SÉMINAIRE JEAN LERAY. SUR LES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

MARC DURAND

Équations de convolution elliptiques dans un domaine borné d'après M. I. Višhik et G. I. Eskin

Séminaire Jean Leray, nº 3 (1966-1967), p. 1-26

http://www.numdam.org/item?id=SJL_1966-1967___3_1_0

© Séminaire Jean Leray (Collège de France, Paris), 1966-1967, tous droits réservés.

L'accès aux archives de la collection « Séminaire Jean Leray » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉQUATIONS DE CONVOLUTION ELLIPTIQUES DANS UN DOMAINE BORNÉ D'APRÈS M.I. VIŠHIK ET G.I. ESKIN

par Marc DURAND

Table des matières

	Page
Introduction	. 1
Définitions et notations	1
N° 1 Factorisation des fonctions homogènes	3
\mathbb{N}° 2 Opérateurs de convolution avec symbole constant dans \mathbb{R}^{n}	
et R ^N	. 3
N° 3 Opérateurs de convolution réguliers dans R ⁿ ₊	5
N° 4 Etude du problème général à la frontière	8
N° 5 Inégalité <u>a priori</u> et régularisateur à droite	12
\mathbb{N}° 6 Opérateurs avec symbole variable dans \mathbb{R}^{n} et dans \mathbb{R}^{n}_{+}	13
\mathbb{N}° 7 Régularisateur dans \mathbb{R}^{n}_{+} et dans \mathbb{R}^{n}	16
N° 8 Opérateurs dans une région bornée	18
\mathbb{N}° 9 Equations avec potentiels dans \mathbb{R}^{n}_{+} lorsque $\varkappa < 0$	21
N°10 Compléments	23
Bibliographie	. 26

ÉQUATIONS DE CONVOLUTION ELLIPTIQUES DANS UN DOMAINE BORNÉ D'APRÈS M.I. VIŠHIK ET G.I. ESKIN

par Marc DURAND

Introduction.

Nous nous proposons de donner l'essentiel des résultats de M.I. Višhik et G.I. Eskin sur les opérateurs intégraux-singuliers elliptiques avec problèmes au bord. Après avoir défini les principaux espaces nous donnerons dans le n° 1 un théorème de factorisation du symbole, analogue au théorème de factorisation connu dans le cas d'un opérateur différentiel elliptique. Dans le n° 2 nous définirons les opérateurs de convolution envisagés. Nous les définirons en nous limitant au cas du demi-espace et des coefficients constants. Nous étudierons des conditions de régularité dans le n° 3 et nous ferons l'étude du problème général à la frontière dans le N° 4. Dans le n° 5 nous donnerons une inégalité a priori et la construction d'un inverse à droite (défini à un opérateur compact près). Dans les n° 6 et 7 nous envisagerons le cas des coefficients variables et dans le n° 8 nous considèrerons un domaine borné au lieu du demi-espace. Dans le n° 9 nous traiterons le cas où l'équation introduit des potentiels. Enfin dans le n° 10 nous donnerons quelques compléments : le cas où les conditions de régularité du n° 3 ne sont pas remplies et celui où le degré d'homogénéité des facteurs définis dans le théorème de factorisation du n° 1 est variable, et enfin le cas des opérateurs paraboliques.

Presque toujours nous nous contenterons de présenter les résultats sans en donner les démonstrations qu'on trouvera pour la plupart dans [1].

Définitions et notations.

A) Etant donnée une fonction f(x), on notera sa transformée de Fourier

$$\tilde{f}(\xi) = \mathcal{F}f(x) = \int f(x)e^{ix\xi}dx$$
.

B) Nous utiliserons les espaces de Sobolev ordinaires $H_s(\mathbb{R}^n)$ avec leur norme habituelle et nous noterons $\widetilde{H}_s(\mathbb{R}^n)$ l'espace des transformées de Fourier des éléments de $H_s(\mathbb{R}^n)$. La norme dans $\widetilde{H}_s(\mathbb{R}^n)$ est

$$\|\mathbf{\tilde{f}}\|_{\mathbf{c}} = \|\mathbf{f}\|_{\mathbf{c}}$$
.

C) Nous définissons

$$\mathring{H}_{\mathbf{s}}^{+} = \{ \mathbf{f} \in \mathcal{H}_{\mathbf{s}}(\mathbb{R}^{n}); \text{ supp } \mathbf{f} \subset \mathbb{R}_{+}^{n} \} \qquad (\mathbb{R}_{+}^{n} = \{ \mathbf{x}; \mathbf{x}_{n} > 0 \}).$$

On obtient de même $\overset{\circ}{H_s}$ et les espaces $\overset{\circ}{H_s}$, $\overset{\circ}{H_s}$. Remarquons que les éléments $\tilde{\mathbf{f}}_+(\xi)$ de $\overset{\circ}{H_s}$ ont un prolongement analytique dans le demi-espace $\tau = \text{Im }(\xi_n) > 0$

$$(\xi = (\xi_1, \dots, \xi_n) = (\xi^1, \xi_n)) \quad \text{et}$$

$$\int (1+|\xi|^2 + \tau^2)^s |\tilde{\mathbf{f}}_+(\xi^1, \xi_n + i\tau)|^2 d\xi^1 d\xi_n \leq C \quad \text{pour } \tau \geq 0,$$

$$C \quad \text{indépendant de } \tau.$$

D) Etant donnée la fonction

$$\theta(x_n) = \begin{cases} 1 & x_n > 0 \\ 0 & x_n \leq 0 \end{cases}$$

nous définissons dans H_o l'opérateur Θ^+ : $\Theta^+f = \theta(x)f(x)$. Il applique continuement H_o dans \mathring{H}_o^+ . Par transformation de Fourier nous définissons alors π^+ : $\widetilde{H}_o \to \overset{\circ}{H}_o^+$. Nous avons la relation

(1)
$$\pi^{+}\tilde{\mathbf{f}}(\xi) = \frac{\mathbf{i}}{2\pi} \int_{-\infty}^{+\infty} \frac{\tilde{\mathbf{f}}(\xi^{\dagger}, \eta_{n})}{\xi_{n} + \mathbf{i} \circ - \eta_{n}} = \frac{\mathbf{i}}{2\pi} \text{ v.p. } \int_{-\infty}^{+\infty} \frac{\tilde{\mathbf{f}}(\xi^{\dagger}, \eta_{n})}{\xi_{n} - \eta_{n}} d\eta_{n} + \frac{1}{2}\tilde{\mathbf{f}}(\xi^{\dagger}, \xi_{n}).$$

On peut montrer que pour $\left|\delta\right|<\frac{1}{2}$, π^+ est continu de \widetilde{H}_{δ} dans \widetilde{H}_{δ}^+ et par transformation inverse de Fourier Θ^+ est continu de H_{δ} dans H_{δ}^+ . On définit de façon analogue Θ^- et π^- .

- E) Par définition $\mathbb{H}_{s}(\mathbb{R}^{n}_{+})$ est l'ensemble des f définies sur \mathbb{R}^{n}_{+} qui peuvent se prolonger en $\mathscr{L}f\in\mathbb{H}_{s}(\mathbb{R}^{n})$.
- Si l'on définit $\xi_+ = \xi_n + i |\xi^*|$ et $\xi_- = \xi_n i |\xi^*|$ nous avons deux normes équivalentes sur $H_s(\mathbb{R}^n_+)$:

$$\|\mathbf{f}\|_{\mathbf{S}}^{+} = \inf \|\ell\mathbf{f}\|_{\mathbf{S}} \quad (\inf \text{ pour tous les prolongements } \ell\mathbf{f}).$$

$$\|\mathbf{f}\|_{\mathbf{S}}^{+} = \|\pi^{+}(\xi_{-}-\mathbf{i})^{\mathbf{S}}\widetilde{\ell}\mathbf{f}(\xi)\|_{\mathbf{O}}$$

où la dernière norme est indépendante du prolongement ℓf et où on choisit Arg (ξ_-i) entre $-\pi$ et 0 pour déterminer $(\xi_-i)^s$.

- F) Nous introduisons aussi l'opérateur de restriction à \mathbb{R}^n_+ , P^+_- . Il est continu de $H_s(\mathbb{R}^n)$ sur $H_s(\mathbb{R}^n_+)$.
- G) Par définition. $H_S^+ = \overset{\circ}{H}_S^+$ pour $s < \frac{1}{2}$. Si $s \ge \frac{1}{2}$ les fonctions de H_S^+ sont les prolongements des fonctions de $H_S^-(\mathbb{R}^n_+)$ par 0 dans $\overline{\mathbb{R}^n}$. Si $f_+ \in H_S^+$ on définit sa norme

$$\|\mathbf{f}_{+}\|_{s}^{+} = \|\mathbf{f}_{+}\|_{\mathbf{H}_{s}(\mathbb{R}_{+}^{n})}$$
 .

 π^+ défini par l'intégrale (1) est continu de \widetilde{H}_s dans \widetilde{H}_s^+ pour $s \ge \frac{1}{2}$. Par transformation inverse de Fourier Θ^+ est continu de H_s dans H_s^+ .

Dans toute la suite C désignera diverses constantes.

N°1. Factorisation des fonctions homogènes.

Les opérateurs que nous étudierons à partir du paragraphe suivant auront des noyaux A(x) homogènes ou presque homogènes. Nous allons définir un certain nombre de classes de fonctions $\widetilde{A}(\xi)$ qui seront les classes des symboles des opérateurs.

- A) $\underline{\sigma}_{\underline{\alpha}}$ est la classe des fonctions $\widetilde{A}(\xi^{\dagger},\xi_{n})$ continues pour $\xi = (\xi^{\dagger},\xi_{n}) \neq 0$ et positivement homogènes de degré α réel, $\alpha = \operatorname{ord} \widetilde{A}(\xi)$.
- B) $\underline{\sigma}_{\underline{\alpha}}^+$ est la classe des fonctions $\widetilde{A}(\xi^!,\xi_n)\epsilon$ $\underline{\sigma}_{\alpha}$ qui pour chaque $\xi^!$ admettent un prolongement analytique dans le demi-espace $\operatorname{Im} \xi_n > 0$, le prolongement étant lui aussi positivement homogène de degré α .
- C) $\mathcal{E}_{\underline{\alpha}}$ est la classe des fonctions $\widetilde{A}(\xi)$ de $\mathcal{O}_{\underline{\alpha}}$ telles que $\widetilde{A}(\xi) \neq 0$ si $\xi \neq 0$ et telles que pour $\xi' \neq 0$ $\widetilde{A}(\xi)$ ait des dérivées premières continues, bornées sur $\{\xi; |\xi| = 1, \, \xi' \neq 0\}$. On dira que ces fonctions définissent un opérateur elliptique.
- D) Y est la classe des fonctions $\widetilde{B}(\xi)$ continues pour $\xi\neq 0$ et telles que $\left|\widetilde{B}(\xi)\right| \leq \overline{C(1+|\xi|)}^{\alpha}$.

On définit de façon analogue $\,\sigma_{\alpha}^{-}\,$, $\,{\rm Y}_{\alpha}^{+}\,$ et $\,{\rm Y}_{\alpha}^{-}\,$.

Nous dirons que $\tilde{A}(\xi)$ admet une factorisation en ξ_n si on peut écrire (avec $\alpha = \operatorname{ord} \tilde{A}(\xi)$)

$$\widetilde{A}(\xi) = \widetilde{A}_{+}(\xi)\widetilde{A}_{-}(\xi)$$

où

$$\tilde{A}_{+}(\xi) \in \mathcal{O}_{\kappa}^{+}$$
, $\tilde{A}_{+}(\xi) \neq 0$ pour $|\xi| > 0$ et $\text{Im } \xi_{n} \ge 0$

$$\tilde{A}_{n}(\xi) \in \mathfrak{G}_{n-n}^{-}$$
, $\tilde{A}_{n}(\xi) \neq 0$ pour $|\xi| > 0$ et $\text{Im } \xi_{n} \leq 0$,

 κ étant un nombre réel dépendant de \tilde{A} .

THÉORÈME 1. Si $\tilde{\mathbb{A}}(\xi^*,\xi_n)\in\mathcal{E}_{\alpha}$, alors $\tilde{\mathbb{A}}(\xi^*,\xi_n)$ admet une factorisation en ξ_n , unique à une constante près si n>1.

Remarque.

En fait si n = 2 il faut ajouter une condition un peu plus restrictive.

- N°2. Opérateurs de convolution avec symbole constant dans \mathbb{R}^n et dans \mathbb{R}^n .
- A) Dans \mathbb{R}^n . Si $u(x)_{\xi}H_s$ est à support compact, nous définissons l'opérateur de convolution A par la relation : $\underline{Au = \mathcal{F}^{-1}\left[\widetilde{A}(\xi)\widetilde{u}(\xi)\right] = A(x) * u(x)}$.
- Si $\widetilde{\mathbb{A}}(\xi) \in {}^{\mathfrak{G}}_{\alpha}$ et si α est un entier \leq -n, on définit $\mathscr{F}^{-1}\widetilde{\mathbb{A}}(\xi)$ par régularisation en utilisant les parties finies.

Nous appelons $\Omega_A^{\mathbf{S}}$ le sous-espace des $\mathfrak{u} \in H_{\mathbf{S}}$ telles que $\widetilde{A}(\xi)\widetilde{\mathfrak{u}}(\xi) \in \widetilde{H}_{\mathbf{S} \to \alpha}$, et $\widetilde{\Omega}_A^{\mathbf{S}}$ l'espace de ces $\widetilde{\mathfrak{u}}$. Par densité on peut définir A sur $H_{\mathbf{S}} \cap \Omega_A^{\mathbf{S}}$. Remarquons que si $\alpha \geq 0$ ou $\widetilde{A}(\xi) \in Y_{\alpha}$, alors $H_{\mathbf{S}} \cap \Omega_A^{\mathbf{S}} = H_{\mathbf{S}}$.

On appelle équation de convolution dans R une équation de la forme

$$A(x) * u(x) = f(x)$$

équivalente à

$$\widetilde{A}(\xi)\widetilde{u}(\xi) = \widetilde{f}(\xi)$$
.

B) Dans \mathbb{R}^n_+ . Nous définissons l'opérateur de convolution dans \mathbb{R}^n_+ par la relation

$$P^{+}Au_{+} = P^{+}[A(x) * u_{+}(x)]$$

où P est l'opérateur de restriction à \mathbb{R}^n_+ et $u_+ \epsilon \overset{\bullet}{H}^+_S \cap \Omega^S_A$.

Nous allons étudier l'équation de convolution dans \mathbb{R}^n_+ :

$$P^{+}Au_{+} = f$$

où

$$\mathbf{f} \in \mathbb{H}_{\mathbf{S} = \alpha}(\mathbb{R}^n)$$
, $\mathbf{u}_{\mathbf{f}} \in \mathring{\mathbb{H}}^+_{\mathbf{S}} \cap \Omega^{\mathbf{S}}_{\mathbf{A}}$, $\widetilde{\mathbf{A}}(\xi) \in \mathcal{E}_{\alpha}$.

Soit $\ell f(x) \in \mathbb{H}_{s-\alpha}$ un prolongement de f(x) à \mathbb{R}^n , (2) est équivalente à l'équation

(3) $\operatorname{Au}_{+} = \widetilde{\ell} \, \mathbf{f} + \widetilde{\mathbf{u}}_{-} \quad \text{où} \quad \mathbf{u}_{-} \in \mathbb{H}_{\mathbf{s}-\alpha} .$

Nous appliquons la transformée de Fourier et nous décomposons A ; nous obtenons

$$\widetilde{A}_{+}(\xi)\widetilde{A}_{-}(\xi)\widetilde{u}_{+}(\xi) = \widetilde{\ell}f(\xi) + u_{-}(\xi)$$
 où $\widetilde{A}_{+}\epsilon\sigma_{\kappa}^{+}$

Supposons que s = μ . Nous supposons que la solution u_{+} existe dans H_{μ}^{+} . Alors

$$\widetilde{A}_{+}(\xi)\widetilde{u}_{+}(\xi) = \frac{\widetilde{lf}(\xi)}{\widetilde{A}_{-}(\xi)} + \frac{\widetilde{u}_{-}(\xi)}{\widetilde{A}_{-}(\xi)}$$

et pour presque tout ξ^{\dagger} (soit R[†] l'ensemble de ces ξ^{\dagger})

$$\frac{\widetilde{\ell}f(\xi)}{\widetilde{A}_{-}(\xi)} \in \widetilde{H}_{o}(\mathbb{R}^{1}) .$$

Nous supposons dans la suite que $\ \xi^{\, \mbox{\scriptsize !}} \epsilon R^{\, \mbox{\scriptsize !}}$.

En utilisant la décomposition

$$\frac{\widetilde{\mathcal{L}}\mathbf{f}(\xi)}{\widetilde{\mathbf{A}}_{-}(\xi)} = \pi^{+} \frac{\widetilde{\mathcal{L}}\mathbf{f}(\xi)}{\widetilde{\mathbf{A}}_{-}(\xi)} + \pi^{-} \frac{\widetilde{\mathcal{L}}\mathbf{f}(\xi)}{\widetilde{\mathbf{A}}_{-}(\xi)}$$

où les deux termes de droite sont respectivement dans $\tilde{\mathbb{H}}_{o}^{+}(\mathbb{R}^{1})$ et $\tilde{\mathbb{H}}_{o}^{-}$ nous obtenons

$$\widetilde{A}_{+}(\xi)\widetilde{u}(\xi) - \pi^{+} \frac{\widetilde{\chi}f(\xi)}{\widetilde{A}_{-}(\xi)} = \pi^{-} \frac{\widetilde{\chi}f(\xi)}{\widetilde{A}_{-}(\xi)} + \frac{\widetilde{u}_{-}(\xi)}{\widetilde{A}_{-}(\xi)} = P(\xi',\xi_{n})$$

où $P(\xi^{\dag},\xi_n)$ est ainsi une fonction à croissance polynômiale en ξ_n , prolongeable analytiquement aux deux demi-espaces $\text{Im }\xi_n>0$ et $\text{Im }\xi_n<0$. Par le théorème de Liouville, $P(\xi^{\dag},\xi_n)$ est un polynôme en ξ_n et comme $P(\xi^{\dag},\xi_n)\in \widetilde{H}_o(\mathbb{R}^1)$, $P(\xi^{\dag},\xi_n)=0$.

Nous obtenons donc la solution unique dans $\overset{\mathfrak{d}_{+}}{H}_{\omega}$

$$\widetilde{\mathbf{u}}_{+}(\xi) = \frac{1}{\widetilde{\mathbf{A}}_{+}(\xi)} \, \pi^{+} \, \frac{\widetilde{2}\mathbf{f}(\xi)}{\widetilde{\mathbf{A}}_{-}(\xi)} \, , \quad \mathbf{f}(\mathbf{x}) \in \mathbb{H}_{\mathcal{A} \to \mathcal{A}}(\mathbb{R}^{n}_{+}) \, .$$

Supposons que $s = n - \lambda + \delta$ où ℓ est entier, $|\delta| < \frac{1}{2}$.

Nous supposons que la solution u_+ existe dans $H_S^+ \cap \Omega_A^S$ et que $f(x) \in H_{S-\alpha}(\mathbb{R}^n)$. Alors pour $\xi^! \in \mathbb{R}^!$, $P(\xi^!, \xi_n) \in H_{-\ell+\delta}(\mathbb{R}^1)$.

Si $\lambda \leq 0$, il y a unicité (voir n° 10).

Si $\ell > 0$,

$$P(\xi^{t},\xi_{n}) = \sum_{p=1}^{\ell} c_{p}(\xi^{t})\xi_{n}^{p-1}$$

et la solution $\mathbf{u}_{_{+}}$, qui dépend de $\,\ell\,$ fonctions arbitraires, est déterminée par

(4)
$$\widetilde{u}_{+}(\xi) = \frac{1}{\widetilde{A}_{+}(\xi)} \pi^{+} \frac{\widetilde{\lambda}f(\xi)}{\widetilde{A}_{-}(\xi)} + \sum_{p=1}^{\ell} \frac{c_{p}(\xi^{i})\xi_{n}^{p-1}}{\widetilde{A}_{+}(\xi)}$$

N° 3. Opérateurs de convolution réguliers dans \mathbb{R}^n_+ .

Nous supposons dans la suite que $u_+\epsilon H_s^+\cap\Omega_A^s$ et non plus $H_s^+\cap\Omega_A^s$. DÉFINITION. L'opérateur A est "régulier" dans \mathbb{R}^n_+ si, pour tout $s\geq 0$ et $u_+\epsilon$ $H_s^+\cap\Omega_A^s$,

$$P^{+}Au_{+}\epsilon H_{S-\alpha}(\mathbb{R}^{n}_{+})$$
.

L'objet de ce paragraphe est de donner des conditions pour qu'un opérateur soit régulier. Pour cela nous définissons deux classes de symboles :

Classe D_{α} . $\widetilde{A}(\xi) \in D_{\alpha}$ si $\widetilde{A}(\xi) \in \mathcal{O}_{\alpha}$ et si pour tout $s \geq -\alpha$,

(5)
$$\xi_{\underline{z}}^{\underline{s}} \widetilde{A}(\xi) = \widetilde{A}_{\underline{z}}(\xi) + \widetilde{R}(\xi)$$

où

$$\widetilde{A}_{\alpha}(\xi) \in \mathcal{O}_{\alpha+s}^{-}$$
 et $|\widetilde{R}(\xi)| \leq c \frac{|\xi|^{1/s+\alpha+1}}{|\xi|^{1/s+\beta}}$

 $\xi_{\underline{\ }}^{\mathbf{S}}$ étant défini en prenant par exemple $-\pi \leq \arg \xi_{\underline{\ }} \leq 0$.

Classe \hat{D}_{α} . $\tilde{A}(\xi) \in \hat{D}_{\alpha}$ si $\tilde{A}(\xi) \in Y_{\alpha}$ et si pour tout $s \ge -\alpha$

(6)
$$(\xi_{-} - i)^{s} \widetilde{A}(\xi) = \widetilde{A}_{-}(\xi) + \widetilde{R}(\xi)$$

où

$$\tilde{A}_{(\xi)} \in Y_{\alpha+s}$$

et

$$|\widetilde{R}(\xi)| \le c \frac{(|\xi^{\dagger}|+1)^{s+\alpha+1}}{|\xi^{\dagger}|+|\xi_n|+1}$$

 $(\xi_- - i)^{s-\alpha}$ étant défini en prenant par exemple $-\pi < Arg(\xi_- - i) < 0$.

Nous allons définir maintenant des fonctions permettant de passer des classes \hat{D}_{α} aux classes \hat{D}_{α} . Nous posons

$$\widetilde{\mathbf{r}}_{\mathbf{M}}^{+} = \frac{\boldsymbol{\xi}_{+}^{\mathbf{M}}}{\left(\boldsymbol{\xi}_{+} + \mathbf{i}\right)^{\mathbf{M}}}; \quad \widetilde{\mathbf{r}}_{\mathbf{M}}^{-} = \frac{\boldsymbol{\xi}_{-}^{\mathbf{M}}}{\left(\boldsymbol{\xi}_{-} - \mathbf{i}\right)^{\mathbf{M}}}; \quad \widetilde{\mathbf{r}}_{\mathbf{M}}^{*} = \frac{\left|\boldsymbol{\xi}_{-}^{*}\right|^{\mathbf{M}}}{\left|\boldsymbol{\xi}_{-}^{*}\right|^{\mathbf{M}} + 1}; \quad \widetilde{\mathbf{r}}_{\mathbf{M}}^{*} = \frac{\left|\boldsymbol{\xi}_{-}^{*}\right|^{\mathbf{M}}}{\left|\boldsymbol{\xi}_{-}^{*}\right|^{\mathbf{M}}} = \frac{\left|\boldsymbol{\xi}_{-}^{*}\right|^{\mathbf{M}}}{\left|\boldsymbol{\xi}_{-}^{*}\right|^{\mathbf{M}}}$$

où M est un entier assez grand. Nous appelons r_M^+ , r_M^- , r_M^* , r_M^- les opérateurs de convolution correspondants.

On démontre la

PROPOSITION 1. Si $\widetilde{A}(\xi) \in D_{\alpha}$ et si $\alpha + M_1 + M_2 + M_3 \ge 0$ où M_3 est pair, alors $\widetilde{r}_{M_1}^+ \widetilde{r}_{M_2}^- \widetilde{r}_{M_3} \widetilde{A}(\xi) \in \widehat{D}_{\alpha} .$

Nous avons alors les deux théorèmes suivants dont nous donnerons la preuve pour montrer le genre de raisonnements utilisés dans ce travail :

THÉORÈME 2. Si $\tilde{\Lambda}(\xi)$, \hat{D}_{α} , alors pour tout $s \ge 0$

$$\|P^{\dagger}Au_{+}\|_{S=C}^{+} \leq c\|u_{+}\|_{S}^{+}$$

pour tout

$$u \in H_S^+ \cap \Omega_A^S$$
.

<u>Preuve</u>. Nous prolongeons u_+ par $\ell u = u_+ + u_-$, $u_- \in H_s^-$ et

$$\| \mathcal{L}\mathbf{u} \|_{\mathbf{S}} \leq \mathbf{c} \| \mathbf{u}_{+} \|_{\mathbf{S}}^{+}$$
.

Alors

$$\|\pi^{+}(\xi_{-}i)^{s-\alpha}\widetilde{A}\widetilde{u}_{+}\|_{Q} \leq \|\pi^{+}(\xi_{-}i)^{s-\alpha}\widetilde{A}\widetilde{\ell}\widetilde{u}\|_{Q} + \|\pi^{+}(\xi_{-}i)^{s-\alpha}\widetilde{A}\widetilde{u}_{-}\|_{Q}$$

M. Durand, Equations de convolution, n° 3

 π^+ étant continu de $\widetilde{\text{H}}_{\text{o}}$ dans $\widetilde{\text{H}}_{\text{o}}^+$, on a facilement

$$\left\| \boldsymbol{\pi}^+ (\boldsymbol{\xi}_- \! - \! \boldsymbol{i})^{\mathbf{S} - \boldsymbol{\alpha}} \; \widetilde{\boldsymbol{\Lambda}} \widetilde{\boldsymbol{\omega}} \boldsymbol{u} \right\|_{\mathbf{O}} \; \leq \; \boldsymbol{c} \left\| \boldsymbol{\ell} \boldsymbol{u} \right\|_{\mathbf{S}} \; \leq \; \boldsymbol{c} \left\| \boldsymbol{u}_+ \right\|_{\mathbf{S}}^+$$

(comme auparavant c désigne diverses constantes).

Pour étudier l'autre norme nous utilisons la relation

$$(\xi_{-i})^{s-\alpha} \widetilde{A}(\xi) = \widetilde{A}_{-}(\xi) + \widetilde{R}(\xi)$$

où

$$|\tilde{R}(\xi)| \le c \frac{(|\xi'|+1)^{s+1}}{1+|\xi'|+|\xi_n|}$$
.

Alors

$$\pi^{+}(\xi_{-}i)^{s-\alpha} \widetilde{A}\widetilde{u}_{-} = \pi^{+}\widetilde{R}\widetilde{u}_{-} \quad \text{et} \quad \|\pi^{+}\widetilde{R}\widetilde{u}_{-}\|_{O} \leq \|\widetilde{R}\widetilde{u}_{-}\|_{O} \leq c\|(|\xi'|+1)^{s}\widetilde{u}_{-}\|_{O}.$$

Par ailleurs

$$\int_{-\infty}^{+\infty} |\widetilde{\mathcal{L}u}(\xi',\xi_n)|^2 d\xi_n = \int_{-\infty}^{+\infty} |\widetilde{u}_+(\xi',\xi_n)|^2 d\xi_n + \int_{-\infty}^{+\infty} |\widetilde{u}_-(\xi',\xi_n)|^2 d\xi_n.$$

Multiplions par $(1+|\xi^{\dagger}|)^{2s}$ et intégrons par rapport à ξ^{\dagger} ,

$$\|(1+|\xi'|)^{S}\widetilde{u}\|_{Q}^{2} = \|(1+|\xi'|)^{S}\widetilde{u}_{+}\|_{Q}^{2} + \|(1+|\xi'|)^{S}\widetilde{u}_{-}\|_{Q}^{2},$$

et nous obtenons

$$\|\pi^{+}\widetilde{R}\widetilde{u}_{-}\|_{Q} \leq c\|(1+|\xi^{+}|)^{s}\widetilde{\ell}\widetilde{u}\|_{Q} \leq c\|\ell u\|_{s} \leq c\|u_{+}\|_{s}^{+}.$$

Etant donnée la définition de la norme dans $H_{\mathbf{S}}(\mathbb{R}^n_+)$ nous obtenons finalement

$$\|P^{+}Au_{+}\|_{S}^{+} \le c\|u_{+}\|_{S}^{+}$$
.

Remarque. Si s < 0, $H_s^+ = H_s^+$, le résultat est évident. Si $s \ge \alpha$ on montre qu'on peut remplacer l'équation

$$P^{+}Au_{+} = f$$
, $f \in H_{s-\alpha}(\mathbb{R}^{n}_{+})$

par

$$\Theta^{+}Au_{+} = f_{+}, \qquad f_{+} = \begin{vmatrix} f & si & x_{n} > 0 \\ 0 & si & x_{n} < 0 \end{vmatrix}$$

où

$$\pi^{+}\widetilde{A}\widetilde{u}_{\perp} = \widetilde{f}_{\perp}$$
.

THÉORÈME 3. Si $\tilde{A}(\xi) \in D_{\alpha}$ et si $\psi(x)$ et $\phi(x)$ sont deux fonctions de $C_0^{\infty}(\mathbb{R}^n)$, alors l'opérateur $u_+ \mapsto P^+ \psi A \phi u_+$ est borné de H_s^+ dans $H_{s-\alpha}(\mathbb{R}^n)$ pour tout s.

<u>Preuve</u>. Posons $\widetilde{A}_1(\xi) = \widetilde{r}_{\underline{M}}(\xi)\widetilde{A}(\xi)$ où $M = 2k > \max(\alpha,s)$. Alors $\widetilde{A}_1(\xi)\epsilon\widehat{D}_{\alpha}$ et le théorème est vrai pour \widetilde{A}_1 . Soit

$$T = A - A_1 \quad \tilde{g} \quad \tilde{T}(\xi) = \frac{\tilde{A}(\xi)}{|\xi|^{M} + 1}$$
.

Si $\tilde{\alpha}$ est une fonction de $C_0^{\infty}(\mathbb{R}^n)$ égale à 1 au voisinage de zéro, nous pouvons écrire

$$\widetilde{T} = \widetilde{T}_1 + \widetilde{T}_2$$

où

$$\widetilde{T}_1 = (1 - \widetilde{\alpha})\widetilde{T}$$

$$\tilde{T}_{2} = \tilde{\alpha}\tilde{T}$$
.

 $\tilde{T}_1 \in Y_{C \to M}$, nous en déduisons :

$$\left\|P^{+}\psi T_{1} \varphi u_{+}\right\|_{S-\alpha}^{+} \leq c\left\|T_{1} \varphi u_{+}\right\|_{S-\alpha} \leq c\left\|\varphi u_{+}\right\|_{S-M}$$

or s-M < 0 donc $H_{s-M}^{+} = \mathring{H}_{s-M}^{+}$ et $\|\phi u_{+}\|_{s-M} \le c \|\phi u_{+}\|_{s-M}^{+} \le c \|u_{+}\|_{s-1}^{+}$

 $\tilde{\mathbf{T}}_{\!\!2}$ est à support compact, donc $\mathbf{T}_{\!\!2}$ a un noyau indéfiniment différentiable, et

$$\left\| \mathbf{P}^{+} \mathbf{V} \mathbf{T}_{\mathbf{S}} \mathbf{\varphi} \mathbf{u}_{+} \right\|_{\mathbf{S} = \alpha}^{+} \leq \mathbf{c} \left\| \mathbf{u}_{+} \right\|_{\mathbf{S} = 1}^{+} .$$

La preuve est établie.

DÉFINITION. Tout opérateur T continu de H_{s-1}^+ dans $H_{s-\alpha}(\mathbb{R}^n_+)$ ou de H_s^+ dans $H_{s-\alpha+1}(\mathbb{R}^n_+)$ est $(\alpha-1)$ -régularisant.

PROPOSITION 2. Soient $\widetilde{A}(\xi) \in D_{\alpha}$ et $\widetilde{A}^{1}(\xi) = \widetilde{A}(\xi)\widetilde{r}_{M_{1}}^{+}(\xi)\widetilde{r}_{M_{2}}^{-}(\xi)$ où M_{1} et M_{2} sont des entiers quelconques, alors si l'opérateur T a pour symbole

$$\widetilde{T}(\xi) = \widetilde{A}(\xi) - \widetilde{A}^{1}(\xi),$$

<u>l'opérateur</u> $\psi T \varphi$ <u>est</u> $(\alpha-1)$ -<u>régularisant</u>.

N°4. Etude du problème général à la frontière pour n entier ≥ 0 et pour un opérateur régulier dans \mathbb{R}^n_+ .

Nous allons d'abord définir une classe de symboles plus restrictive que $\, \, {}^{\mathrm{D}}_{\alpha} \,$:

Classe
$$C_{\kappa}^{+}$$
 . $A_{+}(\xi) \in C_{\kappa}^{+}$ si $A_{+}(\xi) \in O_{\kappa}^{+}$ et si

- (i) $n \in \mathbb{Z}$ et $\widetilde{A}_{+}(\xi) \neq 0$ pour $\xi \neq 0$.
- (ii) Pour tout entier $p \ge 0$

M. Durand, Equations de convolution, n°4

$$\widetilde{A}_{+}(\xi',\xi_{n}) = \sum_{k=0}^{p} \frac{c_{k}(\xi')}{\xi_{+}^{-k+k}} + R_{p}(\xi',\xi_{n})$$

où chaque terme de la somme est dans σ_{\varkappa}^+ et

$$|\mathbb{R}_{\mathbf{p}}(\xi^{\dagger}, \xi_{\mathbf{n}})| \leq c \frac{|\xi^{\dagger}|^{\mathbf{p}+1}}{(|\xi_{\mathbf{n}}|+|\xi^{\dagger}|)^{-\alpha+\mathbf{p}+1}}$$
.

On trouvera dans [1] des conditions suffisantes pour que $\widetilde{\mathbb{A}}_{+}\varepsilon C_{\kappa}^{+}$. Alors si $\widetilde{\mathbb{A}}_{+}(\xi)\varepsilon C_{\kappa}^{+}$, $\frac{1}{\widetilde{\mathbb{A}}_{+}(\xi)}\varepsilon C_{-\kappa}^{+}$; $C_{\kappa}^{+}\subset D_{\kappa}$ et de plus si $\widetilde{\mathbb{A}}(\xi)\varepsilon D_{\alpha_{1}}$ et $\widetilde{\mathbb{B}}(\xi)\varepsilon D_{\alpha_{2}}$, $\widetilde{\mathbb{A}}(\xi)\widetilde{\mathbb{B}}(\xi)\varepsilon D_{\alpha_{1}+\alpha_{5}}$.

Notre but est maintenant de représenter la solution $\tilde{u}_+(\xi) \in \tilde{H}_S^+ \cap \tilde{\Omega}_A^S$ de l'équation

(7)
$$P^{+}Au_{+} = f, \qquad f \in H_{S-\alpha}(\mathbb{R}^{n}_{+})$$

où

$$\widetilde{A}(\xi) = \widetilde{A}_{+}(\xi)\widetilde{A}_{-}(\xi)\epsilon\mathcal{E}_{\alpha} , \quad \widetilde{A}_{+}(\xi)\epsilon C_{\kappa}^{+} , \quad \kappa \geq 0 \quad \text{et} \quad s > \kappa .$$

Puisque $H_s^{\dagger} \subset H_o^{\dagger}$, nous pouvons utiliser l'équation (4) du n° 2 avec $\ell = \kappa$ et $\delta = 0$. Pour $\xi ! \in \mathbb{R}^{\dagger}$

$$\widetilde{\mathbf{u}}_{+}(\xi) = \frac{1}{\widetilde{\mathbf{A}}_{+}(\xi)} \pi^{+} \frac{\widetilde{\mathbf{lf}}(\xi)}{\widetilde{\mathbf{A}}_{-}(\xi)} + \sum_{\mathbf{k}=1}^{\mathcal{H}} \frac{\mathbf{c}_{\mathbf{k}}(\xi^{\dagger}) \xi_{\mathbf{n}}^{\mathbf{k}-1}}{\widetilde{\mathbf{A}}_{+}(\xi)}.$$

Nous ajoutons \varkappa conditions frontières (γ étant l'opérateur de restriction à \mathbb{R}^{n-1}):

(8)
$$yP^{\dagger}B_{j}u_{+} = g_{j}(x^{\dagger})$$
 $(j = 1, 2, ..., \kappa; x^{\dagger} = (x_{1}, ..., x_{n-1})).$

Nous supposons que $\tilde{B}_{j}(\xi) \in D_{\alpha j}$ et $s > \max_{j} \alpha_{j} + \frac{1}{2}$. Alors pour $u_{+} \in H_{s}^{+} \cap \Omega_{B_{j}}^{s}$, $P^{+}B_{j}u_{+} \in H_{s-\alpha_{j}}^{+} = t$ $Y^{p}^{+}B_{j}u_{+} \in H_{s-\alpha_{j}}^{+} - \frac{1}{2}$.

Pour trouver les fonctions $c_k(\xi^i)$ nous transporterons la valeur de u_+ dans l'équation (8). Si π^i est défini par

$$\pi^{\dagger} \mathbf{f}_{+}(\xi^{\dagger}, \xi_{n}) = \lim_{\substack{x_{n} \to +0}} \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-ix_{n} \xi_{n}} \mathbf{f}_{+}(\xi^{\dagger}, \xi_{n}) d\xi_{n}$$

et si 3'-1 est l'opérateur de Fourier inverse, en x', alors

$$\begin{array}{c} \gamma P^{\dagger} B_{\mathbf{j}} u_{+} = \mathcal{F}^{\dagger - 1} \pi^{\dagger} \widetilde{B}_{\mathbf{j}}(\xi) \widetilde{u}_{+}(\xi) \ . \\ \text{Nous devons \'etudier d'abord l'expression} & \frac{\widetilde{B}_{\mathbf{j}}(\xi) \xi_{n}^{k-1}}{\widetilde{A}_{+}(\xi)} & \text{qui appartient \`a } D_{\alpha' \mathbf{j} \mathbf{k}} \end{array}$$

où
$$\alpha_{jk} = \alpha_j + k - n - 1$$
 (car $\tilde{A}_+(\xi) \in C_n^+$).

$$\frac{\widetilde{B}_{j}(\xi)\xi_{n}^{k-1}}{\widetilde{A}_{j}(\xi)} = \widetilde{R}_{jk} + \widetilde{B}_{jk}^{-}(\xi)$$

où

$$|\tilde{R}_{jk}(\xi)| \le c \frac{|\xi'|^{\alpha} jk^{+2}}{(|\xi'| + |\xi_n|)^2}$$

la dernière majoration se déduisant des propriétés des classes $\, { t D}_{lpha} \,$. Alors

$$\widetilde{B}_{jk}^{+}(\xi) = \pi^{+} \frac{\widetilde{B}_{j}(\xi)\xi_{n}^{k-1}}{\widetilde{A}_{+}(\xi)} = \pi^{+}\widetilde{R}_{jk}(\xi) = i \frac{b_{jk}(\xi')}{\xi_{+}} + \widetilde{R}_{jk}^{+}(\xi)$$

où

$$\widetilde{R}_{jk}^{+}(\xi) = \frac{1}{\xi_{+}} \pi^{+} \xi_{+} \widetilde{R}_{jk}(\xi) .$$

On peut en effet montrer la relation

(9)
$$\pi^{\dagger} \tilde{R}(\xi) = \sum_{k=1}^{p} \frac{c_{k}(\xi^{\dagger})}{\xi_{+}^{k}} + \frac{1}{\xi_{+}^{p}} \pi^{\dagger} [\xi_{+}^{p} \tilde{R}(\xi)]$$

où

$$c_{k}(\xi^{\dagger}) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} (\eta_{n} + i|\xi^{\dagger}|)^{k-1} \widetilde{R}(\xi^{\dagger}, \eta_{n}) d\eta_{n}$$

(la démonstration est facile à partir de l'identité

$$\frac{1}{\xi_{n}-\eta_{n}} = \sum_{k=1}^{p} \frac{(\eta_{n}+a)^{k-1}}{(\xi_{n}+a)^{k}} + \frac{(\eta_{n}+a)^{p}}{(\xi_{n}+a)^{p}(\xi_{n}-\eta_{n})}$$

dans laquelle on pose $a = i |\xi^{\dagger}|$).

On démontre alors que

$$\pi^{\dagger} \tilde{B}_{jk}^{\dagger}(\xi) c_{k}(\xi^{\dagger}) = b_{jk}(\xi^{\dagger}) c_{k}(\xi^{\dagger})$$

et nous imposons la condition fondamentale

(S.L.) dét
$$[\|b_{jk}(\xi^{\dagger})\|] \neq 0$$
 (condition de Shapiro-Lopatinskii).

Nous obtenons alors immédiatement le théorème suivant :

THÉORÈME 4. Supposons vérifiées les conditions

M. Durand, Equations de convolution, n° 4

(i)
$$\tilde{A}_{+}(\xi) \in C_{\kappa}^{+}$$
.

(ii)
$$\tilde{B}_{j}(\xi) \in D_{\alpha_{j}}$$
.

(iii) La condition (S.L.) est vérifiée.

Si le problème (7) (8) admet une solution

alors la solution est unique et pour presque tout 5° elle s'exprime à l'aide de la relation

(10)
$$\widetilde{\mathbf{u}}_{+}(\xi) = \frac{1}{\widetilde{\mathbf{A}}_{+}(\xi)} \pi^{+} \frac{\widetilde{\mathcal{L}}^{r}(\xi)}{\widetilde{\mathbf{A}}_{-}(\xi)} + \sum_{j=1}^{\kappa} \widetilde{\mathbf{D}}_{j}(\xi', \xi_{n}) [\widetilde{\mathbf{g}}_{j}(\xi') - \widetilde{\mathbf{f}}_{j}(\xi')]$$

avec

$$\widetilde{D}_{j}(\xi^{!},\xi_{n}) = \sum_{k=1}^{\kappa} \frac{b_{jk}^{1}(\xi^{!})\xi_{n}^{k-1}}{\widetilde{A}_{j}(\xi)}$$

où $\|b_{jk}^{1}(\xi^{1})\|$ est la matrice inverse de $\|b_{jk}(\xi^{1})\|$,

ord
$$(\tilde{D}_{j}(\xi)) = -\alpha_{j}-1$$
, ord $(b_{jk}^{(1)}(\xi^{\dagger})) = -(\alpha_{j}+k-x)$

et

$$\tilde{\mathbf{f}}_{\mathbf{j}}(\xi^{\dagger}) = \pi^{\dagger} \pi^{+} \frac{\tilde{\mathbf{B}}_{\mathbf{j}}(\xi)}{\tilde{\mathbf{A}}_{+}(\xi)} \pi^{+} \frac{2\tilde{\mathbf{f}}(\xi)}{\tilde{\mathbf{A}}_{-}(\xi)} = \pi^{\dagger} \tilde{\mathbf{F}}_{\mathbf{j}}(\xi^{\dagger}, \xi_{n}) .$$

Remarque. Considérons l'espace $(H_S^! = H_S(\mathbb{R}^{n-1}))$

$$\mathcal{H}_{s-(\alpha)} = H_{s-\alpha}(\mathbb{R}^n_+) \times H^{\mathfrak{t}}_{s-\alpha_1-\frac{1}{2}} \times \cdots \times H^{\mathfrak{t}}_{s-\alpha_1-\frac{1}{2}}$$

muni de la norme produit, et $\Phi = (f(x), g_1(x^1), \dots, g_n(x^1))$. Si nous définissons l'opérateur \mathcal{A}_o par :

$$\mathcal{A}_{o}u_{\perp} = (P^{\dagger}Au_{\perp}, \gamma P^{\dagger}B_{1}u_{\perp}, ...)$$

le problème (7) (8) s'écrit $\mathcal{A}_{\circ}u_{+} = \Phi$ où $\bar{\Phi} \in \mathcal{H}_{s-(\alpha)}$. Nous définissons R_{\circ} ,

opérateur de $\mathcal{H}_{s-(\alpha)}$ dans H_s^{\dagger} par :

$$R_{\bullet}\Phi = \mathcal{F}^{-1}\widetilde{R}_{\bullet}\widetilde{\Phi}$$

où Rof est défini par la formule (10).

Si Ω est l'ensemble des $\Phi=(\mathbf{r}_{\mathbf{M}}\mathbf{f},\mathbf{r}_{\mathbf{M}}\mathbf{f}\mathbf{g}_{\mathbf{i}},\ldots,\mathbf{r}_{\mathbf{M}}\mathbf{g}_{\mathbf{k}})$ avec \mathbf{M} assez grand et si Φ est dans l'adhérence de Ω dans $\mathcal{H}_{\mathbf{S}-(\alpha)}$, alors

$$\mathcal{A}_{\circ}R_{\circ}\Phi = \Phi$$
.

D'ordinaire (si min $(\alpha,\alpha_1,\ldots,\alpha_{_{_{\mathcal{H}}}})<0$) A et R ne sont pas bornés.

N°5. Inégalité a priori et régularisateur à droite.

 \mathcal{A}_o n'est pas borné, nous allons étudier des opérateurs \mathcal{A}_i bornés tels que si φ et ψ sont dans $\mathcal{C}_0^{\infty}(\mathbb{R}^n)$, $(\psi \mathcal{A}_o \varphi - \psi \mathcal{A}_i \varphi)$ soit régularisant. Comme la théorie a pour but essentiel l'application à un domaine borné la considération de

introduit en fait une restriction sans importance. \tilde{A} et \tilde{B}_j ayant les propriétés du théorème 4, nous considérons l'opérateur \mathcal{A}_1 , borné de H_S^+ dans $\mathcal{H}_{S^-(\alpha)}$ car les symboles sont respectivement dans \hat{D}_{α} et \hat{D}_{α_j} , défini par

$$\mathcal{A}_{1}u_{+} = (P^{+}A_{-}(x_{M}^{-})^{-1}A_{+}(x_{M}^{+})^{2}u_{+}, \dots, \gamma P^{+}B_{j}(x_{M}^{+})^{2}u_{+}, \dots)$$

et nous étudions l'équation

$$\mathcal{A}_1 \mathbf{u}_+ = \Phi$$
.

On montre alors le théorème

THÉORÈME 5. Si $\tilde{A}(\xi)$ et $\tilde{B}_{j}(\xi)$ (j = 1, 2, ..., n) vérifiont les hypothèses du théorème 4, alors pour $u_{+} \epsilon H_{s}^{+}$ et $\Phi = \mathcal{A}_{1} u_{+} \epsilon \mathcal{H}_{s-(\alpha)}$, on a l'inégalité a priori :

(11)
$$\|\mathbf{u}_{+}\|_{\mathbf{S}}^{+} \leq c[\|\mathbf{f}\|_{\mathbf{S}-\alpha}^{+} + \sum_{j=1}^{\kappa} \|\mathbf{g}_{j}\|_{\mathbf{S}-\alpha_{j}-\frac{1}{2}}^{*} + \|\mathbf{u}_{+}\|_{\mathbf{S}-1}].$$

Maintenant nous définissons l'opérateur A_2 borné de H_S^+ dans $\mathcal{H}_{S^-(lpha)}$ par

M. Durand, Equations de convolution, n° 5, 6

$$A_2 u_+ = (P^+ A_- r_M^- A_+ u_+, ..., \gamma r_M^* P^+ B_j u_+, ...)$$

et l'opérateur R_1 , borné de $\mathcal{H}_{s-(\alpha)}$ dans H_s^+ (démonstration comme pour le théorème 5) défini par

$$\widetilde{R}_{1}\widetilde{\Phi} = \frac{\widetilde{r}_{M}^{+}}{\widetilde{A}_{+}} \pi^{+} \frac{\widetilde{r}_{M}^{-}}{\widetilde{A}_{-}} \widetilde{\ell}\widetilde{\mathbf{f}} + \sum_{\mathbf{j}=1}^{\varkappa} \widetilde{r}_{M}^{*}\widetilde{D}_{\mathbf{j}}(\boldsymbol{\xi}^{*},\boldsymbol{\xi}_{n}) [\widetilde{\boldsymbol{\varepsilon}}_{\mathbf{j}}(\boldsymbol{\xi}^{*}) - \pi^{*}\pi^{+} \frac{\widetilde{\mathbf{B}}_{\mathbf{j}}\widetilde{\mathbf{r}}_{M}^{+}}{\widetilde{A}_{+}} \pi^{+} \frac{\widetilde{\mathbf{r}}_{M}^{-}\widetilde{\ell}\widetilde{\mathbf{f}}}{\widetilde{A}_{-}}] .$$

THÉORÈME 6. Les opérateurs \mathcal{A}_2 et R_1 vérifient l'égalité $\mathcal{A}_2 R_1 \Phi = \Phi + T\Phi$

où $\Phi \in \mathcal{H}_{s-(\alpha)}$ et T est régularisant.

 R_1 est appelé "régularisateur à droite de \mathcal{A}_2 ".

N°6. Opérateurs avec symbole variable dans \mathbb{R}^n et dans \mathbb{R}^n_+ . Etude de leur continuité.

Nous allons, dans ce paragraphe, définir des classes de symboles correspondant à ${}^\sigma_{\alpha}$, ${}^\sigma_{\alpha}$ et ${}^D_{\alpha}$ de manière à obtenir à nouveau des théorèmes de régularité.

Nous supposons dans toute la suite que $\widetilde{A}(x,\xi)$ est indéfiniment différentiable en x et que $\widetilde{A}(x,\xi) = 0$ pour $|x| \ge \ell - \epsilon$, ℓ nombre positif donné à l'avance.

A) $\mathfrak{O}_{\alpha}^{\left(1\right)}$ est la classe des fonctions $\widetilde{\mathbb{A}}(x,\xi)$ telles que pour tout x et tout p $(0 \leq p < +\infty)$ $D_x^p \widetilde{\mathbb{A}}(x,\xi) \epsilon \mathfrak{O}_{\alpha}'$.

On peut alors développer $\tilde{A}(x,\xi)$ en série de Fourier :

$$\widetilde{A}(x,\xi) = \sum_{k=-\infty}^{+\infty} \psi_{\circ}(x) e^{\frac{i\pi kx}{\ell}} \widetilde{L}_{k}(\xi) , \quad kx = \sum_{1}^{n} k_{i} x_{i}$$

οù

$$\widetilde{L}_{\mathbf{k}}(\xi) = \frac{1}{(2\ell)^n} \int_{-\ell}^{+\ell} e^{\frac{-i\pi kx}{\ell}} \widetilde{A}(x,\xi) dx$$

$$\psi_{\circ}(x) = \begin{vmatrix} 1 & \text{pour } |x| \leq \ell - \epsilon \\ 0 & \text{pour } |x| \geq \ell \end{vmatrix}, \quad \psi_{\circ}(x) \in C_0^{\infty}(\mathbb{R}^n).$$

Puisque $A(x,\xi) \in C^{\infty}(\mathbb{R}^n_x)$ on a trivialement

(12)
$$|\tilde{I}_{\mathbf{k}}(\xi)| \leq \frac{c_{\tilde{x}_{1}} |\xi|^{\alpha}}{(1+|\mathbf{k}|)^{\tilde{M}}}$$

pour tout entier positif M.

B) $Y_{\alpha}^{(1)}$ est la classe des fonctions $\tilde{A}_{1}(x,\xi)$ telles que pour tout x et tout p $(0 \le p < +\infty)$, $D_{x}^{p} \tilde{A}(x,\xi) \in Y_{\alpha}$.

On a encore

$$\widetilde{A}_{1}(x,\xi) = \sum_{k=-\infty}^{+\infty} \psi_{0}(x) e^{\frac{i\pi kx}{\ell}} \widetilde{L}_{k}^{(1)}(\xi)$$

οù

$$\widetilde{L}_{\mathbf{k}}^{(1)}(\xi) = \frac{1}{(2\ell)^n} \int_{-\hat{x}}^{+\ell} e^{\frac{-i\pi kx}{\ell}} \widetilde{A}(x,\xi) dx$$

et

(13)
$$|\widetilde{L}_{\mathbf{k}}^{(1)}(\xi)| \leq c_{\mathbb{N}} \frac{(1+|\xi|)^{\alpha}}{(1+|\mathbf{k}|)^{\mathbb{M}}}$$

pour tout entier positif M.

C) En posant $L_k^{(1)}(x) = \mathcal{F}^{-1} \tilde{L}_k^{(1)}(\xi)$ nous savons alors définir pour tout $u \in H_s$ l'opérateur A_1 :

$$A_1 u = \sum_{k=-\infty}^{+\infty} \psi_o(x) e^{\frac{i\pi kx}{\lambda}} [L_k^{(1)}(x) * u(x)]$$

ou de façon formelle, si $A_1(x,z) = \mathcal{F}_{\xi}^1[\tilde{A}_1(x,\xi)]$

$$\tilde{A}_1 u = \int_{-\infty}^{+\infty} A_1(x,x-y)u(y)dy.$$

Nous utiliserons les relations (12) et (13) qui permettent de faire des sommations de séries convergentes si 1 on prend M assez grand, et la relation fondamentale dans les espaces H_{c} :

Si
$$u(x) \in H_s$$
 et $a(x) \in C^{|s|+1}(\mathbb{R}^n)$,

(14)
$$\|au\|_{s} \leq \max_{x} |a(x)| \|u\|_{s} + c_{s} \|u\|_{s-1}$$

οù

$$c_s = \max_{\substack{|k| \le |s|+1 \\ x}} |D^k a(x)|$$
 et $c_s = 0$ pour $s = 0$.

Il est alors facile d'établir les propositions suivantes :

PROPOSITION 3. Pour tout s, si
$$u \in H_s$$
 et $A_1 \in Y_{\alpha}^{(1)}$

$$\|A_1 u\|_{S=\alpha} \leq c \|u\|_s.$$

PROPOSITION 4. Soit $\psi(x) \in C_0^{\infty}(\mathbb{R}^n)$ et $\psi(x) = 0$ pour $|x-x_0| > \delta$, x_0 étant un point fixé quelconque. S'il existe une constante K indépendante de δ telle que $|\psi(x)| \leq K$, alors

$$\|\psi(A_1 - A_o)u\|_{s-\alpha} \le c\delta \|u\|_s + c_{\delta i} \|u\|_{s-1}$$

où A. est défini par

$$A_{\circ}u_{+} = \Sigma \ \downarrow_{\circ}(x_{\circ}) \ e^{\frac{\underline{i}\pi kx_{\circ}}{\lambda}} [L_{k}^{(1)}(x) * u(x)]$$

et c_{δ} est une constante dépendant de δ .

Définissons une classe $D_{\alpha}^{(o)}$ de symboles plus restrictive que celles qu'on pourrait définir de façon analogue à D_{α} :

pourrait définir de façon analogue à D_{α} :

Si $\widetilde{A}(x,\xi^{\dagger},\xi_{n})$ est C^{∞} en x et ξ $(\xi \neq 0)$, si $\widetilde{A}(x,\xi) \in \mathcal{O}_{\alpha}^{(1)}$, alors $\widetilde{A}(x,\xi) \in D_{\alpha}^{(0)}$ si et seulement si

(15)
$$a_{k,2}(x) = \frac{\partial^{k}}{\partial \xi^{*k}} \tilde{A}(x,0,-1) = (-1)^{|k|} e^{-\alpha \pi i} \frac{\partial^{k}}{\partial \xi^{*k}} \tilde{A}(x,0,+1) = (-1)^{|k|} e^{-\alpha \pi i} a_{k,1}(x,0,+1)$$

(Ceci signifie essentiellement que $\tilde{A}(x,\xi^{\dag},\xi_{n})$ se comporte comme un polynôme en ξ_{n} lorsque $\xi_{n}\to\pm\infty$).

On montre alors que pour $s \ge -\alpha$

$$\xi_{\underline{x}}^{S} \widetilde{A}(x,\xi) = \widetilde{A}_{\underline{x}}(x,\xi) + \widetilde{R}(x,\xi)$$

pour lesquels $D_x^p \tilde{A}_{-}(x,\xi) \in \mathcal{O}_{C+S}^{-}$ (0 \le p < + \infty) et

$$|D_{\mathbf{x}}^{\mathbf{p}} \widetilde{\mathbf{R}}(\mathbf{x}, \boldsymbol{\xi})| \leq c_{\mathbf{p}} \frac{|\boldsymbol{\xi}|^{\mathbf{s}+\alpha+1}}{|\boldsymbol{\xi}|^{\mathbf{s}+|\boldsymbol{\xi}|}}.$$

On définit de façon évidente la classe $\hat{D}_{\alpha}^{(1)}$:

$$\tilde{A}(x,\xi)\in \hat{\mathbb{D}}_{\alpha}^{(1)}$$
 si pour tout $s \ge -\alpha$

$$(\xi_{-i})^{s}\widetilde{A}_{1}(x,\xi) = \widetilde{A}_{1}(x,\xi) + \widetilde{R}(x,\xi)$$

où

$$D_{\mathbf{X}}^{\mathbf{p}} \widetilde{A}_{1_{-}}(\mathbf{x}, \xi) \in Y_{\alpha+\mathbf{s}}^{-} \quad (0 \leq p < +\infty)$$

et

$$|D_{\mathbf{x}}^{\mathbf{p}}(\mathbf{x},\xi)| \leq c_{\mathbf{p}} \frac{(1+|\xi'|)^{\alpha+s+1}}{1+|\xi'|+|\xi_{\mathbf{p}}|}.$$

On montre le théorème suivant (analogue au théorème 2 du n°3) THÉORÈME 7. Si $\tilde{A}_1(x,\xi)\in \hat{\mathbb{D}}_{\alpha}^{(1)}$, alors

$$\|P^{+}A_{1}u_{+}\|_{s-\alpha}^{+} \leq c\|u_{+}\|_{s}^{+} \qquad \underline{pour} \qquad u_{+}^{\epsilon}H_{s}^{+} \cap (\bigcap_{k}^{s}I_{k}^{(1)}).$$

De la preuve de ce théorème on déduit la proposition

PROPOSITION 5. Soit $\psi(x) \in C_0^{\infty}(\mathbb{R}^n)$, $\psi(x) = 0$ pour $|x-x_o| \ge \delta$, $|\psi(x)| \le K$, K indépendant de δ . Si $\widetilde{A}_1(x,\xi) \in \widehat{D}_{\alpha}^{(1)}$, alors

$$\left\|\psi(\mathbb{A}_{1}-\mathbb{A}_{0})\mathbf{u}_{+}\right\|_{\mathbf{S}-\alpha}^{+} \leq c\delta\left\|\mathbf{u}_{+}\right\|_{\mathbf{S}}^{+} + c_{\delta}\left\|\mathbf{u}_{+}\right\|_{\mathbf{S}-1}^{+}$$

où A_o a été défini dans la proposition 4 et $c_{\delta} = 0$ pour $s-\alpha = 0$.

N°7. Régularisateur dans \mathbb{R}^n_+ et dans \mathbb{R}^n (cas du symbole variable)

A) Dans \mathbb{R}^n_+

Nous définissons

$$P^{+}A_{2}u_{+} \equiv P^{+}A_{0}u_{+} + \psi(x)P^{+}(A_{1}-A_{0})u_{+}$$

où le symbole de A_1 est $\widetilde{A}(x,\xi)\widetilde{r}_{\underline{\ }}(\xi)$

de A_o est
$$\tilde{A}(x_o,\xi)\tilde{r}_{-}(\xi)$$
 $(x_o = (x_o^!,0)$

où $\tilde{r}_{\underline{r}}(\xi) = \tilde{r}_{\underline{M}}(\xi)$ avec M assez grand et $\psi(x) \in C_{\underline{n}}^{\infty}(\mathbb{R}^{n})$.

Nous définissons ensuite

$$P^{+}A_{3}u_{+} \equiv P^{+}A_{-}^{-(s-\alpha)}\psi(x)(A_{1}-A_{0})A_{-}^{(s-\alpha)}u_{+}$$

où $\Lambda_{-}^{\mathbf{r}}$ a pour symbole $(\xi_{-}i)^{\mathbf{r}}$. Si le support de ψ est petit (de diamètre inférieur à 2δ), par la proposition 4

$$\|P^{\dagger}A_3u_{\downarrow}\|_{S=\alpha}^{\dagger} \le c\delta \|u_{\downarrow}\|_{S}^{\dagger}$$
.

Par ailleurs on démontre (à l'aide de lemmes de commutation) :

$$T_o = P^+\psi(A_1 - A_o) - P^+A_3$$

est régularisant.

Nous définissons à la frontière

$$\gamma P^{+}B_{j_{2}}u_{+} = \gamma P^{+}B_{j_{0}}u_{+} + \gamma \psi(x)P^{+}(B_{j_{1}}-B_{j_{0}})u_{+}$$

THE PART OF

M. Durand, Equations de convolution, n°7

où le symbole de B_{j_1} est $\tilde{B}_{j}(x,\xi)\tilde{r}^{i}(\xi)$ de B_{j_0} est $\tilde{B}_{j}(x_0,\xi)\tilde{r}^{i}(\xi)$

où $\tilde{\mathbf{r}}^{\dagger}(\xi) = \tilde{\mathbf{r}}_{M}^{\dagger}(\xi)$.

Alors l'opérateur défini par

$$\gamma P^{+}B_{j_{3}}u_{+} = \gamma P^{+}\Lambda_{-}^{-(s-\alpha_{j})}\psi(x)(B_{j_{3}} - B_{j_{3}})\Lambda_{-}^{(s-\alpha_{j})}u_{+}$$

a une norme petite comme opérateur de H_s^+ dans $H_{s-\alpha_i^-\frac{1}{2}}^t$, et

$$\gamma P^{\dagger}T_{j} \equiv \gamma P^{\dagger}(B_{j_{1}} - B_{j_{0}}) - \gamma P^{\dagger}B_{j_{3}}$$

est régularisant.

Soit alors

$$\mathcal{K}_{\mathbf{s}-(\alpha)} = \mathbf{H}_{\mathbf{s}-\alpha}(\mathbb{R}^{\mathbf{n}}_{+}) \times \cdots \times \mathbf{H}^{\mathbf{t}}_{\mathbf{s}-\alpha_{\mathbf{j}}-\frac{1}{2}}(\mathbb{R}^{\mathbf{n}-1}) \times \cdots$$

et

$$\mathcal{A}_{u_{+}} = (P^{+}A_{2}u_{+}, ..., \gamma P^{+}B_{j_{2}}u_{+}, ...)$$
 $(j = 1, 2, ..., n).$

$$\mathcal{A} = \mathcal{A}_{0} + \mathcal{A}_{3} + T$$

où A, & et T sont définis de façon évidente.

D'après le numéro 6 on peut construire Ro tel que

$$\mathcal{A}_{oR_o} = I + T^{(1)}, T^{(1)}$$
 régularisant.

Nous obtenons donc

$$A_{R_0} = I + A_{3R_0} + T^{(2)}$$

où $T^{(2)}$ est régularisant et A_0R_0 a une petite norme. Nous pouvons donc définir l'inverse C de (I + A_0R_0). Si $R = R_0C$, alors

$$AR = I + T^{(3)}$$

où T⁽³⁾ est régularisant.

B) Dans Rn .

Nous posons

$$A_2 u = A_0 u + \psi(x)(A_1 - A_0)u$$

et

$$A_3 u = \psi(x)(A_1 - A_0)u - Tu$$

où T est régularisant et peut être choisi de sorte que \mathbb{A}_3 ait une norme petite.

Le symbole de A. étant

$$\tilde{A}(x_0,\xi)\tilde{r}(\xi),$$

soit Ro défini par son symbole

$$\frac{\tilde{r}(\xi)}{\tilde{A}(x_0,\xi)}$$
,

et

$$C = (I + A_3R_o)^{-1}$$

En posant R = R.C., nous obtenons

$$AR = I + T_1$$

où T₁ est régularisant.

N°8. Opérateurs dans une région bornée.

Soit G une région bornée de \mathbb{R}^n à frontière régulière Γ . On définit de façon évidente $H_{\mathbf{S}}(G)$ et $H_{\mathbf{S}}(\Gamma)$. Nous considérons $\widetilde{A}(\mathbf{x},\xi)$ indéfiniment différentiable par rapport à \mathbf{x} et $\mathbf{x} \neq \mathbf{0}$ et nous prolongeons ce symbole à tout \mathbb{R}^n , par exemple en posant $\widetilde{A}(\mathbf{x},\xi) = \mathbf{0}$ pour $|\mathbf{x}| \geq \ell - \varepsilon$ si G est contenu dans le cube $\{|\mathbf{x}| < \ell - \varepsilon\}$. Nous supposons que pour tout $\mathbf{x} \in \overline{G}$, $\widetilde{A}(\mathbf{x},\xi) \in \mathscr{O}_{\alpha}$.

Nous utilisons les fonctions $\tilde{L}_k(\xi)$ comme dans le numéro 6, et l'opérateur A défini par

$$Au_{+} = \sum_{k=-\infty}^{+\infty} \psi_{o}(x) e^{\frac{i\pi kx}{\ell}} (L_{k} * u_{+}) .$$

Pour chercher des conditions sur \tilde{A} pour que $P^{\dagger}A$ soit régulier (c'est-àdire $P^{\dagger}Au_{+}\in H_{S-\alpha}(G)$ si $u_{+}\in H_{S}^{\dagger}(G)$), nous devons donner d'abord un théorème d'invariance par difféomorphisme :

M. Durand, Equations de convolution, n° 8-

THÉORÈME D'INVARIANCE PAR DIFFÉOMORPHISME.

Soit

$$\tilde{\mathbb{A}}(\bar{x},\bar{\xi}) \in \mathcal{O}_{\mathcal{O}}$$
, $\tilde{\mathbb{A}}(\bar{x},\bar{\xi}) \in C^{\infty}(\mathbb{R}^{n} \times \mathbb{R}^{n} - \{0\})$.

Soient $\phi(\bar{x})$, $\psi(\bar{x}) \in C_0^{\infty}$, $\bar{x} = s(x)$ un difféomorphisme de classe C^{∞} de \mathbb{R}^n sur \mathbb{R}^n . Alors si \mathbb{N} est un nombre suffisamment grand, $(|s| \leq \mathbb{N})$, l'opérateur $\psi A \phi$, après le changement de variables $\bar{x} = s(x)$, a la forme

(16)
$$\psi A \varphi u = \psi_1 A_{\circ} \varphi_1 \mathbf{v} + \sum_{\mathbf{j}=1}^{\mathbf{M}} \sum_{|\mathbf{p}|-|\mathbf{k}|=\mathbf{j}} \psi_1 A_{\mathbf{p} \mathbf{k} \mathbf{j}} \varphi_1 \mathbf{v} + \psi_1 T_{\mathbf{M}} \varphi_1 \mathbf{v} + \mathbf{k} \mathbf{k} \mathbf{j} \mathbf{k} \mathbf{j}$$

 $\underline{où}$ ψ_1 , φ_1 \underline{et} v sont les expressions \underline{de} ψ , φ , \underline{u} \underline{dans} les nouvelles variables $\underline{où}$

$$\tilde{A}_{\circ}(x,\xi)\epsilon\delta_{\alpha}' = t \quad \tilde{A}_{\text{pkj}}(x,\xi)\epsilon\delta_{\alpha-j}' \quad (j \ge 1),$$

dans les nouvelles variables, les symboles A. et Apkj ayant les formes

(17)
$$\begin{cases} \widetilde{A}_{o}(x,\xi) = \widetilde{A}(s(x),c_{i}^{*}(x)\xi) \\ \widetilde{A}_{pkj}(x,\xi) = \sum_{|\mathcal{L}|=|p|} d_{pkj}^{\mathcal{L}}(x)\xi^{k} \frac{\partial^{\mathcal{L}}\widetilde{A}_{o}(x,\xi)}{\partial \xi^{\mathcal{L}}} \end{cases}$$

où si l'on note c(x) la matrice jacobienne de s(x), $c_1^*(x)$ est la transposée de $c^{-1}(x)$, et $d_{pkj}^{\ell}(x)$ sont des fonctions c^{∞} de x.

ψ₁ Tφ₁ est un opérateur N-régularisant, avec

$$N = \frac{M-n-\alpha}{2} .$$

Remarque. Si $\tilde{A}_{o}(x,\xi) \in D_{\alpha}^{(0)}$, alors $\tilde{A}_{pkj}(x,\xi) \in D_{\alpha-j}^{(0)}$.

Recouvrons maintenant G par une famille finie d'ouverts, $(\Omega_j)_j$, associée à une partition de l'unité $(\phi_j)_j$ et à des systèmes de coordonnées locales

$$(\{x_i^{(j)}\}_i)_j$$
 (i = 1,2,...,n) tels que $\Gamma_j = \Gamma \cap \overline{\Omega}_j$

ait pour équation $x_n^{(j)} = 0$, pour tout j. Nous choisissons enfin pour chaque j $\psi_j(x) \in C_0^\infty(\mathbb{R}^n)$ telle que supp $\psi_j \subset \Omega_j$ et $\psi_j \phi_j = \phi_j$.

Nous avons la relation

$$P^{+}Au = \sum_{j} P^{+}\varphi_{j}Au$$
.

Pour transformer $\phi_j A \psi_j$ dans le système de coordonnées locales $\{x_i^{(j)}\}_i$ nous

appliquons le théorème d'invariance par difféomorphisme. Nous obtenons une somme d'opérateurs de la forme (17) et un opérateur N-régularisant, N grand. Nous notons $\tilde{A}_j(x^{(j)},\xi)$ le symbole de la partie principale A_j de l'opérateur $\phi_j A \psi_j$ dans le système $\{x_i^{(j)}\}_i$.

Nous introduisons n opérateurs frontières $\gamma P^+ B_j$ où B_j a pour symbole $\psi_o(x) \tilde{B}_j(x,\xi)$, ord $(\tilde{B}_j) = \alpha_j$ et nous faisons les mêmes transformations sur ces opérateurs.

Nous considérons alors les quatre conditions suivantes :

a)
$$\widetilde{A}_{\mathbf{j}}(\mathbf{x^{(j)}},\xi) \neq 0$$
; et pour $\mathbf{x}_{\mathbf{n}}^{(\mathbf{j})} = 0$

$$\widetilde{A}_{\mathbf{j}}(\mathbf{x^{(j)}},\xi) = \widetilde{A}_{\mathbf{j}}^{+}(\mathbf{x^{(j)}},\xi)\widetilde{A}_{\mathbf{j}}^{-}(\mathbf{x^{(j)}},\xi) \quad \text{avec ord } \widetilde{A}_{\mathbf{j}}^{+} = n$$

b)
$$\tilde{A}_{j}(x^{(j)},\xi)\in D_{\alpha}^{(o)}$$
 si $\Omega_{j}\cap \Gamma\neq\emptyset$

- c) $\tilde{B}_{j} \in D_{\alpha j}^{(o)}$ pour tous les systèmes de coordonnées locales lorsque $\Omega_{i} \cap \Gamma \neq \emptyset$.
- d) Si $x_0^{(j)} \in \Gamma$ est un point arbitraire de Ω_j et si $\tilde{B}_j^{(o)}$ est le symbole de la partie principale de B_j pris en x_0 , dans le système de coordonnées locales de Ω_j , alors $\tilde{B}_j^{(o)}$ vérifie la condition (S.L.) de Shapiro-Lopatinskii (voir n°4).

Remarquons que si la condition (b) est vérifiée, elle est aussi vérifiée par les termes d'ordre inférieur.

Nous pouvons maintenant établir le théorème suivant :

THÉORÈME 8. Si A satisfait la condition (b), alors P⁺A est un opérateur borné de H_s⁺(G) dans H_{s-\text{\sigma}}(G), pour tout s.

Idée de la preuve :

$$P^{\dagger}Au_{+} = \sum_{j} \varphi_{j}P^{\dagger}Au_{+} = \sum_{j} P^{\dagger}\varphi_{j}A\psi_{j}u_{+} + \sum_{j} P^{\dagger}\varphi_{j}A(1-\psi_{j})u_{+} .$$

Pour étudier $P^+\phi_jA\psi_ju_+$, transportons-le dans les coordonnées locales $\{x_i^{(j)}\}_i$:

$$P^{+} \varphi_{j}^{A} \psi_{j} u_{+} = P^{+} \varphi_{j}^{A} j \psi_{j} u_{+} + \sum_{r \geq 1} P^{+} \varphi_{j}^{A} j \psi_{j} u_{+} + T_{N} u_{+} .$$

On définit $\tilde{A}_j = \tilde{A}_j \tilde{r}_{M_j}^+ \tilde{r}_{M_2}^-$. L'opérateur A_j est borné $(\tilde{A}_j \in \tilde{D}_{\alpha})$. La différence entre A_j et A_j est régularisante (n°3, proposition 2). On traite les autres termes de la même façon et finalement

$$\sum_{j} P^{+} \varphi_{j} A[\psi_{j}]$$
 est borné.

11. Durand, Equations de convolution, n°8, 9

D'autre part $P^+\phi_jA(1-\psi_j)u_+$ a un noyau C^∞ , donc l'opérateur est régularisant d'ordre quelconque. Le théorème est alors établi.

La condition (d) permet d'affirmer que

$$\left\| \mathbf{y}^{\mathbf{P}^{+}\mathbf{B}} \mathbf{j}^{\mathbf{u}}_{+} \right\|_{\mathbf{S} - \alpha_{\mathbf{j}^{-}}^{-\frac{1}{2}}} \leq c \left\| \mathbf{u}_{+} \right\|_{\mathbf{S}} .$$

Nous définissons l'opérateur T par

$$Tu_{+} = (P^{+}T_{0}u_{+}, \gamma P^{+}T_{1}u_{+}, \dots, \gamma P^{+}T_{u}u_{+})$$

tel qu'il soit arbitraire de $H_S^+(G)$ dans $\mathcal{H}_{S-(\alpha)-\epsilon}$, $\epsilon>0$ et l'opérateur \mathcal{A} par

$$\mathcal{A}u_{+} = (P^{\dagger}Au_{+}, \gamma P^{\dagger}B_{1}u_{+}, \dots, \gamma P^{\dagger}B_{\kappa}u_{+}).$$

Nous pouvons alors énoncer le théorème :

THÉORÈME 9. Sous les hypothèses (a), (b), (c) et (d), l'opérateur \mathcal{A} + T, de $\mathbb{H}_s^+(G)$ dans $\mathcal{H}_{s-(\alpha)}$, a une image fermée et un indice fini. De plus nous avons l'inégalité a priori

(18)
$$\|\mathbf{u}_{+}\|_{\mathbf{S}} \leq \mathbf{c}(\|\mathbf{f}\|_{\mathbf{S}-\alpha} + \sum_{j=1}^{n} \|\mathbf{g}_{j}\|_{\mathbf{S}-\alpha_{j}}^{\prime} - \frac{1}{2} + \|\mathbf{u}_{+}\|_{\mathbf{S}-1})$$

<u>où</u>

$$f = P^{+}(A+T_{o})u_{\perp}$$

$$g_{j} = \gamma P^{+}(B_{j} + T_{j})u_{+}$$

$$s \ge \max \left(n, \alpha_{\frac{1}{2}} + \frac{1}{2}\right).$$

Enfin notons qu'il est possible de construire un régularisateur à droite, c'est-à-dire un opérateur R, tel que si $u_+ \in H_S^+(G)$, $F \in \mathcal{H}_{S^-(\alpha)}$ et si $(\mathcal{A}+T)u_- = F$, alors

$$(\mathcal{A}_{+} T)RF = F + T_{1}F,$$

où T1 est un opérateur régularisant.

N° 9. Équations avec potentiels dans \mathbb{R}^n_+ lorsque $\varkappa < 0$ et avec coefficients constants.

Soit l'équation $P^+Au_+ = f$, $f_{\varepsilon}H_{s-\alpha}(\mathbb{R}^n_+)$, $s \ge 0$. Supposons que $\widetilde{A}(\xi)_{\varepsilon}\mathcal{E}_{\alpha}$ et $\widetilde{A}_+(\xi)_{\varepsilon}\mathcal{C}_{\mu}^+$, $\kappa < 0$. Dans H_{κ}^+ et si $\xi^!_{\varepsilon}\mathbb{R}^!$, nous avons la solution unique (voir $\mathbb{N}^{\circ}2$).

$$\widetilde{\mathbf{u}}_{+}(\xi) = \frac{1}{\widetilde{\mathbf{A}}_{+}(\xi)} \, \pi^{+} \, \frac{\widetilde{\mathbf{Lf}}(\xi)}{\widetilde{\mathbf{A}}_{-}(\xi)} .$$

On a par ailleurs la relation (cf. n°4, formule 9)

$$\pi^{+}\widetilde{g}(\xi^{+},\xi_{n}) = \sum_{k=1}^{|\mathcal{X}|} \frac{\mathbf{i}}{\xi_{+}^{\mathcal{X}}} \pi^{+}\xi_{+}^{k-1}\widetilde{g}(\xi^{+},\xi_{n}) + \frac{1}{\xi_{+}^{|\mathcal{X}|}} \pi^{+}\xi_{+}^{|\mathcal{X}|}\widetilde{g}(\xi^{+},\xi_{n}) .$$

D'où l'on déduit

$$\widetilde{\mathbf{u}}_{+}(\xi) = \sum_{\mathbf{k}=1}^{|\mathcal{X}|} \frac{\mathbf{i}}{\xi_{+}^{\mathcal{X}} \widetilde{\mathbf{A}}_{+}(\xi)} \pi^{\dagger} \xi_{+}^{\mathbf{k}-1} \frac{\widetilde{2}\widetilde{\mathbf{f}}(\xi)}{\widetilde{\mathbf{A}}_{-}(\xi)} + \frac{1}{\widetilde{\mathbf{A}}_{+}(\xi) \xi_{+}^{|\mathcal{X}|}} \pi^{+} \frac{\xi_{+}^{|\mathcal{X}|} \widetilde{\mathbf{A}}\widetilde{\mathbf{f}}(\xi)}{\widetilde{\mathbf{A}}_{-}(\xi)}$$

Pour $\xi^* \in \mathbb{R}^*$ le dernier terme est dans $H_o(\mathbb{R}^1)$. Puisque $\widetilde{A}_+ \in C_{\varkappa}^+$,

$$\frac{1}{\xi_{k}^{k} \tilde{A}_{k}(\xi)} = c_{k,0}(\xi^{\bullet}) \xi_{+}^{|n|-k} + c_{k,1}(\xi^{\bullet}) \xi_{+}^{|n|-k-1} + \dots + c_{k,|n|-k}(\xi^{\bullet}) + R_{k}^{(1)}(\xi)$$

οù

$$k \le |n|$$
 et $|R_k^{(1)}(\xi)| \le c \frac{|\xi|}{|\xi| + |\xi_n|}$.

Nous détachons dans l'expression de $\tilde{u}_{\perp}(\xi)$ le terme principal de la forme

$$\begin{array}{c|c} |n| & & \\ \Sigma & c_k(\xi^{\,\bullet})\xi_+^{\,|n|\,-k} & \text{qui est image de} & \sum\limits_{k=1}^{\,|n|\,-1} \, d_k(x^{\,\bullet})\delta^{(k)}(x_n) \,\,. \end{array}$$

 $u_+(x)$ est donc la somme de fonctions régulières et d'une combinaison linéaire de dérivées de δ concentrées en $x_n=0$. Nous devons alors considérer l'opérateur de convolution agissant sur un terme régulier et $|\kappa|$ fonctions concentrées à la frontière $x_n=0$, soit :

(19)
$$\mathfrak{L}_{\bullet}(\mathfrak{u}_{+}(x), \rho_{k}(x^{\dagger})) \equiv P^{+}A(x) * \mathfrak{u}_{+}(x) + P^{+} \sum_{k=1}^{|\kappa|} G_{k}(x) * \rho_{k}(x^{\dagger}) = f(x)$$

où $f_{\epsilon}H_{s-\alpha}(R_{+}^{n})$ et les solutions cherchées sont $u_{+\epsilon}H_{s}^{+}$ et $\rho_{k}(x^{*})$.

Nous supposons que $\tilde{G}_k(\xi) \in D_{\alpha_k}$ et nous définissons $G_k * \rho_k$ par

$$G_{\mathbf{k}}(\mathbf{x}) * \rho_{\mathbf{k}}(\mathbf{x}) \equiv G_{\mathbf{k}}(\mathbf{x}) * \rho_{\mathbf{k}}(\mathbf{x}) \delta(\mathbf{x}_{\mathbf{n}})$$

 ρ_k à support compact, puis on prend l'adhérence de ces ρ_k dans, $H_{-\frac{1}{2}}(\mathbb{R}^{n-1})$. Soit

$$\Omega_{\mathbf{G}_{\mathbf{k}}} = \{ \rho_{\mathbf{k}} \in \mathbb{H}_{-\frac{1}{2}}(\mathbb{R}^{n-1}) : G_{\mathbf{k}} * \rho_{\mathbf{k}} \in \mathbb{H}_{-\alpha_{\mathbf{k}}-1} \} .$$

Si $s_k = s + \alpha_k - \alpha + \frac{1}{2}$, on cherche $\rho_k(x^*)$ dans $H_{s_k}(\mathbb{R}^{n-1}) \cap \Omega_{G_k}$.

II. Durand, Equations de convolution, n° 9,10

Si
$$\tilde{G}_{k}^{\epsilon} \hat{D}_{\alpha_{k}}^{\alpha}$$
 , alors

$$\left\| \pi^{+} \widetilde{G}(\xi) \widetilde{\rho}_{k}(\xi^{\dagger}) \right\|_{S - \alpha}^{+} \leq c \left\| \rho_{k}(\xi^{\dagger}) \right\|_{S_{k}}.$$

Posons

$$\mathcal{H}_{s}^{+} = H_{s}^{+} \times H_{s_{1}}(\mathbb{R}^{n-1}) \times \dots \times H_{s_{|\mathcal{X}|}}(\mathbb{R}^{n-1})$$
,

on peut montrer le théorème

THÉORÈME 10. Supposons que

(i)
$$\tilde{A}_{+}(\xi) \in C_{\mathcal{H}}^{+}$$
, $n < 0$, $\tilde{G}(\xi) \in D_{\alpha_{k}}$

(ii) Une condition identique à (S.L.) (voir n°4) est vérifiée.

Alors si $f(x) \in H_{S-\alpha}(\mathbb{R}^n_+)$ l'équation (19) a une solution unique

$$(u_{+}(x), \rho_{k}(x^{\dagger})) \in \mathcal{H}_{(s)}^{+}$$

<u>où</u>

$$u_+^{\in \Omega_{
m A}^{
m S}}$$
 , $\rho_{
m k}(x^{\imath})_{\in \Omega_{
m G}_{
m k}}$.

Remarque. Si $\tilde{G}_{k}^{+}(\xi) = \pi^{+} \frac{\tilde{G}_{k}}{\tilde{\Lambda}_{k}}$ alors d'après la relation (9) du n° 4,

$$\widetilde{G}_{k}^{+}(\xi) = \sum_{j=1}^{|n|} \frac{d_{jk}(\xi^{*})}{\xi_{\perp}^{j}} + \widetilde{R}_{k}(\xi',\xi_{n})$$

et la condition (ii) est que

$$d\acute{e}t[\|d_{jk}(\xi^{\,\boldsymbol{!}})\|] \neq 0 \ .$$

En outre on peut établir une inégalité <u>a priori</u> et l'existence d'un régularisateur à droite comme dans les cas précédents.

N° 10. Compléments.

A) $\widetilde{A}(x,\xi)/D_{\alpha}$ et n rest pas entier.

Il est possible de trouver des résultats dans les cas où $\tilde{A}(x,\xi)$ ne satisfait pas de conditions de régularité et où n n'est pas entier (indépendant de x).

Mais pour trouver des problèmes normalement solubles et des opérateurs bornés, on appliquera les opérateurs de convolutions sur des fonctions $u_+(x) \in \overset{\circ}{H}_{\mathcal{N}+\delta}(G)$ (fermeture pour la norme $\| \ \|_{\mathcal{N}+\delta}$ de $C_0^{\infty}(G)$, $\mathcal{N}=$ ord $(\widetilde{A}_+(x,\xi))$, $|\delta|<\frac{1}{2}$). Alors $P^+Au_+\in \overset{\circ}{H}_{\mathcal{N}+\delta-\alpha}(G)$. Par ailleurs si on accroit la régularité de f(x), $u_+(x)$ devient plus régulier à l'intérieur (mais on ne peut changer la régularité d'ordre

n+δ à la frontière). Il est donc utile de définir des normes avec poids permetant de rendre compte de ces résultats.

Soit G un domaine borné, G sa fermeture, F sa frontière.

Soient $\alpha_o(x) \equiv 1$ pour $x \in \overline{G}$

$$\alpha_k(x) \equiv a_k(x)r^k + \sigma(r^k)$$
 (k = 1,...,N), r petit,

où r est la distance de $x \in \overline{G}$ à Γ .

 $\alpha_k(x)=\text{constante}>0$, pour r assez grand $0< c_1 \leq a_k(x) \leq c_2 \quad \text{où} \quad c_1 \quad \text{et} \quad c_2 \quad \text{sont des constantes.}$ $a_k(x) \in C^\infty(\overline{G}) \ .$

Nous définissons la norme dans G:

$$\|\mathbf{u}\|_{s,\mathbb{N}} = \sum_{k=0}^{\mathbb{N}} \|\alpha_k \mathbf{f}\|_{s+\mathbb{N}}$$
, qui permet de définir $\mathbf{H}_{s,\mathbb{N}}(\mathbf{G})$

et $\overset{\circ}{\text{H}}_{s,\mathbb{N}}(G)$ est la fermeture de $\overset{\circ}{\text{C}}_{0}^{\infty}(G)$ pour cette norme.

Alors on peut établir des théorèmes de régularité, des inégalités <u>a priori</u> et des régularisateurs pour les opérateurs de convolution appliqués à $\mathring{H}_{n+\delta,N}(G)$. Ces théorèmes rendent compte des accroissements de régularité à l'intérieur si le second membre est plus régulier.

B) n variable.

Dans le cas où κ dépend de $\kappa \in \Gamma$, $(\kappa(x))$ est une fonction régulière, construisons une fonction arbitraire continue $\kappa^1(x)$ sur Γ telle que

$$\max_{x \in \Gamma} |\kappa(x) - \kappa^{1}(x)| < \frac{1}{2}$$

et prolongeons-la de façon arbitraire mais <u>continue</u> de Γ à G. Soit encore $\kappa^1(x)$ cette fonction.

Soit maintenant un recouvrement fini de \bar{G} , $\{U_j\}_j$ tel que dans chaque \bar{U}_j l'oscillation de $\varkappa^1(x)$ soit inférieure à $\frac{1}{2}$.

Soit un x dans chaque U , tel que x $_{j}$ $\in \Gamma$ si U $_{j}$ \cap $\Gamma \neq \emptyset$, et posons $\varkappa_{j} = \varkappa^{1}(x_{j})$.

Alors si $\{\phi_j\}_j$ est une partition de l'unité associée à $\{U_j\}_j$, nous définissons la norme

$$||u||_{(n)+s} = \sum_{j} ||\varphi_{j}u||_{n_{j}+s}$$

14. Durand, Equations de convolution, n° 10

et

$$\|\mathbf{u}\|_{(n)+s,N} = \sum_{k=0}^{N} \|\alpha_k(\mathbf{x})\mathbf{u}\|_{(n)+s+N}$$

 α_k étant défini dans le (A).

Les espaces $H_{(n)+s}(G)$ et $H_{(n)+s,N}$ sont donc déterminés.

On peut alors reprendre les résultats précédents dans ces espaces.

C) Equations de convolution paraboliques.

On peut appliquer ces résultats au cas des équations paraboliques dans un domaine cylindrique ou non. Si $x=(x_0\,;\,x_1\,,\ldots,x_n)$ et $\xi=(\xi_0\,;\,\xi_1\,,\ldots,\xi_n)$ et $\xi^1=(\xi_1\,,\ldots,\xi_n)$ nous faisons les hypothèses suivantes sur $\widetilde{A}(x,\xi_0,\xi^1)$:

- (i) \tilde{A} , comme fonction de ξ_{\circ} , est prolongeable analytiquement au demiespace Im $\xi_{\circ} > 0$.
 - (ii) A vérifie la condition d'homogénéité suivante

$$\widetilde{A}(x,t^{\beta}\xi_{\circ},t\xi^{1}) = t^{\alpha}\widetilde{A}(x,\xi_{\circ},\xi^{1})$$
 $(t>0,\beta>0)$.

(iii)
$$\widetilde{A}(x,\xi_0,\xi^1) \neq 0$$
 si $|\xi_0| + |\xi^1| > 0$, Im $\xi_0 \ge 0$, Im $\xi^1 = 0$.

D'autre part on définit l'espace $H_{s,\beta}(\mathbb{R}^n)$ comme l'espace des distributions f dont la transformée de Fourier \tilde{f} est une fonction et telles que

$$\|\mathbf{f}\|_{\mathbf{s},\beta}^{2} = \int (1 + |\mathbf{g}^{1}|^{2} + |\mathbf{g}_{0}|^{2/\beta})^{\mathbf{g}} |\tilde{\mathbf{f}}(\mathbf{g}_{0},\mathbf{g}^{1})|^{2} d\mathbf{g} < \infty$$

et $\|\mathbf{f}\|_{\mathbf{s},\beta}$ est la norme de \mathbf{f} dans $\mathbf{H}_{\mathbf{s},\beta}(\mathbb{R}^n)$.

On définit alors $\overset{\circ}{H}^+_{s,\gamma}$ et $\overset{H}{s,\gamma}(\mathbb{R}^{n+1}_+)$ par des méthodes analogues à celles utilisées pour définir

$$\mathring{H}_{s}^{+}(\mathbb{R}^{n})$$
 et $H_{s}(\mathbb{R}^{n})$.

A l'aide d'une factorisation de $\widetilde{A}(\xi)$ sur la surface latérale du domaine et en imposant des conditions de régularité, on peut alors établir des théorèmes d'unicité, des inégalités <u>a priori</u> et l'existence de régularisateurs.

BIBLIOGRAPHIE

- [1] M.I. VIŠIK et G.I. ESKIN, "Equations in convolutions in a bounded domain".

 Uspehi Mat. Nauk 20 (1965) n°3, pp. 89-152. Traduit en anglais aux

 "Russian mathematical surveys" (1965) n°3, pp. 85-151.
- [2] M.I. VIŠIK et G.I. ESKIN, "Equations de convolutions dans un domaine borné dans des espaces dont les normes sont munies de poids". Mat. Sbornik. 69 (111) (1966), pp. 65-110 (en russe).
- [3] M.I. VIŠIK et G.I. ESKIN, "Equations de convolution paraboliques dans un domaine borné". Mat. Sbornik 71 (113) (1966), pp. 162-190 (en russe).
- [4] M.I. VIŠIK, "Elliptic equations in convolution in a bounded domain". Congrès de Moscou (1966), 8 feuillets (traduit en anglais).

On trouvers une bibliographie importante dans [1].