nontrivial solution of (1). Either u has a positive maximum or a nega-
tive minimum. Both cases are handled similarly. If the first case occurred at

x~ ~ , from (1) ~

Hence by (p 4 ),  i . Using (1) and e.g. the Schaunder estimates, we then
get a priori bounds (depending on i%) for solutions in R 

_~_ 
x With the

aid of these bounds, we can do without (P4) - (p 5 ). To state our own results

for this case preciiselyp let 0  h~  À2 ~ ... denote the eigenvalue of

(12) -ôu = À a(x)u , XE u = 0 , x~ 2c2 
’

As is well knownt the (Xn) are of finite multiplicity and form an unbounded se-

quence. ~
THEOREM 13. If~ and p satisfies (1B), (P2)’ (P6) 9there exists
at least k distinct pairs of solutions of (1).

To treat (2)0 we replace (P6) by

(p7) z P(X,Z) &#x3E; 0 in a deleted neighbourhood of z = 0 .

There exists a 7 &#x3E; 0 such that p(x,z)  0 .

Then (p.) given a priori bounds for solution as above

THEOREM 14. J~ p (n ) - (p 7 - (p8) , then for each ke N ,
there exists a Q &#x3E; 0 f or. &#x3E; $~ , (2) possesses at least k dis-

tinct pairs of solutions u - (h), ± u. k , with I(;i &#x3E; 0 &#x3E; 
--- . ’ . 

~ 

" 

"’ J J 
- J -J

Remark. The requirement that &#x3E; 0 is necessary since it is not difficult to

show that (2) possesses only the trivial solution £or X small under the above

hypotheses.
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