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MATHEMATICAL DESCRIPTION OF EQUILIBRIUM STATE
OF CLASSICAL SYSTEMS BASED ON THE CANONICAL FORMALISM

oy N.N. BOGOLIUBOV, B.I., KHATSET, D.Ya. PETRINA

Introduction

To derive thermodynamic relations on the basis of statistical mechanics, one has
to study systems with infinite number of degrees of freedom. These systems arise
from finite ones when the nmumber of particles N tends to infinity, which is followed
by a proportional increase of ths volume VN(VN = vN, v = const.). This creates
rather difficult mathematical problems connected with the justification of the
limiting procedure as N » o , To solve these problems the formalisms of either
canonical or grand canonical ensemble as well as that of partition functions are
used.

During the last two decades a considerable advance has been observed in this
field. In 1946 one of the authors [1] sugsested some ways of the rigorous mathema-
tical justification of the limiting procedure in statistical mechanics, using the
formalism of the Gibbs canonical ensemble, and developed a general method of deter-
mining the linmiting distribution functions as formal series in powers of the density
Jv: « In 1949 two of the authors [2] worked out the foundations of the rigorous mathe-
matical description of infinite systems in statistical mechanics. A comprehensive
presentation of the results obtained has been given in [3] in 1956. The works [2,3]
comprise the complete solution of mathematical problems arising when performing the
limiting process as N - «» in the systems described by canonical ensemble for the
case of particle interaction through a positive two-body potential and sufficiently
small densities. It should be noted that the system of equations for the distribution
functions was essentially treated as an operator equation in a Banach space. However,
the methods developed in the works mentioned above did not call the attention of the
scientists.

In 1963 Ruelle [4] again suggested a gimilar approach to studying the sets of
equations for the distribution functions. He used the grand canonical formalism,
which led him, in our opinion, to simpler problems involving the justification of
the limiting procedure., At the same time Ruelle succeeded in extending the class of
potential functions in question vy exploiting the rather ingenious idea of symmetri-
zation of the starting equations for the distribution functions.

The purpose of the present paper is to give, on the basis of the theory of
canonical ensemble, a rigorous mathematical description of the equilibrium state

(for small densities) of infinite systems of particles whose interaction potential



48 N.N, Bogoliubov, llthematical description...Int.

obeys Ruelle's condition [4] and is not required to be positive. The methods deve-

loped in [2,3] and Ruelle's method of symmetrization are mainly employed.

In Section 1 the problem is stated and the relations for the distribution func-
tions in the case of a finite volume are derived, which after taking the limit
become the well-known Kirkwood-Salsburg equations. Contrary to the grand canonical
formalism, there are no equations whatever for the distribution functions in the
case of Givbs ensemble in a finite volume. The appropriate equations appear only
after taking the infinite-~volume limit. This brings about new problems in compari-

son with the grand canonical formalism.

In Section 2 the theorem of existence and uniqueness of the solution of the
Kirkwood-Salsburg equations for the potentials obeying Ruelle's condition is proved,
and the densities are explicitly evaluated, for which the solution can be represen—
ted by iterations., The theorem on the amalytical character of the density dependen-

ce of the limiting distribution functions is proved as well.

Section 3 presents the proof of existence of the limiting distribution functions

when the number of particles tends to infinity.

Finally, in Section 4 the unigueness of these limiting functions is proved.

1. Statement of the Problem

1+ Consider a system consisting of N identical particles enclosed in a three-
dimensional macroscopic volume VN and interacting through central forces which
are characterized by the mutual potential &(q). It is assumed that the position

of each particle is determined completely by its three cartesian coordinates
o
q (Q’ = 112’3)! q = (ql ’qz’qa).

Our point of departure is the common theory of equilibrium states based on the
Gibbs canonical distribution ; and in the presentation of the subject we follows
the works [1,2,3].

Introduce the probability distribution functions for the positions of all
particles with the density
Uy
DN = N(ql 90--,q_N) = (.\l'_l (NPVN) ex'p{— T} 9
where

U, = = 2(q.-q.),2(a;-a.) = 2(]as=a.])
N gsicsen 1 0 o

is the potential energy of the system,
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U.

¢ = _ﬂ - 1382343

a,vy) = fv ces er exp{~ 5} .dg ...dqy,dq; = dgidaidq? ,
N N

is the configurational integral. The puaysical system considered is a Gibbs canonical

ensemble. Introduce now a sequence of distribution functions [1]

() ) - .
(1.1) l{S (ql ""’qS’VN) —Vfljlv oo IV DN(Q:L "”’q‘S’qS+1""’q'N)dq'S+1"'qu .
N N

As usual, VN is assumed to be a sphere whose volume Is also denoted by VN;VN = viN,
where v is the volume per particle, -1‘; is the density of particles. The principal

ovject of investigation in statistical physics is presented by the limiting functions

. (N
Fs(q,0-°9qs'§v) = lim *"é )(‘h ’.“’QS;VN) .
N o
In the limit of an infinite volume the density -3; is assumed to be constant. When
studying the problem associated with the limiting procedure mentioned above we
employ the set of equations which the limiting functions Fs(ql ""’qS;v) obey.

Below we shall derive some relations which are necessary for obtaining the appropriate

equations,
Uy
2. Consider the expression exp{— —5'} and transform it as follows
1 . 1 5
2.1) emf-5 = 2(q;-a;)} = expl~ = = 3(q-q;)} X
1=i<j=N i=2
1 A
xexp{-5 T 2Aqzma)l x [ Loy (a;) +11 .
2=i<j=N i=g+1

where
’
9q(a;) = expl- 5 @(a-q)¥ -1 .

Substituting (2.1) into (1.1) one obtains

Q(N=1,V,.) s
‘1(N) - = N l = 1
(3.1) By (ql,...,qS,VN) = Vﬁm exp{ - m :_22 g(ql-qi), X
X fv soe fV DN_«‘(QQ 9'009qsyqf%’°'-9(1§_.s)
N N
o Ngs (=5) (N=5=1) o o (NGt 1) ==

- K1 i=1 Yo (a%)] x dgfe..daf o
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Wwhere

(qa. - ) m (i, VN) exa{— oy ,.2. B @(qi-qj)} 9
1‘_—‘.1<J§11

1 -
Q(l" V. ) = IVN see Iv exp{—- 76- = Q(qi-qj)} dql ...dqﬂ .
1 N 1

| l/\

i<j=d

Introduce also the distribution functions

(N—N)
(o seeesQys N) M I ses JPV DN_‘;‘(% voeesQpsly 4 ’---9Q.N__’@)qu+1 ---qu__j’
N
and quantities
Q) (1“1—-1 V. )
N
(4.1) a, (V) = Oy

with

(N N-O
Pé )(q;_ 9'°°9CIS;VN) = Fé )(Q:L 9“'9q8‘9'VN) 3

in terms of which (3.1) is written as

S
F(N)(ql peeerlgsTy) = ay(Vy) expf~ < % g —qi)}[F(N ”(qe,...,qs, V) +

2

(5.1) ,

N-s (1- ) (1- &y, (- B

5 i Lor r r=1)¢ * £5V0) X
7 . ees S+K=1 Qg seeesQgsQiseeerdpsVy

v v Yy

]

-
L

+ .
K=1 it

T7
N\
m———

:'@(q)dql-.. %) s 1<8S<N,

:|_=

X

N
F( )((ll seeesQys N) = N( ) 3303"‘—%‘ bN

-1
R (e =a;)7e F( )(qe peesslysVy) b

1 2 K

A N=1 (1- (1= §)... 0= §)

5 (g ‘,'VN) = QN( T)[1 + X e X
K=1 Kl v

Xf cos I‘V’ ?(N—])(qe 9"~9qS9 )TAr“P

N N

9.1 (q*)dql L 'dql'r] .

e s - e m . Neg ;
Similarly, for the functions Fé‘ )(ql ,...,qS;VN) one obtains the relations
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(N=s) ) oA (1) exple L F(N-,u-1)
FS (Cil ,.'.9(1(“7 N/ = _an a'N—-,Q N expl - 5 i=2?(Q.1-q. )}[ (qe ,...,qs',"vN) +
(6.1)
pne, S 4K
N—,(,—S((1- '—N_‘L).qo(‘]— T‘A_"—) R (N— _1 Ti'
+ Z K J "'I FS—rI;—'I (QQ ,"°9q89q1 ""Qqus N)‘ QP (qﬁ)
=1 (L v V. V.
N N
X dqﬁ...dq§], (1 <8 <N=2) 3
N-g
N-( ) } N 1 N- .-1 ,
Ig-i, (q ""’q'N-;?,’VN) = V= aN_I;(VN)eXP{" 12:2&’(‘11 -4, )} ( )(C.h "%_:“"Q'N%'L"VN)’
2 %
Joed A
B (g 5¥y) = 5 ey (V)1 % = = EZ G
K=1 X! v < §: g; -
o~
(V-ﬁ'1) 1“r * ORI .f ©
‘r c'-j -b (1,'0°5q T) X kPq.l(q )dql...qu] - E t‘g}) EL
o 2 g
Bt
3, Suppose for a while that the limits ¥ o
, ” ()
5@ seeesaq5v) = im B (@ seeeragsVy) 5 8 = 1,254,
-5 O

(701) Fz(ql 90-'9039\")

. N-2,
N]_-:-IEOFE(; )(q:l. ""’qu’VN) H S =152500

a(v) = ao(v) = Nlim aN( ),a (v) = 11m aN (V. )

exist in some sense and write the relations (5.1) and (6.1) after performing the
limit in a formal way.

It is easily seen that the relations (5.1) become

_ 5
Fglq seeesagsv) = a(v) expl- %-.22 é(ql—qi)}[F; 1(q29-..,qS:V) +
i= -
(8.1)

» X
+ﬁ?1 Kiv TS Fogq (oo nnageafyeeniagv) TT iq % (q Ddal’.dqe] .

(We do not indicate the integration limits when the integration is carried out over
the whole three~dimensional space)

After taking the limit, the relation (6.1) will
be of the form
S
¢ 1 2 +1
Fo(d seeesagsv) = a,(v) expl~ 5 5 .=, 3(g, =, )07 2102 yeeesagsv) +
(9.1)
+ ¥ — | F,J+1

rooo ( eee ss e - V * ol %nocd * .
Kol Zigk Jﬂ a1 Ve s 9‘5’_1 ’ 'q ’ :!;‘! \qu (ql)c_ql qli]
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Should
(10.1) Fo(q yeeesqiv) = Fglay soenragsv)sa, (v) = a(v)

be valid for any ¢ = 1 , the relations (8.1), (9.1) will become the well-known

Kirkwood=Salsburg equations [5]

10 .
Fg(q;l yoo-qulsv) = a(v) ex_..:){_‘ -e_ —22 CF(q.]. -qi)}[rs—'] (qe ,...,qs’,‘v) +
(11.1) 1 ) . K § .
+ Z "'—"?r'/:f.oof FS+K—1 (qe ,-..gq_s‘,'q_i'r,..-,quv) ! ‘Y (q-éj(:)dql -'odq_f{J .
K=1 Kiv' i=1 %

To complete (11.1) for the case of S =1, we put Fﬁ =1, It follows from

the definitions tmat all Fq(ql,...,qsgv) are symmetric functions of variables Qe
Iy

4. We are now in a position to discuss the problems arising in the mathematical
description of the system in equilibrium state. To present a complete justification
for the mathematical description of such systems, based on the Gibbs canonical
distrivution and using sequences of distribution functions, we think it necessary

to solve the following three problems
1) to prove that the limits (7.1) exist in a certain sense j

2) to prove tmat the limiting distribution functions do not depend on the way
of taking the limit (that is, (10.1) holds)

3) to prove that for sufficiently small densities '% there exists a unique

solution of the Hirkwood~-Salsivurgz set of equations.

e shall solve the above mentioned problems in the following order : first,

problem 3 5 and then 1 and 2.

2. The existence theorem for the solution

of the Kirkwood=Salsburg set of

eguations

1e In tihe present section we sirall consider the Kirkwood-Salsburg equations
(11.1) for +he distribution functions Fs(ql,...,qsgv) and prove that for suffi-

. ‘s 1 . . .
ciently small densities 5 they possess a unique solution.

We have tihe set of equations

v

Fs(q.]_ 90..‘18""\7') = a(v) exp{— '::J‘ N

"

2;?(Q1 "ql)[FS_-l (qE geee ’q'S"V) +

(1.2) K

1 in A * 1
+ X —_Ef...,:r -|'-'5+K_1(q2 ,.-.,q_s;qi‘,...,q},:;v) RN

q’).(. dq*cuodq:’(;] F = 1
K=1 Xiv i=1 ql( 0% X



N,N. Bogoliuvov, - athematical description... 3 2 53

The solution of this set will be determined in a Banach space [2,3,4] which is
introduced as follows. Consider the linear space whose elements are the columns

of measuravle bhounded functions

/ iy (ql )
5 (Ch 99s )
£, (g 59 59,)

with ordinary operations of addition and multiplication by a number. This linear

space vecomes a Banach space B for the following norm of the element

| 1
(2.2) ![f}i = sup[—3 sup Ef (ql geeesq )l} 9
1 S S S
S A (}_1 ,aoo,qs

where A dis a positive constant which is to be determined.

In [2,3] the equivalent norm

R 1 )
IEll = sup [—-g- sup !fs(ql,...,qslj
(&) 1
S 8A” @ jeeeydg

was introduced, which was more convenient when studying the Mayer-ilontroll equations
for the distribution functions ([1], p. 23).

The operator X is formally defined in the space B through the relation

S
(KE) (% yeeerty) = expl= 3 T 2(q=a;)}085 1 (G yeeerag) +

i=2
(3.2) 1 ) o . .
+ T{-Z-;l .K:in f.-.r fS+I§—1 (QQ ,.-.,qS,qf,...,q_K) ;_‘i ‘\qu (qi)dql ...dq_K] y fO = 0.

The set of equations (1.2) can now ve written down in the form

(4.2) F = a(v)F + a(v)F° ,
where
F (ql ,v) / 1 \
(5.2) F = E, (@ % V) , F=[ o |
F_ (g 59 »855V) 0
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Below we slnll prove the existence and uniqueness of the solution of the opera-
tor equation (4.2) in the space B under some assumptions concerning the potential

#(q) and for sufficiently small '% .

As it is known, in order tiat equation (4.2) possess a unique solution in B
it is sufficient that a(v)F%B, +the operator a(v)K bve defined in the whole space

B and its norm be less that unity. The solution F is represented by the series
(=]

(6.2) F= 32 (a(m)K)a(v)r°,
n=0

which converges in the norm of the space B . It is easily seen [2,3] that these
conditions are valid for sufficiently small ~% in the case of non-negative potential

é(q) which is assumed to be a real-valued function in E, such that
1 .
(7.2) I=] !exp{--g 2(a)} - 1]dg <= .

We small assume first that a(v) and v are independent (generally speaking,

complex) parameters with

(8.2) ia(v)] <2
(9.2) 5! < 7o s

and evaluate the norm of the operator a(v)X .

It should be noted that the comdition 2(q) = O implies that

S
(10.2) wﬁ-%z (g =a)t =1 .
. L
i=2
Then it follows from (3.2) that
45-1
sup  la(v)(K)g(gy seeesay)! = Ja(W)|l sup |f _1(<12:--~sqs)| STt
ql,ooogqs qg,..-,qs
(11.2)
. ] L S+K-l K
A SELNY sup, RESW -1(ql""’q8fql""’qr)| A | @ (qz) X
1\."‘1 T{Y ' quo-o,q ,ql ,--.,q l
S K
M y '3‘I 51
dqlﬁ XX qu.g = :a(V)Ee - lgfﬂ o
Hence, A I
" . ] 1 ) ~ ' TV
(12.2)  ja@)se] = s (G e @K eag)] = 2LV e

57 yeensty
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If now we put + = 2e¢ and take into account the inequalities (8.2) and (9.2), we
get 2el
(V)ie.¥
! H
i a\v)ie -
K| < === <1 .

A%t the same time we see that the operator X is defined in the whole space B .
It remains to check only the condition F%B . The latter immediately follows from
the definitions (5.2) and (2.2) since

la()F9 = o (nF°) - 20l <

It is thus shown that for 3(¢) = O and with the assumptions (7.2) and (8.2), the
Kirkwood-Salsburg set of equations (1.2) has a unique solution in a neighbourhood of

the point 1 =0 ,
v

The method described above was developed by two of the authors in 1949 [2,3].
We shall show now that it may also be applied to the more general case when the
requirement that the potential Q(q) e nonnegative is replaced by the following

Ruelle's condition [4] :

There exists a positive constant b such that for all S and any ql,...,qseﬁg

the following inequality is wvalid :

1 . -
(13.2) 5 U,{}((ql ,...,qs) = «- 5D .

From this condition it results tlat for any point (ql,...,qs) belonging to Iz

there exists at least one index i such that

1 < - -
(14-2) 5 024—. _;'(q_i"q_J) > -2 .
J#i
In view of the symmetry of the functions Ty , one may, after Ruelle (4], write
equations (1.2) in a symmetric form. Let 7, denote the operator acting on the

function fg(ql,...qs) through the formula
ﬂ@fS(ql9QQ9"'SQZ_19QZ9Q£+19‘-~9qs) = fs(qﬁ’q99'°°’q$—1’QL’qﬂ+1"."q3) .

It follows from (14.2) tmt there exist measurable functions Vi(ql’°"’q8)’ invar~
iant under the rotation group, aving the values in the interwval [0,1], and such
tat

. \)i(ql yooo,qs) = 1 9 IT-‘;—;\)(ql ,...,qs) = VI{(ql ,ooo,qs) 9

I ™M

1
with the inequality (14.2) bveing valid if vi(ql,...,qs) #0 . The set of functions

v, can be considered as the partition of the unity.
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Now we define the operator 1 by the relation

M«

T (@ peeerag) = = M [w (@ yeee,a5)f5(q eeeyag)] -

1

o
It

In view of the symmetry of the functions E‘S(q1 ,...,qS‘,v) , equations (1.2)
may be represented in the following form

S

o 1

Pty yeesragsv) = a(v)m expl- 5 z 2(q ~a; )P _1 (9 5eeesaq5v) +
3=

(15.2)

K
1 ~ - .
+ Z B vI{ 'J ...j hS+K—1 (q_g 900l9qsgql 90.ogq:—[y{(§v) ! §! \P

* ¥* *
K=1 Ki i qiyc(q_,i)dq1 veeda¥] .

With the assumption that 2(q) obeys the conditions (8.2) and (13.2), we shall
establish the existence and uniqueness of the solution to the set (15.2) for suffi-
ciently small gr- . 4s abvove, a(v) and v are considered as independent complex
parameters and the inequality (8.2) is assumed to ve valid.

The set (15.2) may be written in the form (4.2) provided that the operator K
is now determined by the symmetrized relations (3.2) :

5
(K£)g(ay saeesag) = m expf- 7 2 3(a ~a;) I fg 4 (qyeensag) +

1=2
(16.2) K
5 [ f * * TT %Y g% * _
’ KZ:1 Kiv Jooo] g q(dereeesagra’yennsay) i1 T (qf)aqg eeedap] , £,=0.

THEOREM I. The set of equations (15.2) possesses a unique solution in the Banach
space B for

210+1

(17.2) la(v)! <2 ,1, < L .
i . WV
NN 2e I

h 2 - 1, o a3 (3 ~ 1 - 2, >
This solution is a holomorphic function of a(v) and = in the domain (17.2).

To prove the first assertion, it suffices to show that with the conditions

(17.2) the norm of the operator X defined vy (16.2) is less than 1.
Bearing in mind that the estimate (10.2) is now replaced by

o2}

1 _ 2
gn exp{- ) ,Z’ \2(q1—qi)}l< e ’

i=1

which follows from (14.2), we obtain from (15.2) :
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A
—T
. 2b v . S=1..
s 1a () (@)g( yeeesag)] = [2(0)]6%ue! ™ 25 it 5

q_l ,.Qo’qs

(18,2) A

I- v - ﬁ‘I
la(v)ie)| = 0L 20 o VI gy

Putting A = 2(92.9":l and taking into account (17.2) we obtain from (18.2) the

estimate required :

2b+1 I

.-’_|-——e——-——-5
exn{2b + v l=k<1,.

i

o] < 25
2e
We have thus proved the existence and uniqueness of the solution of the set
(15.2), or, which is the same, of the equation (4.2) in the domain (17.2). Tais
solution is a holomorphic funeticn of a(v) and v in this domain since it may be
represented by the series (6.2) which converges uniformly with regard to a(v) and

v in each closed domain contained in (17.2).

4. Turning now to our case of interest of the limiting distribution functions
E‘S(q1 ,...,qssv), we have to consider v as a real (positive) variable and a(v)
as a function of v . Let us show that in this case the condition }a.(v)] <2 of

(17.2) may be omitted. To this end, we shall find tihe estimate for az(v) .

LEMA I. The numbers a (v) obey the inequality

-
v
Proof [3]. Consider the quantity
6 (i, V)
N 1 1 R - =
Q—(Tl\l—'] ,VN = (\1(*1—1 9VN) IV see rv ex}?{" 8 = ‘(ql qJ)}dQ.l ccod-qT.I
N N 1=igsll
(20.2)
1 1 1i=1
= — — > . . § : . 1 veas .~ .
fv dq[jv . fv a=pm exof- 5 I ?(ql—qa)} i=;{pq(q1)+ }dg, veudq 4]
N N N 1=21<j=11-1
Ve shall use the following eleuentary inequality
_i=1 -1
(21 '2) :;_! =j] [qu(qi)':'TJ z1 - i?;‘] “Pq‘(qi)l 9

whici holds not only for our special functions pq(q;) , but also for arbvitrary
L

quantities a. such tat 1+a >0 .
S
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By making use of (21.,2) one obtains from (20.2) the following estimate

\,(;1, N~1
T‘-T'V')‘ I, dqffv e [ O= 2 o 2(a)1) qrary
N N
1 -
X exp{— > >(qi-qj)} dg +eedyy = Vy - (6=1)I,
1‘1(3—— w1
whence for any il =N
i (i1, ) ’ ’
=V = v - < .
a,(Vy) '«»Z_L,VHS VG-I %_
Since, by definition, a (v) = lim ay_ 1,1( ) forany £ , then a,(v) also satisfy
the inequality (19.2). N o
From Lemma T it results that for
1 1
v 262br11 21

the inequality a, (v) <2 holds, tiwt is, the sccond condition of (17.2) implies
the first one.

Finally, consider the character of the density dependence of the limiting

distribution functions.

THEOREM IT, The distrivution functions li‘s(ql ,...,qg;v) are nolomorphic with respect

To p in a neizghvourihood of the zero point.

Proof [3]. By Theorem I, Fs(ql ,...,qs*,‘v) are holomorphic functions of a(v)

and = in the domain (17.2), that is, by virtue of Lemma I, for
1

292b+1I

1.
v

It is tims sufficient to show that a(v) is a holomorphic function of -‘1;- in some
neighbourhood of the point % =0,

The solution of RBquation (4.2) is translation-invariant since each term of the
series (6.2) possesses this property. Therefore, & (q, ;v) = const. «s it will be
demonstrated in Section 4,

.1 e A .1 N
(22,2)  1im =4 Ba sv)dg, = lim 7 Fl( )(ql ;v)dg, = 1
Ne—so 'N V‘N Noso 'N N

waence F (q 5v) = 1.
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Now, by making use of the Kirlkwood-Salsburg equations, we obtain
S

(23.2) 1 = Fl (ql ;V) = a(V)[1 + 21 L f.o.f (ql 90009q_7r9V) X
=1 Kiv

g 1 ¥* *® *¥1 —
Ny % “qu (qi)dqi'O'dq.I{] = }’g(a’9v)

in the domain (17.2). Let us

i

for .a' <2 the partial

waere the funcivion yx 1is holomorpiic in a and

o <4l

show that in some neighbourhood of the point % =
derivative %ﬁ #0 . The latbter condition implies tiat the relation (23. 2) can be
solved with respect to a and the function a(v) is holomorphic with respect to

1 . s s o 4o . 1
= in a neigivbourhood of the point el 0 .

The following expression is obtained for %f-:
(24.2) X 5 [ (@ eenralsw) TT g ()25, .ag?
24-.2 =1 + = —— cos F—;,- q{c,..-qu‘,fv Do P q)l:- d.q;,_ ...dqw +
da K=l Kive X K io] @i K
1 3 T‘T
* az:SE{ K va& o == EPDIESN (65 0eesagsv) Pq (a)ag. . dag]

It follows from (28.2) that %ﬁ =1 at the point < = 0 and, as a conseguence,
%g-# 0 in some neighbourhood of the zero point. This completes the proof.

3, Bxistence of the limiting distribution functions

1. In the present section we arc studying the problem I stated in Section 1.
When solving this problem, it is convenient to use the relations (5.1), (6.1) which

are the basis for deriving the Kirkwood-Salsburg equations.

Congider thus the relations

-2 1 N-z-1
FéN A)(ql,...,qS;VN> = ﬁgz'&N_a(VN)ﬂ exP{‘ Iy 2 (ql‘q )}[F( )(qgs---aqs¥vN)+
. ! 520

1
: eee , Noemg) am . % -X-'
+ T 7 J .ooJﬂ FS+K—1 (qg ,...,qs,ql ,...,quVN) X
K=1 Kty o Vi

X dq; «..d
1’=1 (a})dq, %7

Neg =1 N 1 -
FIST—-,O (@ seessly_sVy) = 5o ey (V)™ exo{- 5 £ 2(q -q;} x

i=2

IIMUJ

‘—1(11" o=1 )

o N=-1
X j!N,_. - (qe 9"°sqN_£ ’VN) -Bg ) =1
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which follow from (6.1) due to tie functions "‘A(N—’Q(ql seeeslgyVy) Deing symetric

(see Sec. 2, (15.2)). Tacse relations will be assumed valid in the whole 3S~dimen=
N—,

sional Buclidean space 38 « The functions F( )(ql seseslos N) are defined in

S
the whole Iz;q Wy the formulas (1.1), (4.1).

The following notations are introduced

IECOIN V) ()
/ B4 (g, g, V)

. po(N-2) _

(2.3) p(M=0) |

/

f

|

z’
5
|

\

\

e o & o O

M)(ql 90z s"-;clN )&s N) ]
0 /

. \

(N-2) denote the operator acting in the Banach space B on an arbitrary

Let KS
column £ Wy the formulag

(W—)

S
(KS £) (fll seeesly) = o7 @N- (V) exp{- = 1?2 (g, --qi)}[fs_1 (g yesesdg) +

(3.3)

Neis (1 428),, (1 LB o] . e
+ eve ~ b ( ese 0 qf vee q*) i @ (qe.\‘) X
Tt 1 oK A Gorereslgaarensly) | 19 Yy

m ¢ N-% .
X d’qll. "'d’q;;] ? (*—E() )f)i;é S(qa. ’...’qi) =0 H S 74 N~}

N -
C' N 1
)N-,;f’,(q'l ,--;qu_;;J) = O,N_/; (VN)TI' exp{- 5 22 9(% -q, )}

(I&(N"’J’ )

Nei=1 X

N-,
X (qe ’.'.’q'N—f,) 9 (KIET—,S, )f)i,l-N—E(q'l ’...’qi) =0 ’ fO =0,

\ -
Here the expressions (Kél\ A,)f;)s(q;L ,...,qS) are also defined in the whole EBs .

Denote by K(N-'C' ) the following operator

K(N-i') (1\ ) 'V'(N-A?’)_’_. .ot r(N_";) R

.
=x

Y Neg .
Vith the onerators K(l\ ) and columns F(l ) the relations (1.3) are represented

in the following compact form

(4.3) p(i=2) | (=0),(N=0-1) | po(i-2)
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(¥-2)

One can saow that the norms of the operators ( -<) and V(I\l =) (1 =85 = N=f)

for 1-<-—-—1—T— are less tlan unity, H£(I ”W =k <1, ﬂn(“ ) =k <1, The

2. Ve swll investigate now the properties of the operator K

argument ls s;m;lar to that employed in tihe proof of Theorem I if one takes into

account that the quantities ﬁf— ay_. (V;) obey the inequalities

~+S _ A1S+K-1

for %:<*£f . The number 4 apnearing in the norm definition is subjected to the

game restriction as in Section 2, The positive sequences

N
N( ) N~7 N1( )"."N” N »( )9”‘9 N=3:49"°

- o - . o 1 1 % . . .
are vounded from above vy 2 for -<:§T ). Therefore, using the diagonal process,

one can separate any finite numoer i+1 of converging subsequences

N N,
aNi(VI ),N a\l 1(V ),...,N = N J&(v )

whose limits as N, -« ave denoted by a(v), a (v)seeesa.(v)
s

N,
. i i
Nllm aN_(VN.) = a(v)y lim ff:ﬁ'aN.-1(VN.) =a, (V)j5ee0
Pl T N, o™i i i
Ni
ey lim gay () =alv) .
Nime i i i

We shall see below (Section 4) tiat for each sequence aN(VN), ﬁgTaN-1(VN)""

N T2 E( ). there exists only one limiting point, that is, the sequences

ay (V) N 1 ayy_4( N)""N ay_,; (V)

themselves converge as N - o, lioreover, it will be shown that a(v) = a, (V) = ees

vee = a,(v). For the time being, we shall mean under the sequences
A

N
e (V) s 2ayoq (V) oo+ oliy 2, ()
gsome of their converging subvsequences and the limiting process will be performed

over these suvsequences as N - o , although we shall write N » =

Let KS denote the operator acting on an arbitrary element f of the Banach

space B tiarougn the formula

(st)s(q.l !'°°sqs) = (kf)s(ql ,...,qs),(KSf)i;éS(ql 90-.,(11) =0 .

*) We put ay: (v m) =0 for [ > -3,
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Let \;f(R)(q) be the characteristic function of the sphere Vy with radius

N
and the orlfun as a centre and V\I tne sphere witia radius RN—rN and characteristic
function ‘if = (q_) « The function Ty is required to possess the following proper-
ties : Ty oo as N-o=, rN/RN-eO as N oo ,

(R~r)

Let v De the operator acting on an arvitrary element f£¢B by the formula

(Y(R-r)f)s(ql 9-oosq.5‘) = Y(R-r)(ql )°"Y(R—r)(qs)fs(ql 9.'.’qs) )
(N=2)

One more property of the operator RS is given by the following lemma.

N K- 1 1 . . 2 R-r - o N’"’
LELn 2, If =< -2-;510—_‘_1—1 , then the sequence of operators «y( )(aL(V)L{S—-ﬁé '()’)),

4 Dbeing fixed, converges, relative to the norm, to zeroas N - ,

Proof. Consider for any f +the expression

B2 (s -, () B el L zs:z 5(g -a,)} X

1 * *
X 1(qe,...,qb) + Z __Tff’"f fS+K~1(q2""’qS’qi”"’qK) X

.l.\.-—1 :‘.C E

'1'1"{";'— % * *
X Lo (PC (qi)dq-l “°dq.K] -
i=1 4

s
(Rr); el T olg =)}y (g seeesag) +

N
~ T B ()Y .
i=2

NegmS (1 “‘S).“( :’.";E.;.‘.*'.?:.‘.‘l)

N *
+ 21 - X j‘v lonrv fS'i‘I{“"] (qa ,...,q,K,q_l ,coo’q_:[-x,;) X
K= I v

X TT 9q, (@ g wdaf] =

) S
=a, (v)\y( Tn exo{— 7z (g —a, )}[fs 1(‘1 "”’qS) +

i=2

N, X
+ L — r...ffstk_.](qo,...,qs,ql pesesly) | ™ P (q )dql...qu] -

s R2) e 1 5 (g )15 )
—_ N-—Z, ( \T)\{ T expl— ) 1:2 - fi]_ "q.l -1 dz ,...,q_s +

..,s +8+K=1

Yo (1- &8, (- gLy L.

+ Z K J...f fS+I(-1(q2,...9qS’%' "ngqK) X

=1 K v



N.N. Bogoliubov, Mathematical description... § 3 63

' S
X TTq) (a))agfe . aaf] + a (v)‘i‘( =)t expl - 1 :v(qn-qi)} X

1_ l=

z eeej T oo 9 geesyd, *..‘ ¥* -
X[K=NO+1 i Kj / s41c-1 (% » ’qsql QI)T—"@ (af L dqg]

Neg=S (1- L+S v (- £4S+K-1
- i (Y e : (a1} = sk A ol

i=2 . K=N0 K! v

XI "’Iv S+K-1(q9 90"7‘3.8"31 ’00‘99.K) _T“P ( )dq.l "'qu] + N N ) aN E(VN) X

Wy
N 4+3 £4+S+K~1
S 0 (1= 5P ... (1= =57)
R 1
X \Y( )y e:@{--é- £ 2(q=g)} = 7 L X
i=2 =1 Kt v

X K
o 3% 'I—T (R), x TT .
X r.-;f fS+K-1(qe ,oco,q.Kgq,l ’COQ’qK)[1- i=1 Y (qi)] i=1 ‘qu (q-)j(:) X d%,*"'dqlv\z]’

where N0 is as yet an arbitrary finite number.

Let 3, v, denote the last three terms respectively. The following estimates
hold

AS—‘la(v)eZbeH z
K=N +1 X! v

1A

|8] AT < 4B (v)ley

S-1 _N_ @
vl = A ( )e £l = ~ AKK As(N)f '
M A Hic-Nnva » (Moliel

Se1 2% 2 1 K-1,K _ ,8 .
L % L £ Z g s (i = 8%e(zp)itll
K= A v

1A

8]
where

1.
eg(rN) = le © §(Q)—- 101 = Y(r)(Q))dq .

Being the remainder of the absolutely converging series, the quantity ¢ (NO)
can be made arbitrarily small for sufficiently large but finite No independently
of N. The quantity e, (rN) can b~ made arbitrarily small for sufficiently large
N due to the integral

- 1)
[ le 5 7% - 1|dq

being absolutely convergent, The difference of the first two expressions, denoted
by o, oveys the following estimate :
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N
0
S=1 200! N 448 L+S+K=1 A
ol = 45120l = Ja, () - L ay, () (1- 449)...(1- L8N #T
K=0 Kiv
.S
- 5 e

with € (N) veing a.rbitra.fily spall for large enough N gince ay z(VN) - a,z(v)
(nere N, is a fixed finite number).

Tius we obtain finally

Il

R-r o (N=g S
supl\y( )[(az(v)ks-ké ))f]S(q1 ,...,qs)l A°(2¢, (No) + aQ(rN) + e (M)l
which is equivalent to the following estimate

1y (B) (az(V)I{s‘KéN—z))fH = (25 (M)

+

oo
ez(rN) + e, (N))Hfll .
This immediately implies

(5.3) ”Y(R*r)(aﬁ(v)I{S-I{éN-L))H = 2¢ (No) + & (rN) + e (N) = e(rN,N) , éim e(rN,N) =0

which means that the sequence of overators Y(R_r)(a z(v)KS—KéN-’Q’ ) ) converges to
zexro as N - o relative to the norm. Lemma is proved.

Let Bn denote the space consisting of columns f with fn+1 = f = 200 =0

and with the noxm given vy
! - 1 [
“II' = Su_p {"‘g_ sup ffs(ql 9...,(18)!} .
1§S—§n -"\4-) q .ocq_
1 o

Consider the operators fron B into Bn :

M=) 5 g(=2)

K = DY K .
1
e [n} 4 5

=5=n
The norms of these operators are less than unity.

The operators

y(Bm) ( (-2) _ NCO Y

are the sums of a finite number of onerators
,(B=1) ;- (N~g)
14 (KS - a, (v)KS)

which converge to zero relative to the norm. Tiaerefore the operators

y (B-z) (KEE}” - a, (V)% pq)
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also converge to zero relative to the norm., It is easily seen that the following

egtimate is valid :
B (M=2) (O I = e (r,N)
I (n] PAMGEE Y I LA

Below we sihall also need the following inequalities

(R-x+ -g:-:r:) (R—x+ :J:-r) (R-x+ -‘]ﬂ-r)
(6.3) Iv e Ky - Y T ey (K "N e W)
(R-r+ 1) (R~x+ 1) (R-r+ -‘Lﬂ—r)
¥ AEg}’&) -y K(ijﬂ) N IEYC )

where n,j are integers, J < n. These inequalities are verified in the same

mamer as (5.3) in Lemma 2.
(Re) (1 (-1

zero relative to the norm. Indeed, the operator ¥

BN -y’ and ‘F(R ~r) N—ﬁf 0 for the elements fcB with fs =0 for SZ= Neyg ,

Therefore, for any a.rb.ntrarllg large N , there is always an element f such that
(R-r) {(N—f' ) =0 and Y(R - a, (V)X # 0, and the norm of the element ‘Y(R-r)az (v)&£
is finite.

Remark. The operator sequence VY - az(v)K) does not converge to

(R r) (N z) acts from B into

3. Consider now the relation (4.3). Applying it repeatedly we get
(7:3) p(=2) _ (W) (Mmtmt) | (B)p(2) | g (N-2)y (W==t) | e (B)go3), ||

N K(N-,c)K(N-z—1).“K(i)Fo(i-A )+...+ K(N-z)Fo(N-z-U . Fo(N—Z) _

= K(N-%)K(N”'@—'])...K(B)F(2) + N—-é-'ll (l I (N—Z—J))FO(N—,Z—J.—‘I) FO(N—,V)
is= 0 J=O

K(N~,@—j-1 )

| .
where the operator KQ\I 2=3) acts after the operator and, according

to the definition’,

- V-
%) The columns F(Nl ) and. F(l\'2 4z ) differ from each other for N # N, ,
N AN, , 2 £4, 8 -4 =N, -4, , by definition,
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vy j‘v exp{~ 3 3(a ~g, )},
N

B SUCRS P vy -
/I [ [ expl- g— 3(q, =q }dg, dq,
72 _ . El(g,%sVy) Vy Yy
0]
\‘ : RO i) - V3 exp{~ -:)- 2(g; g5 )}
. I I eml- 1 2(q) 2 )}y, g,
. N 'N

We have further

(VL vy B &P
(¢ 'l R L) APV (V L)

where use has veen made of the following formulas

j’v exp{-%@(ql-qe)}dqg =fv aoql(qe)d% + V=54 +Vy

N N
(9.3) 'L, | = sup| [ %y (g )ag, ) =1 ,
g VN 1
1
[ ] ewf-ga(a-g)lydy = [ ¢ ()dgdg + V=TVl + V.
VN Ty Vy Uy 9

Ll =1.

It follows from (8.3), (9.3) tat for large enough N (which will be assumed in

what follows) the inequality HF(Z)H <1 holds.
Bearing in mind that !jF(2);g <1, HFO(N‘Z)H <Tyeeny ]F°(5)H <1 we obtain

T— .
from (7.3) the following estimate for HF(I\' z)‘“

5 4 :
(10.3) Pl = s TT “K(N—Z_J)ii gt

. Ne

The latter inequality implies that the columns F(l L) belong to the Banach sgpace
B for

1

21+1 ’

1<
2e I

and their norms are bounded uniformly with: regard to N and 4 .
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Congider the columns

© i .
_ - in0
(11.3) =z e (VKT

i=0 j=0
which appear when iterating the relations (see (9.1))

(12.3) g a,z(v)zceﬂ“ +a, (V) ,

and belong to the space B as it follows from the estimate

0 «@ i © -
(13.3) = = GOl NE% s 2 oKt -
i=0 J—O i=
1 1
for =< .
Vo, 2b+1I
THEOREIL III, Por any fixed ¢ and 1-<-——;L——— the sequence
v 2e2b+1I

Y(R-r)(F(N—z) - )

tends to zero in the space B ags N oo ,

Proof. Let us represent the difference Y(R r)(F(N ~2) Fz) in the form

(14.3) W(R"r)(F(N"z)—Eﬁ) = v(R"r)[K(N’ﬁ)K(N'Z‘1)...K(B)K(Z) +

Neimd 3 N e i .
.5 (N—Z—J)FO(N—9-1—1) o(N—»)~ 5 T aﬂ+j(v)KlF°] _

i=0 J—O i=0 j=0

n i - i n+1 l ]
Y(R_r)[ > -r—‘- K(N"',J J)FO(N S 1) + FO(N-)?')_ 53 ‘ l ,(V)KlFo] + Tl(n) .
20 320 i=0 j=0 **J

n
The norm of the column T7(n) does not exceed ZTEE' and can ve made arbitrarily

N
small for large enough n « By virtue of the definitions of the operators K( z)

o(N=z)

", 0
X and the columns F I 4, one as

n - (W=0=3) go(Fmpmim)  po(i=g) _ B T;T (=g=3)po(N-g=i=1) _ go(t=z)

[}
[
120 j§=0 120 j=o Ln+2]
(15.3) a1 _ N .
- 7 Lm0 1 w0
:L ) é aL+j(v)h F T ‘ l a, .(v) K[n+2] .
i=0 j= i=0 j=0

The inequalities (5.3), (6.3) imply
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i o _ (R-z+ L 1) (y_;o (Rer+ =L
Jr® T izgg9)- (il T m i)
y Tg:gl”)n = (i1 )ki_1a(1—11- z0l),
" i - (R—r+ - )
I (R I) -r-l- a'N °(V)K:En+23 - Y(R r)a’@(V)K[n_l_z]‘f n = X
(16.3)
X (Roze 537 ) o i-1 1
X a£+1(v)a pi2]e ey a£+i_1(v)K[n+2]ﬁ = (i-1)k e(g'r ),

i1
1o ) =0) oy Loy (Nept)  Remr ) (nogiin)
l\{l R .1'1-'-2] ( N n ) [ 2] eeo? n I\[n+2} -

(R-r) (R~x+ %~r) (R~x+ il r)

"y (e oot (i mieest 7 X2y (K]

s qtt e(E )

Hence

(17.3) ¥ (Rwr)(' J) 44 J(v) [n 2] —ﬁK[ —§13)~ 5 e (:1 rysl)
It is easily veriiied that

(18.3) polm0) Lo ) = o my)

Using the above inequalities we obtain

n n+l i .

R~ (W—2=3)_o(Nmgmii N- B .

HY( r)[ z ! | K[n+2} o (=2 ) go(N-0) _ s T aﬂ+j(v)hfn+2]F°” =

(19-3) i=0 j=0 i=0 j=0 *

i 1 n+1
58(“‘ N,N) _o(i+1)k + e(; rN,N)i§O Bg(n N,N)zq—T75'+ e(n rN,N)1 r =

= 4e (L 2y, M)y
= 4e (g m e

The final estimate is given by

o (Rez) o (N=g) 1 1 kY.
(20.3) T @8 = 4o v ¢ 2 = F)

Choosing n and N sufficiently large, one can make the right hand side of the

inequality (20.3) arvitrarily small. This means that
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vim &) (=0 _ gy o,

-0
Theorem is proved.

As a consequence of Theorem III we obtain that

Lin 1y B=) (=) p(821) | goi=2) a, WF! 48 (DF) =0 .

4. Unigueness of the limiting distribution functions

1. In this Section we shall prove the uniqueness of the limiting distribution
functions, i.e., we shall prove that F=F and

(1.4) az(v) =a(v) , L=1,2,4u.

THEOREM IV, For small enocugh -}; s the limiting distribution functions are identical

and the relations (1.4) are valid.

Proof. 4ccording to (12,3) we mave
- :3.)@(V)KI:.T‘!‘H‘l + aﬁ(v)F0 ,

72

(2.4) P s e 0 e, (F°

Congider the difference

Gu4) Fr oo MEET ) - (@, (D, X (e (D)F

It follows from (3.4) tmat

(4ed) [P 5 o (I EE ) ey (e, D IRIIEZ) + g, (9, ()| 1E

A

A
a,(v) .. =L . =I la, J(v)-=a, (v)]
2 2 1 2 1 2b v o042 * 4+ 4
s A= 0% P la, (V)= (v)|ge™e” [F77 + Y ’
Below we shall establish the following estimate :
A .
;I F,@+1 14.,£+2
(5.4) |2, ()2, (D = 8,(Way (Ve [T -F

Bearing in mind (5.4) one gets from (4.4)
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2= I (Fz'!-2
v "1 _2bj| +
e + aﬁ(v)az+1(v)e Te I

According to Lemma 1, the quantities ae(v) obey the inequality
. 1.1
aﬁ(v) <2 for =<3T -

It follows from (13.3) that for the norm of FZ+2 the following estimate holds

(7.4) [Py st 2> 26%P gor Lol
' A g v ,1.2bH
520V Ie
1. 2e ¢
A

Choosing A sufficiently large, one can easily show that for small enough
the quantity 6(v) in (6.4) can be made less than unity. The inequality (6.4)
yields

; ] . . i .

(8.4) ) = sttt - B 2 6 ) —E—
=1
5 2b v
e e

===z

Since 6(v) <1 and the inequality (8.4) is wvalid for any i , the norm

1| is arbitrerily small, tmt is, F = ®'' and, in general, F = F= =

A

= eee = Z.ese .

Now the inequalities (5.4) imply that for small enough '% the quantities az(v)

and az+1(v) are identical, and, in general, a(v) =g (v) = a5(V)ees

Theorem is proved.

It follows from Theorem IV that the column F satisfies the Kirkwood-Salsburg

equation

T

= a(v)KF + a(v)F° .

2. The functions FéN”’)(ql severdysVy) satisfy the relations

(9.4) -1—f eee [ FéN’Z)(ql pereslgsVy)dg eee dag = T 4
Vfr Yy Yy

Let us take the limit in (9.4) and shew that the following relation holds

(1044) 1lim !

- eve J.A F‘g(ql ,...,qs,v>dq1 o.od.qs =
Noe V§ iy V.

N

Nse Ty "Vy N

. 1 N—:/
= lim - PP fv Fé )(q-l ’”,,qs’,VN) X dq_l cee dqs .
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To this end, consider the identity

V

1 r - ﬂ(N—"f)
(11 04) -VE Jr oee JV (Fg(q; ,..-,CJ_S,V) - -L’S (q1 gooqus9vN))dq1 "'dqs =
N 'N N

= -1-;3-f cor J [&'(R_r)(}:‘é(ql ,...,qssv) - FéN"’Z)(q1 ,...,qS;VN) +

Y Yy

L(R=x 2 Ne
+ (1—Y( ))(Fé(ql 9-009q,S§v) - Fé JZ)(q.], 9"',QS;VN))]dq.1 -oad-qS

and evaluate the first and the second terms of the right-hand side of (11.4). The

second term obeys the following estimate

1A

!-L.Jn oo r (1*‘Y(R-r))(Fé(q1 seee ,qSEV) - FéN"f’)(ql geee ,qs',VN))dql .,.dq_s

S
Ww % Yy
3
_ 2 s BBy W5s01-(1 Iy
- 1—1{ Lh () 5 = 1-k - - R
R, N

The inequality above implies that the second term of (11.4) tends to zero as N — .

The first term of (11.4) obeys the following estimate

l% [ e IV ‘if(R"r)(Fé(q1 ,...,qs',:v) - Fél\lmﬁ’)(q1 9-'-9‘13‘9VN))5~91 N E

N Uy N
S
(Ryry)>°
= —N-——I\-L—-—[\‘S'E(r ’N) = (1_ )BSASN( ’N)’ ll]n E(r ,N) =0 .
35 N Iy N
Ry N -

Tne relation (10.4) is thus proved. 4As it is easily seen, the functions
P (‘11 ,...,qs,v) are translation-invariant and therefore the functions EI (q 5v) are
oonsta.nt. The relation (10.4) implies that F'°(q1 w) =1 , £=20.

Proceed now to proving the inequality (5.4). From (12.3) it follows that

X
1 ® 1 L s *, *Yda¥ *
Tyt o e DR eeay) TT o (aaals . odag
£ =1 Kiv i=1

Using also the formula

1 1
8,(v) a2 4(v) =a,(V)a, (v)(a,za-1 (v) ~ azT"SF

w2
A J‘ootf (:I Al (q_l ""”'K’v) - FW+ (C.l.l s""qI,'?v) X

=a, (v)a};_‘_1 (v)T:;I

i
Ly

X

':Iv.

-t

*x *
q-], (ql)dql oo 'qu 9

i=
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we ovtain the required estimate (5.4) 3

IA

= \
|a,’v:(v)_a£+1 (V)] = a,)a(v)a.}H,l (V)ev;iﬁvﬁ - }3"~'+2H .

3. We shall show now tihat the seguence a,N(VN) mas the unique limiting point.
Indeed, if there were two subsequences comverging to a(v) and a!(v) respectively,
then corresponding to them there would vbe two columns F and F! obeying, by

Theorem IV, the equations

F

a(v)KE‘ + a(v)Fo ’

"Eﬂ_

[

al (V)i + at (v)F° .

Bearing in mind that F (qyv) =1 and B (qyv) =1 , we obtain for the difference
a(v) - a* (v) +the following estimate

P
(12.4) la(v) - a' (v)' = a(v)a* (v)e v - .

This, in the same way as in Theorem IV, implies the validity of the inequality
(13.4) P - = o) - B

where 6(v) <1 for sufficiently small -2; . It follows from (13.4) that F = F
and from (15.4) that a(v) = a* (v).

Bearing this in mind, we finally obtain from (10.4)

. 1 N"E/
1lm —g-f es e "r Fé )(C_‘,_l ’noo’q_s‘,VN)d.q_l °e .d_q_s =

N »o VN VN VN

. 1 o
= ]ilm —V'S‘ JrV ...jv -bs(ql 9..09qsgv)dq,ltcn.d-q_s L]
=¥y 'n N

The unigueness of the limiting distribution functions being taken into account,

Theorem III (Section 3) can ve formulated as follows,

For any fixed 4 and -3;-< 'QL the sequence

o~

(R~ (Ne=g ,
1( r)[bé )((11 ""’qS)VN - I‘g(‘h 9~OquSbV)3

tends to zero as N -« uniformly with regard to q geeeslse Observe that the

limiting distribution functions are holomorvhic functions of 5 in some neighbournood
. 1

of the point pel 0 .
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