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MATHEMATICAL DESCRIPTION OF EQUILIBRIUM STATE

OF CLASSICAL SYSTEMS BASED ON THE CANONICAL FORMALISM

by N.N. BOGOLIUBOV, B.I. KHATSET, D.Ya. PETRINA.

Introduction

To derive thermodynamic relations on the basis of statistical mechanics, one has

to study systems with infinite number of degrees of freedom. These systems arise

from finite ones when the number of particles N tends to infinity, which is followed

by a proportional increase of the volume vN, v = const.). This creates

rather difficult mathematical problems connected with the justification of the

limiting procedure as To solve these problems the forualiems of either

canonical or grand canonical ensemble as well as that of partition functions are

used.

During the last two decades a considerable advance has been observed in this

field. In 1946 one of the authors [1] suggested some ways of the rigorous mathema-
tical justification of the limiting procedure in statistical mechanics, using the

formalism of the Gibbs canonical ensemble, and developed a general method of deter-

mining the limiting distribution functions as formal series in powers of the density

1;. In 1949 two of the authors [2] worked out the foundations of the rigorous mathe-v 

matical description of infinite systems in statistical mechanics. A comprehensive

presentation of the results obtained has been given in [3] in 1956. The works [2,3]
comprise the complete solution of mathematical problems arising when performing the

limiting process as N - co in the systems described by canonical ensemble for the

case of particle interaction through a positive two-body potential and sufficiently
small densities. It should be noted that the system of equations for the distribution

functions was essentially treated as an operator equation in a Banach space. However,

the methods developed in the works mentioned above did not call the attention of the

scientists.

In 1963 Ruelle [4] again suggested a similar approach to studying the sets of

equations for the distribution functions. He used the grand canonical formalism,
which led him, in our opinion, to simpler problems involving the justification of

the limiting procedure. At the same time Ruelle succeeded in extending the class of

potential functions in question by exploiting the rather ingenious idea of symmetri-
zation of the starting equations for the distribution functions.

The purpose of the present paper is to give, on the basis of the theory of .

canonical ensemble, a rigorous mathematical description of the equilibrium state

(for small densities) of infinite systems of particles whose interaction potential
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obeys Ruelle’s condition [4’ i and is not required to be positive. The methods deve-

loped in [2,3] and Ruelle’s method of symmetrization are mainly employed.

In Section 1 the problem is stated and the relations for the distribution func-

tions in the case of a finite volume are derived, which after taking the limit

become the well-known Kirkwood-Salsburg equations. Contrary to the grand canonical

formalism, there are no equations whatever for the distribution functions in the

case of Gibbs ensemble in a finite volume. The appropriate equations appear only

after taking the infinite-volume limit. This brings about new problems in compari-

son with the grand canonical formalism.

In Section 2 the theorem of existence and uniqueness of the solution of the

Kirkwood-8alsburg equations for tne potentials obeying Ruelle’s condition is proved,

and the densities are explicitly evaluated, for which the solution can be represen-

ted by iterations. The theorem on the al1alytical character of the density dependen-

ce of the limiting distribution functions is proved as well.

Section 3 presents the proof of existence of the limiting distribution functions

when the number of particles tends to infinity.

Finally, in Section 4 the uniqueness of these limiting functions is proved.

1. S ta temen. t of the Problem

1. Consider a system consisting of N identical particles enclosed in a three-

dimensional macroscopic volume VN and interacting through central forces which

are characterized by the mutual potential e2-(q). It is assumed that the position
of each particle is determined completely by its three cartesian coordinates

q l a ~ ~ 1,2,3), f 

4u~ point of departure is the common theory of equilibrium states based on the

Gibbs canonical distribution ’, and in the presentation of the subject we follows

the works   g 2 p 3  .

Introduce the probability distribution functions for the positions of all

particles with the density

where

is the potential energy of the system,
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is the conf irrational integral. T:1e physical system considered is a Gibbs canonical

ensemble. Introduce now a sequence of distribution functions [1]

As usual, V~ is assumed to be a sphere whose volume is also denoted by vsl,

where v is the volume per is the densi ty of particles. The principal
v

object of investigation in statistical physics is presented by the limiting functions

In the limit of an infinite volume tl1e density 1 is assumed to ioe constant. 
v

studying the problem associated with the limiting procedure mentioned above we

employ the set of equations which tbe limiting functions 9 - - - 9CJ.S Vv) 
Below we shall derive some relations wl1ich are necessary for obtaining the appropriate

equations.

2. Consider the expression and transform it as follows

vl11ere

Substituting (2.1) into (1.1) one obtains
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where

Introduce also the distribution functions

and quantities

with

in terms of which ~3.1 ~ is written as

Similarly, for the functions one obtains the relations
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3. Suppose for a while that the limits

exist in some sense and 1irite the relations (5.1) and (6.1) after performing the
limit in a formal way. It is easily seen that the relations (5~1) become

(lIe do not indicate the integration limits when the integration is carried out over
the whole three-dimensional space). Aiter taking the limit the relation (6.1) will
be of the form
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Should

be valid for tiie relations ~8.~ ~ ~ t9.~ ~ will become the well-known

Kirkwood-Salsburg equations [5]

To complete (11.1) i’ox tl1e case of S = 1 , we put It follows from
0

the definitions that all are symmetric functions of variables 

4. Me are now in a position to discuses the problems arising in the mathematical

description of the system in equilibrium state. To present a complete justification
for the mathematical description of such systems 9 based on the Gibbs canonical

distribution and using sequences of d.istribution functions, we think it necessary
to solve the following three problema :

1) to prove that the limits (’~.~ ~ exist in a certain sense,

2) to prove that the limiting distribution functions do not depend on the imy
of taking the limit (that is, 9 (10.1) holds

3) to prove that for sufficiently small densities 1 there exists a unique
v

solution of the Kirkwood’-Salsburg set oxn equations.

B’!e shall solve the above mentioned problems in the following order : first,

problem 3 - ancl then 1 and 2.

2. The existence theorem for the solution

oi the Kirkwood-Salsburg set of

equations

1. In the present section we shall consider the Kirkwood-Salsburg equations

(11.1) for the distribution functions and prove that for suffi-

ciently small densities 1 t:1BY possess a unique solution.v 
.. 

L

vie have the set of equations
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The solution of tlais set will be determined in a Banach space [2,3,43 which is
introduced as follows. Consider the linear space whose elements are tile columns

of measurable bounded functions 
i

with ordinary operations of addition and multiplication by a number. This linear

space becomes a Banach space B for the following norm of the element

where A is a positive constant which is to be determined.

In [2,31 the equivalent norm

was introduced, which was more convenient when studying the Mayer-Montroll equations

for the distribution functions ~~ ~ ~ 9 ~. 23).

The operator li is formally defined in the space B through the relation

The set of equations (1 .2) can now be written down in the form

where
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Below We shall prove the existence and uniqueness of the solution of the opera-

tor equation (4.2) in the space B under some assumptions concerning the potential
and for sufficiently small 1.

it is known, in order that equation (4.2) possess a unique solution in B

it is sufficient that the operator a(v)K be defined in the whole space

B and its norm be less that unity. Tlae solution F is represented by the series

wl1icl’l converges in the norm of the space B . It is easily seen [2,3J tl1at these

conditions are valid for sufficiently small v in the case of non-negative potential
v

wl1ic11 is ass1..l11led to be a real-valued function in E3 such 
’A

’I

shall assume first that a(v) and v are independent (generally speaking,
complex) parameters with

and evaluate the norm of the operator a(v)I( .

It should be noted that the condition ~(q) ~ 0 implies that

Then it follows from (3.2) that

Hence,
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If now we put ii = 2e and take into account the inequalities (8.2) and (9.2), we

get 0-T

At the same time vre see that the operator K is defined in the whole space B .

It remains to ci1eck only the condition The latter immediately follows from

the definitions (5.2) and (2.2) since

It is tlms shown that 0 and with the assumptions (7.2) and (8.2), the

Kirkwood-Salsburg set of equations (1.2) has a unique solution in a neighbourhood of
the = 0 ,

The method described above was developed by two of the authors in 1949 [2,3].
We shall show now that it may also be applied to the more general case when the

requirement that the potential C2(q) be nonnegative is replaced by the following

Ruellets condition [4] s

There exists_ a positive constant Ea such that for all S and an 

the following inequality is valid :

From this it results that for any point (1J., ... ,1S) belonging to 11 3s
there exists at least one index i such that

In view of the symmetry of the functions one may, 9 after Ruelle [4], wri te

equations (1.2) in a symmetric form. Let TT4 denote the operator acting on the
»

through the formula

It follows from (14.2) that there exist measurable functions vi (q1, ...,qS), invar-

iant under t:1e rotation group, leaving the values in the interval [0,1], and such
that

with the inequality (14.2) 0eing valid if ~~ . ~~1 9... ~q-;~ ~ 0 . The set of functions

B?. can be considered as the partition of the unity.
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Now we define the operator n by the relation

In view of the symmetry of the functions equations (1.2 ~
may be represented in the following form

With the assumption that ~(q) obeys the conditions (8.2) and ~13.2~ p we shall
establish the existence and uniqueness of the solution to the set (15.2) for suffi-

ciently small 1 e As above, a(v) and v are considered as independent complex

parameters and the inequality (8.2) is assumed to be valid.

The set ~~ 5,2 ~ may be written in the form (4.2) provided that the operator IC

is now determined by the symmetrized relations (3.2) : Ida

I. The se t of equations (15.2) ossesses a unique solution in the Banach
space B for .

This solution is a holamorphic function of a(v) in the domain (1 7.2 ) .

To prove the first assertion, it suffices to show that with the conditions

(17.2) the norm of the operator K defined i~y (16,2 ~ is less than 1.

Bearing in mind that the estimate (10.2) is now replaced by

which follows from (14.2), we obtain from (15.2) :
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Putting A = 2e2i&#x3E;+1 and taking into account (17.2) we obtain from (18.2) the
estimate required :

We have thus proved the existence and uniqueness of the solution of the set

(15.2), or, which is the same of the equation (4.2) in the domain (17.2). This

solution is a holomorphic function of a(v) and v in this domain since it may be

represented by the series (6.2) which converges uniformly with regard to a(v) and

v in each closed domain contained ~x~ ~ ~ 7.2 ~ .

4. Timing now to our case of interest of the limiting distribution functions

we have to consider v as a real (positive) variable and a(v)
as a function of v . Let us show that in this case the condition )a(v) I  2 of

(17.2) may be omitted. To this end, we shall find the estimate for a (v)
I. The numbers a (v) obey the ,

[3]. Consider the quantity

lie shall use the following elementary inequality

which holds not only for our special but also for arbitrary

quantities a.: such that 1+a &#x3E; 0 .
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B--.f use of (21.2) one obtains from (20.2) the following estimate

whence for N

Since, by definition;, a.(v) == lim for any z , then aD (v) also satisfy

the inequality (19.2). ~ N-~oo 
~ N

From Lemma lit results for

the inequality ar(v)  2 holds, that is , the second condition of (17.2) implies
the first one.

Fiiially, consider the character of the density dependence of the limiting
distribution functions.

THEOREM II. The distribution functions F S (q, fqs iv) are holomor- h-ic with respect
to 1 in a neighbourhood of the zero point.

Proof [3]. By Theorem I, are holomorphic functions of a(v)
and 1 in the domain (17.2), tInt --I*s, by virtue of Lemma I, for

v

It is thus sufficient to show that a(v) is a holomorphic function of 1 in some

neighbourhood of the point 1 = 0 . 
The solution of Equation (4.2) is translation-invariant since each term of the

series (6.2) possesses tiis property. Therefore, F1 (q, v) = it will be

demonstrated in Section 4,

whence
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Now, by making use of the Kirkwood-Salsburg equations, we obtain

where the function x is holomorphic in a and § in the domain (17.2). Let us

show that in some neighbourhood 0:( the 0 for a’ /  2 the partial
v I ,

The latter condition implies that the relation (23.2) can be
, ~a

solved with respect to a and the function a(v) is holomorphic with respect to

2013 in a neighbourhood of the point 1 = 0 .
v 

o 
v

n....., .. ,
The following expression is obtained for da :

It follows from (28.2) that dX = 1 at the point 1 = 0 and, as a consequence,
a 

p 
v

§j / 0 in some neighbourhood of the zero point. This completes the proof.
a

3. Existence of the limiting distribution functions

1~ In the present section we are studying the problem I stated in Section 1.

When solving this problem, it is convenient to use the relations (5*1)y (6.1) which

are the basis for deriving the Kirkwood-Salsburg equations.

Consider thus the relations
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which follow from (6.1) ) due to the functions FS(N-l(q1,...,qs, VN) being symnetric
(see Sec. 2, (15.2)). These relations will 0e assumed valid in the whole 3S-dimen-
sional Euclidean space The functions are defined in

the whole by the formulas (l.1)y (4.1).

The following notations are introduced

Let KS(N-l) the opera tor acting in the Banach space B on an arbitrary
column f by the formulas

Here the expressions are also defined in the whole E 3S -b
Denote by the following operator 

’

Uith the operators 1 ~’~~’~~ ~ and columns relations (1.3) are represented
in the following compact form
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2. shall investigate now the properties of the operator 
°

One can show that the norms of the operators K - l) and s -l) (1  S  N-,,
for v  2e2-o+l I are less unity, ||K(N-2)||  k  1, I , 1 -1, - S (N 5- k  1 The

argument is similar to that employed i11 the proof of Theorem I if one takes into

account that the quantities rr*" aN-, (VTT) obey the inequalities

1  1
 21 ’a The number A appearing in the norm definition is subjected to the

same restriction as in Section 2. The positive sequences

are bounded i above ’oy 2 f -- 1-  1 *) Therefore, using the dia,-- process,are bounded from above by 2 v  2I. *) Therefore, using the diagonal process,
one can separate any finite number l+1 of converging subsequences

whose limits as N ft are .eoee by a¡ (v) , 0 .. ,a , ( v) j3

N 
shall see below (Section 4) tzat for each sequence 

N-l a N-l (VN) there exists only one limiting point, that is, the sequences

themselves converge as N -&#x3E; oo. Moreover, it will be shown that a (v) = a1 (v) = ...

, * . = a1(v). For the time being, we shall mean under the sequences
»

some of their converging subsequences and the limiting process will be performed

over these sU0sequences as N - aJ ~ although we shall write FI -* oo ,

Let denote the operator acting on an arbitrary element f of the Banach

space B through the formula
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(R) -Lbe the characteristic function of the sphere VN with radius

and the origin as a centre and VI~ the sphere with radius and characteristic

The function r N is required to possess the following proper-
ties s as as 

Let T (R-r) be the operator acting on an arbitrary element feB by the formula

One more property of the operator KS(N-l) is given by the following lemma.One more property of the operator s is given by the following

If then tlw sequence of operators

l being fixed, converges 9 relative to the norm to zero as N -&#x3E; oo.

Proof. Consider .for any f expression
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where N0 is as yet an arbitrary finite number.

Let D, y, denote the last three terms respectively. The following estimates

hold 
-

where

Being the remainder of the absolutely converging series, the quantity E1 (No)
can be made arbitrarily small for sufficiently large but finite NO independently
of N. The quantity E2 (rN) can br made arbitrarily small for sufficiently large
N due to the integral .

being absolutely convergent. The difference of the first two expressions, denoted

by obeys the following estimate :
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with E 3 (N) being arbitrarily for large enough N since

(here No is a fixed finite number),

Thus we obtain finally

which is equivalent to the following estimate

This immediately implies

which means that the sequence of converges to

zero as N - m relative to the norm. Lemma is proved.

Let B 
III 

denote the space consisting of columns f with fn+1 = fn+2 = ... = Cn 
- 

n+ 

and with the norm given by

Consider the operator into B :

The norms of these operators are less than unity.

The operators

are the sums of a finite number of operators

which converge to zero relative to the norm. Therefore the operators
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also converge to zero relative to the norm. It is easily seen that tl’1e following

estimate is valid :

Below we shall also Yieed the following inequalities

where n, j are integers, j  11.. These inequalities are verified in the same

manner as ~5.3 ~ in Lemma 2.

Remark. The operator a.e(v)K) does not converge to

zero relative to the norm. tiae operator ’1’(R-r)K(N-t) acts from B into

and T R ~ = 0 for tl1.e elements with fS = 0 for S 9 N-Q .

Therefore, for any arbitrarily large N , 9 there is always an element f such that

0 a~ (v)Il£ / 0 , and norm of 

i s finite.

3. Consider now the relation (43)* Applying it repeatedly we get

where the operator K (N-l-j) acts a£-ler the ope:rator X (N-,e -j -1 and, according
to the definition

%~~ Tale columns differ from each otl1.er for I~ ~ Nz ,
by definition.
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We have further

where use has been made of the following formulas

It follows from (S .3) 9 (9.3) that for large enough N (which will be assumed in
what follows) the inequality  1 holds,

Bearing in mind  1 , 1 IF li 1   1 we obtain

from (7.3) the following estimate for I

The latter inequalibj implies that the columns ~~~’~~Q ~ belong to the Banach space

B for

and their norms are bounded uniformly with regard to N and Z .
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Consider the columns

which appear when iterating the relations (see (9.1))

and belong to the space B as yt follows from the estimate

THEOREM III. For any f ixed - o and sequence

tends to zero in the space B as 1B1 -7 00 .

Proof. Let us represent the difference in the form

n
. 

The norm of the column does not exceed 2- k - and can be made arbitrarily

small for large enough 1’1. By virtue of the definitions of the operators X(N-.e) 11
X and the columns 9 one has

The inequalities ~5.3 ~ , ~~.3 ~ imply
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Hence

It is easily verified that

Using the above inequalities we obtain

The filial estimate is given by

Choosing n and N sufficiently large, one can make the right ’Land side of the

inequality (20.3) arbitrarily small. This means that
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Theorem is proved.

As a consequence of Theorem III we obtain that

4. Uniqueness of the limiting distribution functions

1. In this Section we shall prove the uniqueness of the limiting distribution

rune ti ons, i . e., we shall prove that F~ = F and

THEOREM IV. For small the limiting distribution functions are identicalv 

and the relations (1.4) are valid.

Proof. According to (12.3) we have

Consider the difference

It follows from (3.4) 

Below we shall establish the following estimate:

Bearing in mind (5.4) one gets from (4-4)



70

According to Lemma 1, the quantities a0(v) obey the inequality

It follows from (13.3) that for the norm of Fl+2 the following estimate holds

Choosing A sufficiently large , one can easily show that for small enough 1
v

the quantity 6 (v) in (6.4) can be made less than unity. The inequality (6.4)
yields

Since 6(v)  1 and the inequality (8.4) is valid for any I , the norm

is arbitrarily small, that is, = Fl+1 and, in general, F = I? 1 I? a

= ... = Fl+1 = ... .
Now the inequalities (5-4) imply that for small the quantities a (V)v l

and are identical, and, in general, a(v) = a1(v) = &#x3E; ( v) ....

Theorem is proved.

It follows from Theorem IV that the column F satisfies the Kirkwood-Salsburg

equation

2. The functions satisfy the relations

Let us take tiae limit m (9.4) and. show that the following relation holds
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To this end, consider the identity

and evaluate the first and the second terms of the right-hand side of (11.4). The

second term obey the following estimate

The inequality above implies that the second term of ~~ 1,4~ tends to zero as N 

The first term of ~~ 1.4~ obeys the following estimate

The relation (10.4) is thus proved. As it is easily seen, the functions

are translation-invariant and therefore the functions are

constant. The relation (10.4) implies that 4 = 1 , l &#x3E; 0 .

Proceed now to proving the inequality (5.4). From (12.3) it follows that

Using also the formula
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we obtain the required estimate (5.4) :

3 0 B’le shall show now that the sequence the unique limiting point.

Indeed, if there Bvere two subsequences converging to a(v) and al (v) respectively,
than corresponding to them there would oe two columns F and F’ r obeying, by

Theorem IV, the equations

Bearing in mind that F, (qjv) = 1 and- = 1 , we obtain for the difference

a(v) - a~ (v) the following estimate ’A

This, in the same way as in Theorem IV, y implies tlie validity of the inequality

where 6(v)  1 for sufficiently small 1. It follows from (13-4) that F z
v

and from (15.4) a(v) = a1(v).

Bearing this in mind, we finally obtain from (10.4)

The uniqueness of the limiting distribution functions being taken into account,

Theorem III (Section 3) can oe formulated as follows.

For any fixed j&#x26; and 1  1 sequence
v 2,"

tends to zero as N -&#x3E; oo -uniformly with regard to q1,...,qS. Observe that the

limiting distribution functions are holomorphic functions in some neighbourhood
v 

2013==0 .
v 

.
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